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Abstract: Macroalgae are increasingly viewed as a source of secondary metabolites with great
potential for the development of new drugs. In this development, in vitro studies are only the first
step in a long process, while in vivo studies and clinical trials are the most revealing stages of the true
potential and limitations that a given metabolite may have as a new drug. This literature review aims
to give a critical overview of the secondary metabolites that reveal the most interesting results in
these two steps. Phlorotannins show great pharmaceutical potential in in vivo models and, among
the several examples, the anti-dyslipidemia activity of dieckol must be highlighted because it was
more effective than lovastatin in an in vivo model. The IRLIIVLMPILMA tridecapeptide that exhibits
an in vivo level of activity similar to the hypotensive clinical drug captopril should still be stressed, as
well as griffithsin which showed such stunning results over a variety of animal models and which will
probably move onto clinical trials soon. Regarding clinical trials, studies with pure algal metabolites
are scarce, limited to those carried out with kahalalide F and fucoxanthin. The majority of clinical
trials currently aim to ascertain the effect of algae consumption, as extracts or fractions, on obesity
and diabetes.

Keywords: seaweeds; secondary metabolites; in vivo studies; clinical trials; health effects; dieckol;
eckol; fucoxanthin; kahalalide F

1. Introduction

In the last few years, macroalgae attracted increasing attention from many industries of diverse
branches such as fuel, plastics, cosmetics, pharmaceuticals, and food [1,2]. In fact, the chemical
diversity within red (Rhodophyta), green (Chlorophyta), and brown (Phaeophyta) macroalgae offers
the possibility of finding a wide variety of primary and secondary metabolites, with interesting
properties and applications [1,3-7]. Primary metabolites are directly involved in physiological
functions, under normal growth conditions, such as reproduction, while secondary metabolites are
mainly excretory products produced under different stress conditions, such as exposure to ultraviolet
(UV) radiation, changes in temperature and salinity, or environmental pollutants. Primary algal
metabolites are the normal ones, such as proteins, polysaccharides, and lipids, whereas the main
secondary metabolites produced in algae tissues are phenolic compounds, halogenated compounds,
sterols, terpenes, and small peptides, among other bioactive compounds [8-11].
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Studies focusing on the preparation of macroalgae extracts and their chemical characterization
revealed a large range of seaweed compounds with very interesting biological activities including
antitumor, anti-inflammatory, antimicrobial, antidiabetic, antivirus, antihypertensive, fat-lowering,
and neuroprotective activities [12-15].

The large volume of studies proving the seaweed compound activities in in vitro systems [16-19]
hints the need for further advancements in the knowledge about macroalgae compound efficiency in
living systems (in vivo) and their use in the development of pharmaceuticals. In vitro studies are very
relevant and yield very important information, but they only represent the first step of a long process,
and the results obtained rarely reveal anything about the effects of a compound in vivo, because the
responses observed in vitro can be magnified, diminished, or totally different in a more complex and
integrated system. In fact, in vivo studies and clinical trials are those which contribute most to truly
understanding the real potential of compounds as future pharmaceuticals.

In this regard, the present work intends to present insight into the results obtained in the last few
years regarding secondary metabolites, such as phlorotannins, halogenated compounds, fucoxanthin,
and fucosterol isolated from macroalgae, involved in in vivo studies and clinical trials, identifying the
research opportunities and knowledge gaps, to valorize these compounds and their natural resources.
The intention is not to present an exhaustive survey of all published works, but rather a selection of
authors based on the following criteria: in-depth studies involving pure compounds most characteristic
from seaweeds, and studies in which the applied dose was less than 100 mg/kg, with a few exceptions
justified in the discussion of these studies.

2. In Vivo Studies

Several compounds isolated from macroalgae reached the in vivo stage of investigation into their
biological effects, which means that researchers recognize their potential and are willing to prove
their full pharmacological value. In this regard, the paragraphs below review and discuss the most
significant results obtained in these in vivo studies.

2.1. Phlorotannins

Phlorotannins are a class of inimitable complex polyphenol compounds produced by brown
seaweed as secondary metabolites and biosynthesized via the acetate malonate pathway [20,21].
They are basically constituted by phloroglucinol (1,3,5-trihydroxybenzene) base units with different
degrees of polymerization. Phlorotannin classification is based on the types of linkages between the
phloroglucinol units, and there are four subclasses, namely, phlorotannins with ether linkages (fuhalols
and phlorethols), those with phenyl linkages (fucols), those with both ether and phenyl linkages
(fucophlorethols), and those with a dibenzodioxin linkage (eckols) [22] (Figure 1).

OH OH HO
HO (0] e} OH OH OH
(0} OH
AT ol o
OH 1) HO HO
OH
Fuhalol HO OH

OH OH
Phlorethol Fucol
OH
(e} OH
OH OH
OH
HO 0 HO O
O HO 0 OH
HO OHc>H \©/ ol
Ecko
OH
Fucophlorethol OH

Figure 1. Examples of different subclasses of phlorotannins.
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Phlorotannin presence, either in free form or forming complexes with different components of the
cell walls, like alginic acid [23], is essential to the physiological integrity of algae and to numerous
important other roles such as chemical defense against bacteria, epiphytes, and hydroids, protection
against oxidative damage that occurs in response to interactions with other organisms or the abiotic
environment such as UV radiation, and changes in nutrient availability [24,25].

Due to their important roles in the physiology of brown algae, these compounds attracted a lot
of research interest, with many studies addressing their isolation [26-29]. Moreover, as reviewed by
Imbs and Zvyagintseva [30], there were a high number of studies describing the important in vitro
activities of phlorotannins including anti-inflammatory, antitumor, and antibacterial activities, among
others, which led researchers to advance the study of these compounds, trying to prove their biological
activities in vivo. The main results of those studies are summarized in Table 1, and the most relevant
aspects are discussed below, while the compounds’ chemical structures are presented in Figure 2.

Table 1. Summary of in vivo activity of phlorotannins.

Compound Source Model Dose Activity

Suppression of acetic
acid-induced vessel
ICR mice 20 uM hyperpermeability (20%) and
CMC-induced leucocyte
migration (36.4%) [31].

Protects against y-radiation
damage increasing survival rate
50 and 100 mg/kg  (70% and 90% against 40% in the
(b.w.) control group, observed 30 days
after exposure to lethal doses of
ionizing radiation) [32].

Balb/c mice

Reduction of breast tumor growth
Balb/c mice 25 mg/kg (b.w.) by 82% compared to untreated
group [35].

33.3% less metastasis of breast
NOD scid cancer cells and extended survival
gamma mice 25 mgfkg (b-w.) rate (40% after 10 weeks against
0% untreated group) [36].

Eisenia bicyclis 13% improvement in glucose
(Kjellman) Setchell tolerance compared to untreated
[31], Ecklonia cava C57BL/6] mice 100 mg/kg (b.w.) group. 60% inhibition of glucose
Kjellman [32-34] synthesis in primary mouse
hepatocytes [37].

Phloroglucinol 1

Enhanced jejunal crypt survival
(26.4%) and reduction of apoptotic
cells (32.5%) in jejunal crypts after

y-ray exposure [33].

High reduction of UV-B-induced
wrinkle formation (25%),
HR-1 hairless epidermal thickness (62%), and

ICR mice 20 mg/kg (b.w.)

mice 100 mg/kg (b-w:) elastic fiber degeneration (75%)
when compared with control
group [38].
Protection against UV-B-induced
10 mg/mouse * DNA damage by induction of
Balb/c mice (topical NER pathway: Increase of 50% in
application) XPC expression and of 66% in

ERCC1 expression [39].

Reduction of H,O, induced
Zebrafish 50 UM oxidative stress damage, with
embryos H survival rate of 90% against 60%
in untreated group [34].
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Compound

Source

Model

Dose

Activity

Octaphlorethol A 2

Ishige sinicola
(Setchell and N.L.
Gardner) Chihara
[40], Ishige foliacea
Okamura [41-43]

SHR rats

10 mg/kg (b.w.)

Reduction of 21.9 mmHg in
systolic blood pressure against
26.3 mmHg obtained with
captopril [40].

Zebrafish
embryos

50 uM

Decrease glucose-induced ROS
generation (10%) and lipid
peroxidation (20%). Increase
survival rate (50%) [41].

Zebrafish
embryos

12.6 uM *

Decrease of AAPH-induced ROS
formation (30%) and lipid
peroxidation (25%) when

compared with the untreated
group. Toxic at concentration
higher than 50.4 uM [42].

Zebrafish
embryos

25 uM

Inhibition of melanin synthesis
(27.8%) and tyrosinase activity
(32.8%) Inhibitory activity higher
than arbutin at 500 uM [43].

Diphlorethohydroxycarmalol
3

Ishige okamurae
Yendo [44,45]

HR-1 hairless
mice

2 mM

Inhibition of PMj 5
exposure-induced lipid
peroxidation (25%), protein
carbonylation (37.5), and
epidermal height (12%) [44].

Balb/c mice

100 mg/kg (b.w.)

Protection against
radiation-induced cell damage

and increase by 30% in number of

crypt cells compared with

untreated group. Maintained villi

height. Reduction of 50% of lipid
peroxidation in liver. Bone
marrow cell viability increased
(40%) [46].

Zebrafish
embryos

48.8 UM *

Decrease of fine-dust
particle-induced NO (50%) and
ROS production (32%). Decrease
inflammation-induced cell death
(40%) [47].

Zebrafish
embryos

2 uM

Suppression of high
glucose-induced dilation in the
retinal vessel diameter (64.9%)

and vessel formation (35.6%) [48].

Eckol 4

Ecklonia sp. and
Eisenia sp. [49,50]

ICR mice

75 nmol/mouse

Inhibition of ear edema induced
by AA (12.7%), by TPA (40.0%),
and by OXA (19.3%) [51].

Kunming mice

0.5 mg/kg (b.w.)

Hepatoprotection by reduction of
ALT (41.6%) and AST (26%) on
CCly-induced liver injury;
decrease in expression of
caspase-3 (77%), TNF-« (23%),
IL-1B (%), IL-6 (26%), and lipid
peroxidation (21%); increase in
expression of Bcl-2 (33.3%) and
IL-10 (33%). Increase in GSH
(31%) and SOD (19.5%) [52].

ICR mice

50 mg/kg (b.w.)

Anticoagulant action by
increasing tail bleeding time
(135%). Less active than
heparin [53].

ICR mice

20 mg/kg (b.w.)

Enhanced jejunal crypt survival
(17.7%) and reduction of apoptotic
cells (37.5%) in jejunal crypts after

y-ray exposure [33].
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Compound

Source Model

Dose

Activity

C57BL/6 mice

10 mg/kg (b.w.)

Radioprotection increasing
survival rate (58%), hematopoietic
recovery (50%), reduction of DNA

damage in lymphocytes (27.8%),
and increase in CD3* T cell
(44.3%) and CD45R/B220+ pan B
cell (27.6%) populations after
y-ray exposure [54].

C57BL/6 mice

10 mg/kg (b.w.)

Inhibition of y-radiation-induced
lymphocyte apoptosis (33.33%),
and intestinal cell apoptosis
(16.63%) [55].

Ecklonia sp. and
Eckol 4 Eisenia sp. [49,50]
Sprague-Dawley
rats

20 mg/kg (b.w.)

Anti-hyperlipidemic effect by
reduction of TG (27.2%), TC
(38.6%), Al (49%), and LDL

(56.5%) level and increased level
of HDL (10.5%). Activity level
similar to lovastatin [56].

ICR mice

20 UM

Suppression of acetic
acid-induced vessel
hyperpermeability (50%) and
leucocyte migration (50%) [31].

Zebrafish

50 uM

Photoprotection by reduction of
UV-B induced ROS formation
(43%), NO levels (33%), cell death
(78%), and hyperpigmentation
(50%) [57].

IgE/antigen-
sensitized mice

20 mg/kg (b.w.) *

Administration prior to IgE
sensitization, reduced mast cell
degranulation, and edema
formation (80%) [59].

Sprague-Dawley
rats

20 mg/kg (b.w.)

Reduction of TG (31%), TC
(43.4%), Al (72.6%), and LDL
(75.5%) level and increased level
of HDL (35.4%). More active than
lovastatin [56].

ICR mice

20 uM

Suppression of acetic
acid-induced vessel
hyperpermeability (70%) and
CMC-induced leucocyte
migration (55%) [31].

C57BL/Ks]J-db/db

mice

Ecklonia sp. and

Dieckol 5 Eisenia sp. [49,58]

20 mg/kg (b.w.)

Antidiabetic effect by reduction of
lipid peroxidation (87%) body
weight (7%), blood glucose (40%),
and blood insulin (50%).
Increased the activity of SOD
(8.5%), CAT (0.5%), and GSH-px
(0.1%), and over-expression of
AMPK (60%) and Akt (100%) [58].

ICR mice

50 mg/kg (b.w.)

Anticoagulant effect by increasing
tail bleeding time (173.8%). Less
active than heparin [53].

Zebrafish
embryos

20 uM

Reduction of heart rate (13%),
ROS formation (35%), NO level
(18%), lipid peroxidation (10%),

and cell death (10%) in high
glucose-induced oxidative stress.
Reduction of over-expression of
iNOS (20%) and COX-2 (15%) [60].

Zebrafish
embryos

20 uM

Reduction of ROS formation
(80%), lipid peroxidation (5%),
and cell death (15%) on
ethanol-induced damage [61].
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Compound Source Model Dose Activity
Zebrafish Decreased AAPH-induced ROS
o efn}:r)? lcis 41.5 uM levels (40%), lipid peroxidation
Eisenia arborea Y (48%), and cell death (70%) [64].
Areschouga @ . -
Phlorofucofuroeckol A 6 [51,62]; Ecklonia Inhibition ofoear edema mduied
stolonifera Okamura by AdAb (3?;;(5:)'( ;g;/l)? ](EaGlC7 é o)
63 . an y 47/0).
[63] ICR mice 75 nmol/mouse ;i its 12.9%, 13.8%, and 5.7% of
ear edema induced by AA, TPA,
and OXA, respectively [51].
Eisenia arborea Inhibition of ear edema induced
Areschoug @ by AA (42.2%), by TPA (38.4%),
- - . . and by OXA (41.0%). EGCG
Phlorofucofuroeckol B 7 sto[looln,gél; }(S)cllilaolzzgra ICR mice 75 nmol/mouse inhibits 12.9%, 13.8%, and 5.7% of
[63] ear edema induced by AA, TPA,
; and OXA, respectively [51].
Reduction of 28.6 mmHg in
systolic blood pressure, against
Eisenia arborea SHR rats 20 mg/kg (b-w:) 31.3 mmHg obtained with
Areschoug ? captopril [66].
6,6’-Bieckol 8 [51/§5]} Ecklonia Inhibition of ear edema induced
stoloniferan Okamura by AA (41.9%), by TPA (34.2%),
[63] . and by OXA (17.8%). EGCG
ICR mice 75 nmol/mouse ;i its 12.9%, 13.8%, and 5.7% of
ear edema induced by AA, TPA,
and OXA, respectively [51].
Inhibition of ear edema induced
by AA (39.8%), by TPA (49.4%),
' Eisenia arborea . and by OXA (77.8%). EGCG
68 -Bieckol 9 Areschoug? [51,62] ~ [CRmice 75nmol/mouse i i 12 9%, 13.8%, and 5.7% of
ear edema induced by AA, TPA,
and OXA, respectively [51].
Inhibition of ear edema induced
by AA (21.0%), by TPA (31.7%),
P Eisenia arborea . and by OXA (32.3%). EGCG
8,8 -Bieckol 10 Areschoug  [51] ICR mice 75 nmol/mouse i 19 99% 13.8%, and 5.7% of
ear edema induced by AA, TPA,
and OXA, respectively [51].
Ifiﬁiz;icév;] Decrease in sleep latency and
Eckstolonol 11 J ! C57BL/6N mice 50 mg/kg (b.w.) increase (1.4X) in the amount of

Ecklonia stolonifera
Okamura [68]

NREMS [67].

* Unit converted for comparison purposes. * The current accepted name is Ecklonia arborea (Areschoug) M. D.
Rothman, Mattio and J. J. Bolton.
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Figure 2. Chemical structures of phlorotannins referred to in Table 1 with relevant in vivo activities.

2.1.1. Phloroglucinol

7 of 35

Phloroglucinol 1 (Figure 2), the basic unit of phlorotannins, was found to reduce H,O;-induced
toxicity in zebrafish, with the treated group (50 uM of 1) presenting a survival rate of 90% against
only 60% in the control group [34]. The augmented survival rate was correlated with a reduction of
H;,0;-induced cell death, lipid peroxidation, and ROS formation. Moreover, this compound accelerates
liver regeneration after metronidazole (MNZ)-induced apoptosis at a concentration of 400 uM [34].

The effects of 1 on the blood glucose level and the regulation of glucose synthesis in the liver
were also investigated. As shown in Table 1, phloroglucinol 1 (100 mg/kg b.w.) significantly improved
glucose tolerance in C57BL/6] male mice whose diet was high in fat and inhibited glucose synthesis
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in primary mouse hepatocytes [37]. This phlorotannin also exerts efficient cell protection against
ionizing radiation and extends the survival of mice exposed to a lethal dose of y-radiation. Thirty
days after exposure, there was a survival rate of 90% in the group treated with 100 mg/kg (b.w) of 1
and 70% in the group treated with 50 mg/kg (b.w.), while, in the control group, only 40% of the mice
survived [32]. It was proposed that the protection against y-radiation is mainly due to the antioxidant
effects of 1, namely, the inhibition of ROS formation, leading to the inhibition of mitogen-activated
protein kinase kinase-4 (MKK4/SEK1), c-Jun NH,-terminal kinase (JNK), and activator protein-1 (AP-1)
cascades [32,69]. Moon et al. [33] found that administration of 1 (20 mg/kg b.w.) could enhance the
jejunal crypt survival by 26.4% and decreased the number of apoptotic cells in the jejunal crypts by
32.5% when compared with the untreated irradiated group (Table 1).

Phloroglucinol 1 (100 mg/kg b.w.) protects hairless mice against UV-B-induced photodamage
in the skin, by significantly reducing (25%-75%) wrinkle formation, epidermal thickness, and elastic
fiber degeneration [38]. The levels of UV-B-induced DNA damage are also decreased by 1 since
the topical application of 10 mg/mouse was found to increase the expression levels of xeroderma
pigmentosum complementation group C (XPC) and excision repair cross-complementation 1 (ERCC1).
These components are essential for the activation of the nucleotide excision repair (NER) pathway,
which is the mechanism responsible for DNA repairing [39]. Phloroglucinol 1 also exhibits breast
anticancer activity at 25 mg/kg (b.w.), either by decreasing tumor growth or by suppressing the
metastatic ability of breast cancer cells that spread to the lungs, contributing in both cases to an increase
of survival time in mice (Table 1) [35,36]. Since there is still no suitable therapeutic agent that blocks the
progression of breast cancer, these results can be of clinical importance for the treatment of metastatic
breast cancer.

2.1.2. Octaphlorethol A

Octaphlorethol A 2, a rare phlorotannin, decreased oxidative stress induced either by 2,2"-azobis
(2-amidinopropane) (AAPH) [42] or by high levels of glucose [41] in zebrafish embryos (Table 1). This
phlorotannin is toxic for the embryos at concentrations above 50.4 uM; however, at concentrations
lower than 25.2 uM, a strong antioxidant effect was noted without traces of toxicity [42]. These toxicity
values against zebrafish are supported by the data obtained by Kim et al. [43], which found that more
than 90% of subject embryos survived upon exposure to 2 at concentrations below 25 uM, which was
not significantly different from the findings in the control group. Moreover, the same authors reported
that this compound significantly inhibited melanin synthesis (27.8%) and tyrosinase activity (32.8%)
at a concentration of 25 uM, which is higher than the 15% and 17.3% of inhibition obtained with the
reference compound, arbutin, at 500 uM, for melanin synthesis and tyrosinase activity, respectively.
These results indicate that 2 has a potential for application in skin-whitening formulations [43].

A dose of 10 mg/kg (b.w.) of 21ed to a reduction of 21.9 mmHg in the systolic blood pressure (SBP)
in spontaneously hypertensive rats (SHR), against the 26.3 mmHg reduction obtained using the same
dosage of the reference drug captopril. The anti-hypertensive effect was maintained for 6 h, and the
authors suggested this effect was due to the induction of NO production, which is a vasodilator [40].

2.1.3. Diphlorethohydroxycarmalol

Diphlorethohydroxycarmalol 3, which was only isolated from Ishige okamurae Yendo, has a
protective effect against radiation exposure. Ahn et al. [46] reported that treatment with 3 (100 mg/kg
b.w.) in mice before y-ray irradiation significantly protected the intestinal crypt cells in the jejunum and
maintained villi height, compared with those of the control-treated irradiated group. Mice pretreated
with 3 also exhibited dose-dependent increases in the bone marrow cell viability up to a maximum of
40% at 100 mg/kg (b.w.) [46].

Diphlorethohydroxycarmalol 3 decreased the oxidative stress caused to the skin tissue of HR-1
hairless mice by fine particulate matter with a diameter <2.5 um (PM5 5), a major pollutant present in
the atmosphere [44] (Table 1). Exposure to PM; 5 caused lipid peroxidation and protein carbonylation,
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and increased epidermal height, which were inhibited by 3. Moreover, PM; 5 induced apoptosis and
mitogen-activated protein kinase (MAPK) protein expression; however, these changes were attenuated
by 3 [44].

Fernando et al. [47] reported for the first time the use of a zebrafish embryo model for evaluating
the inflammatory effects of fine dust (FD) particles, which are a major aggressive agent in air pollution.
The authors determined that a concentration of 48.8 uM of 3 significantly decreased NO and ROS
production and prevented fine dust inflammation-induced cell death [47]. The effect of 3 against
high glucose-induced angiogenesis in zebrafish embryos was studied, and it was found that the
treatment of embryos with a concentration of 2 uM of 3 suppressed high glucose-induced dilation in
the retinal vessel diameter and vessel formation (Table 1). Moreover, 3 exhibits the ability to inhibit
high glucose-induced vascular endothelial growth factor receptor 2 (VEGFR-2) expression and its
downstream signaling cascade [48]. Hence, 3 seems to be a potential agent for the development of
drugs against angiogenesis induced by diabetes.

2.1.4. Eckol

Eckol 4 presented anti-inflammatory activity in various in vivo studies. Kim et al. [31] found that
a concentration of 20 uM of 4 significantly suppressed acetic acid-induced hyperpermeability and
carboxy-methylcellulose-induced leucocyte migration in mice at a much higher level than 1 (Table 1).
A dosage of 75 nmol of 4 per mouse decreased mouse ear edema induced by different sensitizers,
such as arachidonic acid (AA), 12-O-tetradecanoylphorbol-13-acetate (TPA), and oxazolone (OXA), by
12.7%, 40.0%, and 19.3%, respectively (Table 1) [51]. This shows that 4 can modulate various targets of
the inflammatory cascade.

On the other hand, 4 at a very low dosage (0.5 mg/kg b.w.) has an hepatoprotective effect on
mice by modulating anti-apoptotic and antioxidant mechanisms and suppressing the expression of
pro-inflammatory cytokines, like tumor necrosis factor (TNF), interleukin (IL)-1, and IL-6, and by
upregulating the expression of IL-10, an anti-inflammatory interleukin [52].

Kim et al. [53] reported that 4 presented anticoagulant activity in a mouse model. A dosage of
50 mg/kg (b.w.) increased the in vivo tail bleeding time from 51.5 to 121 s, which is an increase of
more than 100%. However, this result was lower than that obtained with heparin, the commercial
anticoagulant (165 s).

Eckol 4 (20 mg/kg b.w.) also significantly reduced the level of triglycerides (TG), total cholesterol
(TC), atherogenic index (Al), and low-density lipoprotein cholesterol (LDL) and increased level of
the high-density lipoprotein cholesterol (HDL), in SD rats, by similar values to those presented by
lovastatin (Table 1), a therapeutic agent used in the treatment of hypercholesterolemia [56].

Park et al. [54] found that the administration of 10 mg/kg (b.w.) of 4 to y-ray irradiated C57BL/6
mice led to an improvement in hematopoietic recovery and in the repair of damaged DNA in immune
cells and an enhancement of their proliferation, which was severely suppressed by ionizing radiation
(Table 1). It was also found that the same dose decreased lymphocyte apoptosis by 33.33% and intestinal
cell apoptosis by 16.63%, which was correlated with a decrease in the amount of pro-apoptotic p53
and Bax proteins and an increase in the level of Bcl-2, an anti-apoptotic protein, indicating that its
over-expression, which leads to resistance to DNA damage, is involved in protection of gastrointestinal
cells after irradiation [55]. Furthermore, Moon et al. [33] found that 4 at a higher dose (20 mg/kg b.w.)
enhanced jejunal crypt survival and protected against apoptosis induced by radiation in ICR mice
jejunal crypts, albeit to a lesser extent than the values obtained for 1 (Table 1). These findings indicate
that 4 should be a candidate for adjuvant therapy to alleviate radiation-induced injuries to cancer
patients; however, as far as we were able to assess, there were no further advancements in this regard.

Pre-treatment with 4 (50 pM) reduced ROS and NO formation by about 43% and 33%, respectively,
in zebrafish embryos following UV-B irradiation. It also reduced UV-B-induced cell death by 78%
and hyperpigmentation by about 50%, when compared to the untreated control group, showing the
photoprotection effectiveness of 4. The compound presented low toxicity at the tested concentration [57].
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2.1.5. Dieckol

Dieckol 5 was able to impair the oxidative stress effects induced by ethanol in zebrafish embryos [61].
A concentration of 20 uM decreased ROS formation by 80% and lipid peroxidation by 5%. The
attenuation of oxidative stress led to a 15% decrease in ethanol-induced liver cell death, showing that
dieckol possesses a hepatoprotective effect [61]. Dieckol at the same dose also decreased the oxidative
effects caused by high glucose, by significantly reducing heart rate, ROS, lipid peroxidation, and cell
death in zebrafish (Table 1) [60]. Furthermore, high glucose levels induced the over-expression of
inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), whereas 5 treatment reduced
it [60].

Additionally, the antioxidant effects of 5 also play an important role in the attenuation of type
II diabetes. C57BL/Ks]-db/db diabetic mice, when injected with 20 mg/kg (b.w.) of 5, showed a
significant reduction of blood glucose level, serum insulin level, and body weight, when compared
to the untreated group [58]. Nonetheless, 5 also promoted the increase of the activity of antioxidant
enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-px)
in liver tissues, and it increased levels of the phosphorylation of AMPK and Akt in muscle tissues
(Table 1), suggesting that 5 can be developed as a therapeutic agent for type II diabetes [58].

Like phlorotannin 4, 5 also suppressed acetic acid-induced hyperpermeability and
carboxy-methylcellulose-induced leucocyte migration in mice [31], albeit to a higher level than 4,
leading to the conclusion that the number of OH groups in the 5 structure increases its anti-inflammatory
activity. The authors proved the influence of the OH groups of 5 on its activity by protecting those
groups with a methyl substituent, and the activity obtained for methyl-dieckol was reduced by about
35% [31].

The comparison between 5 and 4 was also verified for anticoagulant activity. Kim et al. [53] found
that 5 increased the in vivo tail bleeding time by 173.8%, from 51.5 to 141 s, whereas 4 only increased
this time to 121 s, and heparin increased tail bleeding time to 165 s.

Dieckol also presented a better potential for treating dyslipidemia than 4 since it reduced all the
parameters measured by Yoon et al. [56] at a higher level than that obtained with 4 and even lovastatin
(Table 1). As an example of the efficiency of 5 in the treatment of dyslipidemia, a dose of 20 mg/kg
(b.w.) of 5 decreased total cholesterol by 43.4% when compared with the untreated group, whereas
lovastatin (25 mg/kg (b.w.)) only decreased this parameter by 15.3% [56].

Dieckol 5 also presents anti-allergy effects since oral administration of 5 and 20 mg/kg (b.w.), before
IgE sensitization, markedly abrogated mast cell degranulation and edematous changes in vivo [59].
However, the authors also suggested that the inhibition of the passive cutaneous anaphylaxis could be
mainly attributed to the anti-inflammatory effects of 5.

2.1.6. Other Phlorotannins

In the literature revision performed for the present work, phlorotannins other than those already
known were found with in vitro activities reported, while they only had one or two studies addressing
their in vivo activities, unlike the compounds discussed above. However, some of these activities are
interesting; thus, the studies addressing the less studied phlorotannins are discussed to demonstrate
the interest of future studies on these phlorotannins.

Phlorofucofuroeckol B 7 suppressed 42.2%, 38.4%, and 41.0% of ear swelling in mice induced by
AA, TPA, and OXA, respectively (Table 1), whereas the suppression of ear edema induced by those
three sensitizers showed was significantly lower for isomer 6 (23.4%-31.7%) [51]. This indicates that
the change of the 3”,5”-dihydroxybenzyl group from C-8 in 6 to C-11 in 7 increases the compound’s
anti-inflammatory capacity. The results presented by 7 were also better than those obtained for 4
(Table 1). The interesting activities shown in vivo by this phlorotannin 7 justify the realization of
further studies, including more deep SAR studies to establish its action mechanism.

Administration of 6,6’-bieckol 8 (Figure 2) to mouse (75 nmol per mouse) caused the reduction
of ear swelling after sensitization with AA and TPA by 41.9% and 34.2%, respectively, which is
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an anti-inflammatory effect similar to phlorofucofuroeckol B 7, although 8 had a much smaller
anti-inflammatory effect on the OXA-induced mouse model (17.8%) [51]. On the other hand, the
administration of 6,8’-bieckol 9 was able to inhibit 77.8% of mouse ear swelling when the sensitizer
was OXA, which was the highest value obtained by Sugiura et al. [51], while the administration of
10 yielded an inhibition of 32.3%. These results show clearly that the position of the linkage has a
great influence on the anti-inflammatory activity of phlorotannins. Compounds 4 and 6-10 exhibited
anti-inflammatory effects identical to or higher than epigallocatechin gallate (EGCG), the compound
used as a positive control.

Ko et al. [66] found that a dose of 20 mg/kg (b.w.) of 8 led to a reduction of 28.6 mmHg in the SBP
in SHR, whereas the same dosage of the reference drug captopril decreased SBP by 31.3 mmHg. This
phlorotannin 8 is less active than octaphlorethol 2 [40] since the dose of 8 used was two times higher than
the dose of 2 (Table 1). Thus, the latter seems to be more promising for anti-hypertensive applications.

The phlorotannin eckstolonol 11 significantly decreased sleep latency in a concentration-dependent
manner and increased the amount of non-rapid eye movements (NREMS) in C57BL/6N mice by 1.4-fold
at 50 mg/kg (b.w.) [67]. At this dose, 11 administered in conjunction with pentobarbital was also
capable of increasing sleep duration when compared to the control (only pentobarbital), showing that
this phlorotannin can also potentiate the effects of other hypnotic drugs. It was found that 11 acts as
a partial agonist to the GABAA-BZD receptors [67], similar to the action mode of benzodiazepines,
showing its potential as a hypnotic drug.

In addition to the good results presented by phlorotannins in in vivo studies, which showed their
high pharmaceutical potential, there were some studies [31,44] where there was no information about
the actual amount of compound administered, which hindered their comparison with other studies, as
well as the reproducibility of the results. Also, the majority of the referenced studies, particularly those
using a murine model, had a small group of individuals per study group (4-6), which may not be very
representative of the real effect of the compounds. Future studies should increase the number of test
subjects to increase the statistical power of the findings.

2.2. Peptides

2.2.1. Griffithsin

One of the most biologically interesting families of peptides extracted from macroalgae is the
lectins. They are a structurally diverse group of highly specific and reversibly carbohydrate-binding
proteins [70]. The three groups of macroalgae (Rhodophyta, Phaeophyta, and Chlorophyta) can
produce lectins [71], and these lectins present great potential for the development of new drugs [72-76].
In fact, because of the highly specific way lectins bind to sugars outside cell surfaces inhibiting cell
proliferation [77,78], lectins primarily show antiviral, antibacterial, and antifungal activities [73,79-81].
The most interesting lectin and also the one with the most in vivo studies is griffithsin 12 (Figure 3)
(Table 2).
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Table 2. Summary of in vivo activity of seaweed peptides.

12 of 35

Compound Algae Model Activity Dose
100% of mice survival from a high
Balb/c mice dose of SARS-CoV (compared to 30% 10 mg/kg (b.w.)/day
survival in control group) [83].
Protected 100% of mice from a lethal
Balb/c mice JEV dose (compared to 0% survival in 5 mg/kg (b.w.)/day
control) [84].
. . Protected mice from hepatitis C
Chimeric . . . .
it . infection (viral load below detection 5 mg/kg (b.w.)/day
uPA*/*-SCID mice L. .
limit in treated mice) [85].
Significantly protected mice from
bemi HsV—Z vag{nafll mfcelctlon 0/5 ctlreated 200l of 0.1%
Griffithsin 12 Griffithsia sp. [82] Balb/c mice rm.ce were m ected compared to 3/5 griffithsin gel
infected in control group, after
7 days) [86].
New Zealand (;aused no mucosal damage; or o
. inflammatory responses with 0.1% griffithsin gel
rabbits . . . .
intravaginal administration [87].
Significantly protected mice from - ff21?h211;1 :‘;Ce;r(r)i enan
Balb/c mice HSV-2 vaginal infection and HPV16 & L go
seudovirus challenge [88] combination (0.1%
p : 12 and 3% CG)
Did not negatively impact the
Rhesus macaques mucosal proteome or 0.1% griffithsin gel
microbiome [89].
Palmaria palmata After 2 h, significant 33 mmHg SBP
Tridecapeptide 13 (Linnaeus) F. Weber SHR mice reduction; captopril at same dose 3 mg/kg (b.w.)
pep ptop 8/xg
and D. Mohr [90] caused 29 mmHg SBP reduction [90].
Undaria pinnatifida 16 mmHg SBP reduction after 3 h;
Dipeptide 14 (Harvey) SHR mice captopril at same dose caused 17 1 mg/kg (b.w.)
Suringar [91] mmHg SBP reduction [91].
. Reduced tumor growth by 41.3%.
5180 tuﬁci)crébearmg Increase TNF-a level, lymphocyte 300 mg/kg (b.w.)
proliferation, and SOD activity [92].
Porphyra haitanensis Increased Caenorhabitis elegans
TJ. Chang and B.F. lifespan (15 % 0.1 to 19.9 + 0.3 days),
. Zhepg ’ N2 C habditi increased thermal stress resistance
Phycoerythrin 15 Grateloupia turuturu Zﬁ:";ﬂ: S (22.2% + 2.5% to 41.6% + 2.5% mean 100 pg/mL
Yamac'la, Gf‘ml’m‘z 8 survival) and oxidative stress
lemaneiformis (Bory) resistance (30.1% + 3.2% to 63.1% +
Greville ? [92-94] 6.4% mean survival) [95].
CL4176 Significant reduction of senile plaque
. formation (2-fold reduction in 100 pg/mL
Caenorhabitis elegans
grayscale values [96].
. . Athymic mice with Reduced prostate tumor growth by 0.245 and 0.123
Kahalalide F 16 Bryopsis sp. [97] xenografted tumors 50% and 35% [98]. mg/kg (b.w.)

2 The current accepted name is Pyropia haitanensis (T. ]. Chang and B. F. Zheng) N. Kikuchi and M. Miyata). ® The
current accepted name is Gracilariopsis lemaneiformis (Bory de Saint-Vincent) E. Y. Dawson, Acleto and Foldvik.

Griffithsin was first isolated from aqueous extracts of Griffithsia sp., and it exhibits antiviral
activity [82]. This 121-amino-acid peptide 12 showed no significant homology (>30%) with other
known proteins and exhibited potent in vitro antiviral activity (ECsy values ranging from 0.043 to
0.63 nM) [82], which enticed researchers to perform several subsequent in vivo studies.
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Phycoerythrin 15 Kahalalide F 16

Figure 3. Amino-acid sequence of seaweed peptides with relevant in vivo activities.

O’Keefe et al. [83] reported the antiviral effect of griffithsin 12 (Figure 3, Table 2) on mouse models
infected with an adapted SARS-CoV virus. After injection with a viral dose known to cause at least
75% mouse mortality, mice treated with griffithsin 12 (5 mg/kg b.w. dose intranasally delivered 4 h
before infection) showed 100% survival rates, no weight loss, and decreased pulmonary pathology
during infection. The compound reduced mice pulmonary viral load and inhibited the deleterious
inflammatory response to the virus. In 2013, Ishag et al. [84] once again proved griffithsin’s life-saving
in vivo efficacy with mice models infected with lethal doses of Japanese encephalitis virus (JEV).
Similar to the results obtained by O’Keefe et al. [83], treated mice showed 100% survival rates, as
well as reduced viral antigen load in brain tissue. The griffithsin 12 treatment of mice consisted of
5 mg/kg b.w. intraperitoneal injection of the encephalitis virus. The fact that the same 5 mg/kg b.w.
dose was so effective against both the SARS-CoV and JEV virus highlights griffithsin’s potential as
an antiviral agent. Subsequently, Meuleman et al. [85] also used a 5 mg/kg b.w. griffithsin treatment
(subcutaneously injected in chimeric uPA-SCID mice) to mitigate hepatitis C liver infection. After one
week of virus injection, the results showed significantly lower viral loads (below the limit of detection,
<750 IU/mL) in four of the six treated mice, as opposed to easily detectable loads in the control mice.
In the following two weeks of the study, while the treated mice started slowly exhibiting signs of
infection, the control mice experienced full-blown viremia. Surprisingly, one of the treated mice
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managed to stay completely below the detection limit throughout the entire study period. These results
once again point to the extent and versatility of griffithsin’s antiviral activity against taxonomically
distinct viruses. Although very interesting, these results feel particularly limited in scope due to the
small sample size (n = 6 treated and n = 5 control mice), a fact that was acknowledged by the authors.
Nevertheless, griffithsin’s broad-spectrum antiviral action was still very “alluring” to researchers and
begged further study. Nixon et al. [86] used murine models to see if a 0.1% griffithsin gel would protect
mice from intravaginally applied genital herpes. Results showed that the gel significantly prevented
herpes simplex virus 2 infection and proliferation after mucosal surface challenge and subsequent viral
introduction in seminal plasma. These results complemented those obtained by O’Keefe et al. [87],
which used the rabbit vaginal irritation model to prove griffithsin’s safety as a topical microbicide
component. Results showed that griffithsin caused no mucosal damage or inflammatory responses.
Another study, by Levendosky et al. [88], used a very similar intravaginal challenge methodology
to assess topically applied antiviral activity of a griffithsin-carragenan (12-CG) combination against
herpes simplex (HSV-2) and human papillomavirus (HPV16). A 20-uL dose of the combination (0.1%
12 and 3% CG) was shown to scientifically reduce HSV-2 vaginal infection (when applied before
challenge) and HPV16 (when dosed during and after challenge). The discrepancy between HSV-2 and
HPV16 efficacy timeframes is believed to be due to a several-hour “lag” period in HPV’s replication
cycle. Notwithstanding, these results are in line with previous works and prove griffithsin’s action as a
broad-spectrum antiviral. To conclude, we present a more recent study by Girard et al. in 2018 [89],
who produced and rectally applied griffithsin gels in rhesus monkeys. The study confirmed the
safety of griffithsin as an anti-HIV agent, with minimum disturbance of the monkey’s rectal proteome
and microbiota.

In summary, griffithsin 12 shows tremendous promise as a topical antiviral agent, with great
potential concerning the prevention of sexually transmitted infections. The compound’s repeatedly
proven efficacy, along with the safety studies of O'Keefe et al. [87] and Girard et al. [89], appears to be
leading up to a pre-clinical stage of testing, which should happen soon and eventually pave the way
for future clinical trials.

2.2.2. ACE and Renin Inhibitory Peptides IRLIIVLMPILMA Tridecapeptide and Phe-Tyr Dipeptide

The search for angiotensin-converting enzyme (ACE) inhibitors is of great biological value due
to their inherent hypotensive effects and subsequent applications. Macroalgae were proven to be an
especially rich source of compounds with ACE inhibition activity [18,99-104]. Regarding seaweed
ACE or renin inhibitors, this review chooses to focus on the IRLIIVLMPILMA tridecapeptide 13 and
the Phe-Tyr dipeptide 14 (Figure 3) shown in Table 2, mainly due to their potent hypotensive activity
compared to a current pharmaceutical option (captopril), as well as being of more recent relevance
and interest.

Fitzgerald et al. [90] studied the hypotensive effect of the renin inhibitor tridecapeptide
IRLIIVLMPILMA 13 (Figure 3), previously extracted and purified from Palmaria palmata (Linnaeus)
F. Weber and D. Mohr hydrolysate [105], using the SHR model. The research group reported that a
dose of 3 mg/kg b.w. of tridecapeptide 13 resulted in a decrease in SBP by 33 mmHg after 2 h. This is
especially interesting when compared to the positive control (the clinical hypotensive drug captopril),
which showed an SBP decrease by 29 mmHg with the same dose. Also noteworthy is that a 34-mmHg
SBP decrease was achieved with Palmaria palmata (Linnaeus) F. Weber and D. Mohr protein hydrolysate
but with a dose of 50 mg/kg b.w.

The SHR model was also used in a somewhat similar study by Sato et al. [91] to test ACE inhibitory
peptides purified from Undaria pinnatifida (Harvey) Suringar hydrolysate. Seven dipeptides were
identified and tested in vivo, of which the Phe-Tyr dipeptide 14 stood out, revealing a statistically
significant 16-mmHg SBP decrease after 3 h with a 1 mg/kg b.w. dose and a 26-mmHg SBP decrease
after 9 h with only a 0.1 mg/kg b.w. dose. These results were compared to captopril, which showed
17-mmHg and 14-mmHg SBP decreases after 3 and 9 h, respectively, with a 1 mg/kg b.w. dose. In more
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recent work, Kecel-Giindiiz et al. [106] studied poly(lactic-co-glycolic acid) nanoparticles as a delivery
system for the Phe-Tyr dipeptide 14, which highlights the continued interest and relevance of this
seaweed peptide with great antihypertensive potential.

As previously mentioned, of all the analyzed literature, the IRLIIVLMPILMA tridecapeptide 13
and Phe-Tyr dipeptide 14 (Figure 3, Table 2) are the most promising in vivo hypotensive seaweed
compounds identified so far, with a similar effect to clinical drugs.

2.2.3. Phycoerythrin

Phycoerythrin 15 (Figure 3), a red protein pigment complex abundant in Rhodophyta (although
many studies use cyanobacteria as a more readily available natural source for this compound), is
another polypeptide very interesting, not as a hypotensive agent but rather as an antitumor and
anti-aging agent.

After extensive in vitro studies which demonstrated the cytotoxic activity of phycoerythrin 15
(Figure 3) [94,107], Pan et al. [92] demonstrated its activity in vivo using the S180 tumor-bearing mice
model (Table 2). Results showed that phycoerythrin injection, at a dose of 300 mg/kg b.w., reduced 5180
tumor growth by up to 41.3% in treated mice. These mice also revealed a significant serum increase in
the TNF-« level, NK cell kill activity, and lymphocyte proliferation. The antitumor activity obtained is
believed to be related to phycoerythrin’s antioxidant activity, as shown by the significant increase in
superoxide dismutase activity in the serum of treated mice, as well as the significant decrease in mouse
liver malondialdehyde level.

Shortly after, Sonani et al. [95] used the Caenorhabitis elegans model to test the in vivo antioxidant
and anti-aging effects of phycoerythrin. Doses of 100 pug/mL of the compound were found to significantly
increase Caenorhabitis elegans lifespan both in normal and in oxidative stress conditions. This is indicative
of phycoerythrin having a strong anti-aging effect, possibly related to its antioxidant properties.

In more recent work, Chaubey et al. [96] tested the effect of phycoerythrin in a mutant Caenorhabitis
elegans Alzheimer’s disease model. Results showed that a dose of 100 pg/mL of phycoerythrin led
to a significant reduction in senile plaque formation when compared to untreated nematodes. This
indicates that phycoerythrin might have great potential as a therapeutic agent in neurodegenerative
diseases, but more tests are required to confirm this.

2.2.4. Kahalalide F

Kahalalide F 16 (Figure 3) is a cyclic depsipeptide that belongs to the kahalalide protein family.
It was first described by Hamann and Scheuer [97], isolated from Bryopsis sp. green alga, as well
as from the Elysia rufescens mollusk, which feeds on Bryopsis and bio-accumulates 16 (which is why
most studies used the mollusk as a source of this compound). In vitro studies [108] revealed the great
cytotoxic potential of 16 against several tumor cell lines, particularly prostate and breast cancer lines,
with ICsj values ranging from 0.07 to 0.28 uM [109]. In vivo studies carried out by Faircloth and
Cuevas [98] showed the tumor response to injected 16 (Figure 3, Table 2) in human breast, prostate,
colon, and lung tumor cells xenografted into athymic mice. Treatment with a 0.245 mg/kg (b.w.) dose
led to ~50% smaller chemotherapy-resistant DU-145 prostate tumor, while the PC-3 human prostate
tumor was reduced by nearly 35% with a 0.123 mg/kg (b.w.) dose. These highly promising results led
kahalalide F 16 to the clinical trial phase, which is discussed later.

2.3. Halogenated Secondary Metabolites

Halogenated compounds are also an interesting set of bioactive macroalgae secondary
metabolites [17,110-113]. Among these, halogenated terpenes and bromophenols are those whose
in vivo studies revealed the greatest potential for new drug development, as discussed below.

Pentahalogenated monoterpene 6R-bromo-3S-(bromomethyl)-7-methyl-2,3,7-trichloro-1-octene,
known by trivial name halomon 17 (Figure 4, Table 3), showed the most promise in in vitro cytotoxic
studies (sub-micromolar ICs( values) [17], going so far as to be selected by the National Cancer Institute



Mar. Drugs 2020, 18, 8 16 of 35

within the NCI60 human tumor cell line anticancer drug screen program, for preclinical studies for
drug development. Although this testing never went beyond a preliminary phase, the first results were
very promising, showing 40% of “apparent cures” of a very aggressive U251 brain tumor in mouse
ip/ip xenograft models [114].

Br Cl HO

Halomon 17 Neorogioltriol 18 Neorogioldiol 19

Br Br Br
OH Br. Br
0, (o)
O SNS HO OH
Br OH OH
011,15-Cyclo-14-bromo-14,15- bis (2,3-dibromo-4,5-dihydroxybenzyl)

dihydrorogiol-3,11-diol 20 ether (BDDE) 21

Figure 4. Chemical structure of some halogenated compounds.

Table 3. Summary of in vivo activity of halogenated terpenoids and bromophenols seaweed compounds.

Compound Source Model Activity Dose

Portieria hornemanii U251 brain tumor o L
40% “apparent cures” of

Halomon 17 (Lyngbye) P.C. Silva ip/ip xenograft mouse brain cancer [114]. 5 x 50 mg/kg (b.w.)
[114] mouse model
Reduce writhing response by
. . 88.9% and reduced pain
Swiss mice and rats response behavior by 1 mg/kg (b.w.)
Laurencia glandulifera 48% [115]-
Neorogioltriol 18 (Kiitzing) Kiitzing Reduced paw swelling by 58%
[115] after 3 h. 300 mg/kg (b.w.) of
Rats acetylsalicylic acid was 1 mg/kg (b.w.)
required to obtain the same
effect [116].

Reduced inflammatory colon

Laurencia glandulifera damage and cytokine

(Kiitzing) Kiitzing,

Neorogioldiol 19 Laurencia microcladin C57BL/6 mice expression (reduced IL-13 by ~ 0.25 mg/kg (b.w.)
Kiitzing [117,118] 6-fold and IL-6 by
! 40-fold) [117].
Reduced inflammatory colon
O,15-cyclo-14-bromo- Laurencia glandulifera damage and cytokine
14,15-dihydrorogiol- (Kiitzing) Kiitzing C57BL/6 mice expression (reduced IL-13 by~ 0.25 mg/kg (b.w.)
3,11-diol 20 [117] 7-fold and IL-6 by 40-fold)
[117].
Odonthalia corymbifera Zebrafish embryos Reducec;l SV growtoh by 17.7%, 6.25,12.5, and 25
(S.G. Gmelin) Greville 40.4%, and 49.5% [121]. mM
[119], Leathesia nana Reduction of blood glucose
BDDE 21 Sce;tc}(;ell a?c[lll;d? levels C(112.11‘3(‘)’/01) /(nctletformi?
ardner , . caused a 10.1% decrease).
Rhodomela confervoides Db/db mice Decreased glycated 40 mg/kg (b.w.)
(Hudson) P.C. Silva hemoglobin, triglycerides and
[121]. body weight [122].

2 The current accepted name is Leathesia marina (Lyngbye) Decaisne.

The latest published results regarding this preclinical trial process were related to halomon 17 tested
in CD;,F; mice regarding bioavailability, pharmacokinetics, and tissue distribution [123]. The results
showed that halomon bioavailability is higher after intraperitoneal injection and subcutaneous injection
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(45% and 47%, respectively), while its urinary excretion is minimal. Halomon 17 is distributed in all
tissues but with a higher concentration in adipose tissue. The concentration of halomon measured in
the brain is comparable to that detected in plasma and most other tissues. Even though preclinical
testing never progressed beyond preliminary stages, this never deterred the scientific community’s
interest in 17 over time, and a more recent study about the action mechanism of 17 proposed that it
acts as a DNA methyl transferase-1 inhibitor [124]. However, more deep mechanism studies should
be performed.

In addition to these studies, a real obstacle to overcome with halomon 17 is always to obtain enough
quantity of the compound. Fuller et al. [114] described this struggle by stating that “slight geographic
and/or temporal change” would dramatically affect the terpene content of Portieria hornemanii, and
that alternative approaches should be considered. Naturally, this problem led to chemists trying to
synthesize halomon, with the first success occurring in 1998 by Schlama et al. [125], who reported
a 13% overall yield. A result was obtained by Sotokawa et al. [126], reducing the previous 13-step
process into three steps, reporting a 25% overall yield but with poor selectivity. Only in 2015 was
the first efficient and high-selectivity method described by Bucher et al. [127], a process which was
since further optimized by Landry and Burns [128]. Having finally overcome this obstacle after over
25 years, halomon 17 in vivo studies should be restarted as to finally confirm its potential.

Another highly interesting compound is neorogioltriol 18 (Figure 4, Table 3), a tricyclic brominated
diterpenoid first isolated from Laurencia glandulifera by Chatter et al. [115]. This research group
showed that neorogioltriol had analgesic properties. In the writhing test, neorogiotriol produced
a dose-dependent response, and a dose of 1 mg/kg (b.w.) was enough to reduce the mouse acetic
acid-induced writhing response by 88.9% (Table 3). With the rat model, the formalin test was used
to determine if the compound affected neurogenic and/or inflammatory pain. Results showed that
neorogiotriol 18 reduced licking time by 48%, but only in the second phase of the formalin test,
indicating that the compound has a peripheral analgesic effect, acting on inflammatory pain in a way
typical of cyclooxygenase inhibitors. Chatter et al. [115] supplemented their previous work with
neorogioltriol 18 by testing its in vivo anti-inflammatory effect on induced rat paw swelling. Results
showed that an injected dose of 1 mg/kg (b.w.) of the compound reduced paw swelling by 28% after
the first hour and 58% after three hours. To achieve the same anti-inflammatory result with a reference
compound, acetylsalicylic acid would require a dose of 300 mg/kg (b.w.) [115].

A more recent paper published by Daskalaki et al. [117] studied two diterpenes, neorogioldiol
19 and O!!,15-cyclo-14-bromo-14,15-dihydrorogiol-3,11-diol 20 (Figure 4 Table 3). These compounds
were used to treat C57BL/6 mice with DSS-induced inflammatory bowel disease (colitis).
A 0.25 mg/mouse dose of each compound was intraperitoneally injected every 48 h, in two
different groups. The results showed that treated mice demonstrated reduced inflammatory colonic
tissue damage, as well as a very significant decreased of pro-inflammatory cytokine messenger
RNA (mRNA) (more than 40-fold decrease in the case of interleukin-6). Neorogioldiol 19 and
O!,15-cyclo-14-bromo-14,15-dihydrorogiol-3,11-diol 20 showed similar activity levels and revealed
their great potential for bowel disease inflammatory treatment. More studies should be pursued,
particularly to assess the neorogiotriol 18 activity in the previously mentioned colitis model once it is
structurally related to compounds 19 and 20.

Bromophenols are another class of very interesting macroalgae metabolites. Although most
studies of this family of compounds only showed in vitro effects so far, a few of them reached the level
of being evaluated in an in vivo model. One of the most biologically relevant of such compounds is
BDDE 21 (Figure 4, Table 3).

First isolated by Kurihara et al. in 1999 from Rhodophyta Odonthalia corymbifera, these researchers
showed BDDE 21 as an «-glucosidase inhibitor [119]. After this, some very promising in vitro studies
confirmed 21’s a-glucosidase interaction [129] and showed 21’s anticancer [120,130] and antifungal
activities [131]. A recently published study [122] showed that 21 had in vivo antidiabetic activity.
The research group showed that a dose of 40 mg/kg (b.w.), orally administered, was more effective at
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lowering blood glucose levels in db/db mice than metformin (a clinical antidiabetic drug). The study
also showed that 21 significantly reduced glycated hemoglobin, triglyceride levels, and body weight
without influencing the mice’s food or water intake. This shows that 21 might constitute a powerful
antidiabetic drug in the future, but more testing is required to ascertain this possibility. Another
interesting in vivo study, using a different animal model, was also published in 2015 by Qi et al. [121],
revealing a different effect. In this work, BDDE 21 exhibited potent angiogenesis inhibition activity
in zebrafish embryo models [121]. In this work, researchers monitored the embryonic development
of the zebrafish sub-intestinal vessel (SIV) when incubated in the presence of 21. Results showed a
statistically significant and dose-dependent response, with 6.25, 12.5, and 25 mM reducing SIV growth
by 17.7%, 40.4%, and 49.5%, respectively. This unequivocally proves 21’s effect as an anti-angiogenesis
agent and points to its great potential for cancer therapeutic applications; however, more in vivo
antitumor studies are necessary. In summary, there is a considerable diversity of algae halogenated
secondary metabolites with very interesting and promising bioactivities, which might lead to future
drug developments; however, more testing is required.

2.4. Fucoxanthin

Concerning algal lipids, fucoxanthin 22 (Figure 5), a xanthophyll-like carotenoid, is one of the
most studied metabolites because of its beneficial health effects [18,103,132]. Indeed, there are many
published reviews and research articles demonstrating and extolling, among others, the nutraceutical,
antioxidant, anticancer, anti-obesity, antidiabetic, antimicrobial, and cardiovascular protective effects
of fucoxanthin 22 [103,132-139].

HO Fucoxanthin 17

Figure 5. Chemical structure of fucoxanthin.

It is intended here to review the most relevant in vivo studies with pure fucoxanthin, highlighting
the impact that each one had on the process of development of fucoxanthin as a drug with many
potential therapeutic uses.

Fucoxanthin 22 (Figure 5) seems to have a neuroprotective effect, as evidenced by Hu et al. [140]
using the middle cerebral artery occlusion rat model (MCAO) [141]. To assess a neuroprotective effect,
the rats were intragastrical administered different doses (30, 60, and 90 mg/kg b.w.) of pure fucoxanthin
1 h before cerebral ischemia was induced. Results showed significant and dose-dependent reductions
of neurological deficit scores and percentages of infarcted area in the brain, as well as an attenuation of
brain edema. One criticism that could be made of the researchers’ work pertains to how they presented
the objective results of their essays; the results were presented only in graph form with no supporting
table listing the values. This makes it hard to properly and objectively assess the degree to which the
neurological parameters tested showed an improvement or not. Nonetheless, the published work did
serve to firmly support fucoxanthin as a potential neuroprotective supplement of interest.

Another highly interesting potential pharmaceutical application for fucoxanthin was illustrated
in the recently published work by Wang et al. [142], which reports fucoxanthin antitumor activity
in a novel lymphangiogenesis inhibition perspective. In this work, the MDA-MB-231 breast cancer
xenograft model was used on Balb/c nude mice treated with 6.58 and 32.9 ug doses of 22. Fucoxanthin
was injected daily on the tumor periphery, and tumors were excised after 26 days. Results revealed
significant decreases in micro-lymphatic vascular density, from an average of 14.0 + 2.94 lymphatic
vessels to 6.0 + 0.81 (with 6.58 pg fucoxanthin treatment) and 3.66 + 1.25 (with 32.9 pg treatment) per
tumor. Tumor weight and volume also decreased by more than half in a dose-dependent manner,
although, once again, it is difficult to assess this reduction precisely due to the lack of a values table
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accompanying the results graph. However, these results adequately highlight 22’s potential in cancer
treatment. In another 2019 study by Terasaki et al. [143], this anti-tumor activity was again tested, this
time with a colorectal cancer mouse model. In this work, AOM/DSS mice were injected with a 30 mg/kg
(b.w.) daily dose of fucoxanthin oil for seven weeks, with subsequent bowel excision and analysis post
sacrifice. Results showed that 22 significantly reduced the number of colonic polyps by close to half
compared to non-treated mice, with polyp size also significantly reduced to about one-third of the
control mice. Objective histological examination showed a reduction in the prevalence of tumors, ulcers,
and crypt dysplasia. The authors suggested that this may be linked to 22 promoting anoikis-like cell
death, and they supported this hypothesis by showing increased expression (2-5-fold) of key molecular
hallmarks for anoikis in treated mice colon cells. These results reinforce 22 as a good candidate for
possible anti-cancer drugs. In addition to this bioactivity, a 2019 paper by Jiang et al. [144] highlighted
22’s potential as an antidepressant. In this work, a lipopolysaccharide-induced depressive-like behavior
mouse model was used, to evaluate if 22 treatments would reduce depressive or anxiety associated
behaviors. Results showed that treated mice had significantly higher body weight and food intake
than control mice, as well as significantly reduced depressive-like behavior and anxiety-like behavior.
These behaviors were assessed by presenting the mice with stressful conditions/obstacles and then
evaluating their activity. It is important to note that the lower doses of 22 used in this work showed a
very marginal depressive behavioral reduction, but the highest dose tested (200 mg/kg b.w.) managed
to reduce depressive and anxiety-like behaviors to almost baseline values of non-depressed mice. In
other words, a 200 mg/kg (b.w.) dose of 22 significantly reduced depressive behavioral traits to the
point where the induced depression was practically “cured”. While this dosage is considerably higher
than that used in previously mentioned studies, we chose to highlight this neuroprotective bioactivity
here due to its novelty and relative relevance.

To finalize, another 2019 study by Su et al. [145] revealed that 22 has great potential as an
anti-inflammatory in a mouse sepsis model. In this work, lipopolysaccharides were once again used
(albeit at a much higher dose than in the previous study) to induce sepsis, eventually leading to death
in the mouse models. The results showed that, while a 10 mg/kg (b.w.) dose of LPS caused a 20%
survival rate in the mice, the same dose in mice treated with 1 mg/kg (b.w.) of 22 had a 40% survival
rate. A single very small dose of 22 injected 30 min prior to challenge effectively doubled the survival
rate of the sepsis mouse model. In addition, treated mice also showed significantly reduced levels of
pro-inflammatory cytokines TNF-o (~30% reduction) and IL-6 (~90% reduction) when compared to
non-treated mice, as well as significantly inhibiting the NF-«B inflammatory pathway (as shown by
the ~50% reduction in p-IkBa, and p-NF-«B). This shows that 22 exhibits a potent anti-inflammatory
effect and can effectively have a strong protective effect in an acute inflammatory disease model. In
summary, 22 exhibits a multitude of very interesting and diverse potent bioactivities, with studies very
recently published. The scientific community appears to have a great interest in this compound, and
we hope to see more high-quality in vivo publications in the near future.

2.5. Fucosterol

Fucosterol 23 (Figure 6) is a phytosterol, mostly isolated from brown algae, and it is relatively
abundant in this particular algal class. It was widely studied regarding its in vitro health effects [146];
however, in vivo evaluations of fucosterol’s health effects are very scarce. In this regard, the present
work reviews the existing in vivo studies, and the main observations and conclusions are discussed in
the paragraphs below.



Mar. Drugs 2020, 18, 8 20 of 35

HO

Fucosterol 23

Figure 6. Chemical structure of fucosterol.

One of the first evaluations of the in vivo effects of fucosterol 23 was regarding its anti-diabetic
effects, and it was found that, when administered orally at 30 mg/kg in streptozotocin-induced diabetic
rats, fucosterol caused a significant decrease of 14.8% in serum glucose concentrations, and exhibited an
inhibition of sorbitol accumulations in the lenses of 22.4% when compared to the untreated group [147].

This phytosterol presents antitumor activity in vivo, with a dosage of 40 mg/kg (b.w.), reducing
about 75% of tumor weight and 50% of tumor volume after six weeks in lung cancer xenografted
C57 BL/6 mice model [148]. In addition, fucosterol 23 (40 mg/kg b.w.) reduced Ki-67 expression, an
indicator of cell proliferation, by 60%, and increased cleaved caspase-3 levels by more than 100%,
which indicates that 23 acts in the tumor cells by simultaneously decreasing their proliferation and
enhancing their apoptosis [148].

Fucosterol 23 also exhibits a protective effect on LPS-induced acute lung injury (ALI), by modulating
the expression of pro-inflammatory factors [149]. A dosage of 30 mg/kg (b.w.) of 23 attenuated lung
histopathologic changes and the wet-to-dry ratio of lungs in LPS-induced ALI in mice. Furthermore,
fucosterol significantly inhibited TNF-a, IL-1£5, and IL-6 levels in both the broncho-alveolar lavage
fluid (BALF) and the LPS-stimulated alveolar macrophages, reducing their expression by about 50%,
when compared to the untreated group [149]. The fact that 23 is able to inhibit the production of
pro-inflammatory molecules suggests that it could be used for the treatment of other inflammatory
diseases. This suggestion was confirmed by the findings of Mo et al. [150], where it was observed
that fucosterol 23 attenuated serum liver enzyme levels, hepatic necrosis, and apoptosis induced by
TNEF-«, IL-6, and IL-1f3. In fact, a dosage of 50 mg/kg (b.w.) of fucosterol reduced the serum levels of
these three pro-inflammatory molecules by 37.5%, 31.3%, and 33.3%, respectively, after 8 h of exposure
to concanavalin-A, the inducer of acute liver injury. The authors also found that 23 (50 mg/kg b.w.)
also inhibited apoptosis and autophagy by upregulating Bcl-2 (12-fold increase), which decreased
levels of functional Bax (50%) and Beclin-1 (46%). Furthermore, reduced P38 MAPK and NF-«B
signaling were accompanied by PPARYy activation, showing that fucosterol acts by inhibiting P38
MAPK/PPARY/NF-«B signaling [150].

Fucosterol 23 is able to reduce the effects of postmenopausal osteoporosis. A study performed
with ovariectomized rats found that the bone mineral density of femoral bones was significantly higher
in 23 (50 mg/kg b.w.) treated groups than in the untreated group [151]. Additionally, body weight
after six weeks of treatment was 6% lower in the fucosterol 23 treated groups, when compared to the
untreated group. In terms of serum biomarkers of bone formation and resorption, 23 (100 mg/kg b.w.)
tripled the level of serum osteocalcin relative to the untreated group and reduced the serum level of
CTx by 60%, which suggests that fucosterol 23 has the potential to activate osteoblasts, stimulate bone
formation, suppress differentiation of osteoclasts, and reduce bone resorption [151].

In terms of neurological effects of fucosterol 23, this compound was found to attenuate
sABq.4-induced cognitive impairment in aging rats [152]. In fact, aged rats treated with only
sAf1.42 performed poorly in acquisition training and memory tests, whereas co-infusion of 10 umol/h
of 23 for the four weeks of assay restored the rats” performance to the level of the healthy control.
Fucosterol 23 action was via downregulation of GRP78 expression and upregulation of mature
brain-derived neurotrophic factor (BDNF) expression in the dentate gyrus, which means it is able to
suppress aging-induced endoplasmic reticulum (ER) stress [152].
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Fucosterol-induced upregulation of BDNF levels is also linked to other neurological actions, like
antidepressant activity. In fact, 23 (20 mg/kg b.w.) administration to Balb/e mice reduced immobility
time in the forced swim test, which is a measure of depression, by 82.2 s, a value very similar to
that obtained with the positive control, fluoxetine, at the same concentration (85.1 s) [153]. The same
effect was observed in the tail suspension test, where both fucosterol 23 and fluoxetine (20 mg/kg
b.w.) significantly shortened immobility time in the forced tail suspension test by approximately
80 s, when compared with the untreated group. Fucosterol 23 (20 mg/kg b.w.) significantly increased
serotonin, norepinephrine, and the metabolite 5-hydroxyindole acetic acid in the mouse brain, with
levels very close to that observed in the brain of mice not subjected to the stress of the tail suspension
and forced swimming tests. This suggests that the effects of fucosterol 23 may be mediated through
these neurotransmitters [153]. Also, a significant increase in hippocampal brain-derived neurotrophic
factor (BDNF) levels was found in the fucosterol 20 mg/kg (b.w.) group, which suggests that the
antidepressant effect may be mediated by increasing central BDNF levels [153].

The findings presented show that 23 could be an efficient therapeutic agent for a wide array of
health conditions. Regardless, the number of in vivo tests existing with this algal metabolite is still
very scarce; thus, we suggest that future works should invest in assessing the full in vivo potential of
fucosterol 23.

3. Clinical Trials

The above-mentioned information regarding the performance of seaweed compounds and
derivatives in the in vivo assays shows that these types of compounds have great pharmaceutical
potential with some of them already being in clinical trial phases.

Fucoxanthin 22 (Figure 4) is one of them, with two studies scheduled to begin at the end of 2019,
one a phase II study that aims at fucoxanthin’s effects on metabolic syndrome (ClinicalTrials.gov
identifier: NCT03613740) and the other that will test an oral dietary supplement rich with fucoxanthin
for improving liver health (ClinicalTrials.gov identifier: NCT03625284).

Additionally, some trials already reached the end and presented their results. Hitoe and
Shimoda [154] reported that a month of treatment with 3 mg of 22 per day had weight loss effects
in mildly obese Japanese adults (BMI > 25 kg/m?) since it reduced abdominal fat, body weight, and
overall BMI compared to the placebo group. These results are in accordance with those described by
Abidov et al. [155] who performed a 16-week clinical trial in 151 women using a dietary supplement
named Xanthigen composed of pomegranate seed oil and brown seaweed extract containing 2.4 mg of
22, which increased resting energy expenditure, and induced body fat reduction and weight loss in
obese women (BMI > 30 kg/m?).

Kahalalide F 16 (Figure 3), as already mentioned in Section 2.2.4, is a promising peptide that is being
tested in clinical trials, particularly for its antitumor properties. Martin-Algarra and colleagues [156]
investigated the response of patients with advanced malignant melanoma to 16, through weekly
intravenous administration of 650 pg/m? until patient refusal, unacceptable toxicity, or disease
progression was observed. The results indicated that, contrary to the majority of other chemotherapeutic
agents, 16 did not induce severe cardiac, renal, or bone marrow toxicity, alopecia, diarrhea, or mucositis,
and it was able to stabilize the disease for more than three months in five of 21 patients (23.8%) who
completed the study.

A more recent study [157] evaluated the 16 weekly intravenous administration maximum tolerated
dose and infusion times to recommend appropriate doses and treatment times for further phase II
clinical studies in patients with advanced solid tumors. Based on the results, the authors recommended
a dose of 1000 pg/m? of 16 with three hours of treatment per week; however, prolonged infusion times
(i-e., 24-h treatment) are also feasible.

Unfortunately, only these two compounds from all those mentioned in Section 2 reached clinical
trials, which could be due to diverse complications like obtaining the necessary approvals required to
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start the study, obtaining volunteers, or isolating the compound of interest in sufficient quantities to
allow the studies to unfold.

On the other hand, since seaweeds represent a good source of compounds with pharmaceutical
potential and since seaweeds are attaining more interest in Western countries’ diets, the majority of
clinical trials are currently carried out to ascertain to what extent the consumption of algae improves
human health. Thus, the clinical trials discussed below focused on testing the effects of consuming one
type of seaweed (or a mixture of them) or its various rich fractions/extracts.

With a quick search on ClinicalTrials.gov, it is possible to find 25 clinical trials that were
seaweed-relevant. From those 25 clinical trials, two are active and ongoing, and six are scheduled to
start shortly, which shows the current interest and relevance of this topic. Unfortunately, from the 17
already completed clinical trials, only eight had their results published. Additionally, it was possible
to find other clinical trials that were not listed on this database, and which contributed also to an
overview of this topic with growing interest.

Several clinical studies aimed at evaluating the effect of polysaccharide fractions, extracts, and
even whole seaweed on the treatment and prevention of diabetes and obesity. These important aspects
that are beyond the scope of this review topic, but we refer our readers to interesting publications
about this subject [158-163].

A recent study conducted by Murray et al. [164] found that a single dose up to 2000 mg of a
polyphenol-rich Fucus vesiculosus Linnaeus extract had no additional lowering effect compared to
placebo on postprandial blood glucose or plasma insulin in healthy adults. The authors suggested
that future studies with polyphenol-rich marine algal extracts should aim to investigate the glycemic
modulating effects in at-risk populations, such as pre-diabetics, since the results may be different.

Another clinical trial from the same year [165] examined, in 60 healthy adults, the effect of
brown seaweed extract InSea2® consumption on their postprandial cognitive function. A dose of
brown seaweed extract (500 mg), containing 20% phlorotannins, was consumed 30 min before lunch.
Attention, episodic memory, and subjective state were the parameters analyzed five times over a
3-h period following lunch with 40-min intervals between measures. The results demonstrated an
improvement in cognitive performance following the ingestion of the seaweed extract when compared
to the placebo group since accuracy was increased in the choice reaction time and on the digit vigilance
tasks. The authors [165] pointed out that, since the brown seaweed extract was a supplement equivalent
of 10 g of dried seaweed, the cognitive benefits presented in this work could be obtained from dietary
intake of seaweed consumption.

Regarding seaweed consumption, another study [166] investigated the acceptability of Ascophyllum
nodosum (Linnaeus) Le Jolis-enriched bread as part of a meal by overweight healthy males, to see if it
could modulate cholesterolemic and glycemic responses and reduce energy intake. Four hours after
the enriched bread consumption at breakfast (using a test meal), the energy intake suffered a significant
reduction (16.4%). According to the study results, it is acceptable to incorporate this seaweed into
a basic food such as bread, at least at concentrations of up to 4% wholemeal loaf. Considering the
interesting results of this acute feeding trial, the authors accentuated that a long-term study regarding
the addition of seaweed-enriched bread to diets of participants would help to clarify its potential for
the reduction of energy intake, potentially positively affecting their body mass index (BMI).

Higher oxidant status increases the oxidative damage of macromolecules, which, associated with
obesity, increases the probability of chronic disease development [167], with obese individuals as a
risk group. Baldrick et al. [168] investigated the bioavailability and effect of an Ascophyllum nodosum
(Linnaeus) Le Jolis polyphenol-rich extract on DNA damage, oxidative stress, and inflammation level.
Eighty participants, of which 36 were obese, consumed daily, for eight weeks, a capsule containing
100 mg of Ascophyllum nodosum (Linnaeus) Le Jolis polyphenol-rich extract. After the trial period,
only the obese individuals presented results significantly distinct from placebo, with a 23% decrease
in lymphocyte DNA damage. Thus, this work suggests that long-term consumption of Ascophyllum
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nodosum (Linnaeus) Le Jolis polyphenols rich extract could be beneficial since it could potentially
decrease the risk of chronic disease development in obese individuals.

In other lines of research, Allaert et al. [169] found that, when compared with a placebo, a daily
intake of a water-soluble extract of Ulva lactuca Linnaeus (6.45 mg per kg body weight) for three months
significantly improved the depression state of subjects presenting anhedonia (a loss of sensitivity when
it comes to feeling pleasure). In the placebo group, 72.5% of participants said they felt an improvement
in mood versus 90.1% of the participants in the Ulva lactuca Linnaeus extract group (a statistically
significant difference). Similarly, 70.8% of doctors judged the subjects in the placebo group to have
improved versus 90.9% of the participants in the Ulva lactuca Linnaeus extract group. As the authors
pointed out, identifying the compound in the seaweed extract responsible for the witnessed effect in
this work opens up perspectives for its potential use in depression therapy:.

Teas and Irhimeh [170] showed a synergistic effect between the daily consumption of brown
seaweed (Undaria pinnatifida (Harvey) Suringar) (2.5 g) and spirulina (Arthrospira platensis Gomont)
(3 g), since it was able to increase immune response and decrease HIV viral fusion/entry and replication
in a three-month period. Furthermore, one subject continued in the trial for 13 months and reported
decreased HIV viral load (from 3.3 to 2.8 logjp) and clinically significant improvement in CD4
(>100 cells/mL). Despite the promising results, it should be noted that the sample size in this work was
too small (n = 11) to make any generalizations about the efficacy, and further research is imperative.

Since higher levels of serum estradiol (E2) are associated with an increased risk of breast cancer
development [171], Teas et al. [172] reported that a daily dose of 5 g of Alaria esculenta (Linnaeus)
Greville for seven weeks had the ability to modulate serum hormone levels and urinary excretion
of estrogen metabolites and phytoestrogens, diminishing breast cancer risk in women. Again, the
conclusion of this study was limited by the small number of participants (n = 15), which limited the
statistical power of the results.

The results of the various clinical trials mentioned above point out that the consumption of
algae, particularly brown algae, can be beneficial to human health. However, in our opinion, it is also
necessary to perform the identification of the chemical compounds responsible for the observed effects.
There are several studies where the authors did not relate the observed effect to any constituent of the
seaweed/extract evaluated, and having studies with fractions rich in a given class of compounds does
not substitute for the identification of the bioactive metabolites and their health effects. Nevertheless,
these studies are also important because they established that some seaweeds can be used for
human consumption.

4. Critical Opinion

In the last few years, secondary metabolites isolated from macroalgae gained growing interest, as
shown by the numerous articles reporting in vivo studies, with some compounds reaching clinical
trial phases. Although many studies presented their results with quality, there were some points that
deserve to be highlighted regarding the majority of the consulted papers.

Future in vivo studies, especially those with murine models, should increase the number of
individuals for each test group to increase the statistical power of the findings. Also, a reference
compound should always be used, to assess the real efficacy of the tested compounds. The frequent
lack of clarity in result presentation in several publications was also a downside in interesting and
promising studies.

Clinical trial studies with isolated compounds, unfortunately, are scarce. This could be due to
diverse complications like obtaining the necessary approvals required to start the study, obtaining
volunteers, or obtaining the compound in enough quantities. Additionally, most of the clinical trials
aimed at ascertaining to what extent the consumption of algae, as a whole or as extracts or fractions,
affects human health, particularly the effects regarding obesity and diabetes. Nonetheless, it is
unfortunate that many of the mentioned studies were carried out with such small population samples,
which deprives them of statistical power. Another serious flaw in the numerous studies addressing
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algae extracts is the fact that their chemical composition was not mentioned or is unknown, and
extrapolation of the effects of extracts or algae on their secondary metabolites is in no way guaranteed
and/or valid. The knowledge of the bioactive metabolites and their activity is important but does not
validate the algae’s consumption.

Despite the indicated limitations, these extract clinical trials are relevant for qualitative and safety
evaluations. In our opinion, these studies will also contribute to the scientific community’s interest,
resulting in a deeper analysis that will uncover the most active metabolites.

Regardless of that, in most cases, these studies represent the first steps on the way to enhancing
algae’s potential as a pharmaceutical source of new compounds with promising properties.

5. Conclusions

Phlorotannins show great pharmaceutical potential in vivo. Most of the studies indicated that the
main sources of bioactive phlorotannins are algae from the Eisenia, Ecklonia, and Ishige genera. However,
this observation can be the result of the studies’ geographical distribution. The studies reviewed herein
showed that phlorotannins” mechanisms of action are mainly related to the modulation of oxidative
stress and the inflammatory cascade. Phloroglucinol 1, eckol 4, and dieckol 5 are compounds with a
wide range of applications. The dieckol 5 anti-dyslipidemia activity must be highlighted because it is
more effective than lovastatin, the clinically used drug. The hepatoprotective activity of eckol 4 should
also be emphasized, since a very low dose (0.5 mg/kg b.w.) is needed.

Concerning other non-phlorotannin groups of compounds, it is clear that there is a great variety
of very interesting compounds, with many of them in dire need of further testing. Out of these, the
bioactive effects of the peptides griffithsin 12, tridecapeptide IRLIIVLMPILMA 13, and kahalalide F 16
should be highlighted, as they are arguably the most promising of all non-phlorotannins. Kahalalide F
already moved beyond the in vivo stage to clinical trials, whereas tridecapeptide 13, with a level of
activity similar to the clinical drug captopril, and griffithsin 12, which showed such stunning results
over a variety of animal models, will probably move into the clinical trial stage soon. In contrast,
there are promising compounds such as halomon 17 and neorogioltriol 18, which exhibited potent
and very relevant bioactivities and were not subjected to clinical trials. Hopefully, the discussion
presented in this paper about their activities will interest the scientific community, and further studies
will be conducted.

Regarding the fact that clinical trials with isolated compounds are scarce, only those carried out
with kahalalide F 16 and fucoxanthin 22 were found, whereas we also analyzed a few clinical trials
involving seaweed extracts. It can be concluded that the consumption of brown algae can be beneficial
to human health, with Ascophyllum nodosum (Linnaeus) Le Jolis as the leading seaweed in clinical trials.
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Abbreviations

AA Arachidonic acid

AAPH 2.2"-azobis (2-amidinopropane)

ACE Angiotensin-converting-enzyme

Al Atherogenic index

ALI Acute lung injury

AMPK Adenosine monophosphate-activated protein kinase
AOM Azoxymethane

AP-1 Activator protein-1

BALB/c Strain of laboratory mouse

BALF Broncho-alveolar lavage fluid

Bax Bcl-2-associated X

Bcl-2 B-cell lymphoma 2

BDDE Bis(2,3-dibromo-4,5-dihydroxybenzyl) ether
BDNF Brain-derived neurotrophic factor
BMI Body mass index

b.w. Body weight

C57BL/6 Strain of laboratory mouse

C57BL/6] Strain of laboratory mouse
C57BL/Ks]-db/db  Strain of laboratory diabetic mouse
CAT Catalase

CD,F, Strain of laboratory mouse

CD4 Cluster of differentiation 4 cells

CG Carragenan

CMC- Carboxy-methylcellulose

COX-2 Cyclooxygenase-2

CTx C-terminal telopeptide of type-1 collagen
DNA Deoxyribonucleic acid

DSS Dextran sodium sulfate

DU-145 Human prostate cancer cell line

E2 Estradiol

ECsg Half maximal effective concentration
EGCG Epigallocatechin gallate

ER Endoplasmic reticulum

ERCC1 Excision repair cross-complementation
FD Fine dust

GABAA-BZD Gamma-aminobutyric acid A-benzodiazepine
GRP78 Glucose-regulated protein 78

GSH-px Glutathione peroxidase

HDL High-density lipoprotein

HIV Human immunodeficiency virus
HPV16 Human papillomavirus type 16

HSV-2 Herpes simplex virus type 2

ICsg Half maximal inhibitory concentration
ICR Strain of laboratory mouse

IgE Immunoglobulin E

IL-1 Interleukin-1

IL-6 Interleukin-6

IL-10 Interleukin-10

iNOS Inducible nitric oxide synthase

U International unit

JEV Japanese encephalitis virus

JNK c-Jun NH2-terminal kinase

Ki-67 Proliferation marker protein
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LDL Low-density lipoprotein

LPS Lipopolysaccharides

MAPK Mitogen-activated protein kinase

MCAO Middle cerebral artery occlusion rat model
MDA-MB-231 Human breast adenocarcinoma

MKK4/SEK1 Mitogen-activated protein kinase kinase-4

MNZ Metronidazole

mRNA Messenger ribonucleic acid

NCI National Cancer Institute

NER Nucleotide excision repair

NF-xB Nuclear factor kappa B

NK Natural killer cells

NO Nitric oxide

NREMS Non-rapid eye movements

OXA Oxazolone

PC-3 Human prostate cancer cell line

PM2.5 Particulate matter <2.5 um

PPARYy Peroxisome proliferator-activated receptor gamma
ROS Reactive oxygen species

5180 Murine sarcoma cancer cell line

sA[1-42 Soluble amyloid beta peptide (1-42)

SAR Structure-activity relationship

SARS-CoV Severe acute respiratory syndrome-related coronavirus
SBP Systolic blood pressure

SD Sprague-Dawley rats

SHR Spontaneously hypertensive rats

SIvV Sub-intestinal vessel

SOD Superoxide dismutase

TC Total cholesterol

TG Triglycerides

TNF Tumor necrosis factor

TNF-oc Tumor necrosis factor «

TPA 12-O-tetradecanoylphorbol-13-acetate

U251 Human glioblastoma

uPA-SCID Urokinase-type plasminogen activator severe combined immunodeficient mice
uv Ultraviolet

VEGFR-2 Vascular endothelial growth factor receptor 2

XPC Xeroderma pigmentosum complementation group C
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