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Abstract: This article presents DIANA, a new, process-oriented model of human auditory word
recognition, which takes as its input the acoustic signal and can produce as its output word iden-
tifications and lexicality decisions, as well as reaction times. This makes it possible to compare its
output with human listeners’ behavior in psycholinguistic experiments. DIANA differs from existing
models in that it takes more available neuro-physiological evidence on speech processing into account.
For instance, DIANA accounts for the effect of ambiguity in the acoustic signal on reaction times
following the Hick-Hyman law and it interprets the acoustic signal in the form of spectro-temporal
receptive fields, which are attested in the human superior temporal gyrus, instead of in the form
of abstract phonological units. The model consists of three components: activation, decision and
execution. The activation and decision components are described in detail, both at the conceptual
level (in the running text) and at the computational level (in the Appendices). While the activation
component is independent of the listener’s task, the functioning of the decision component depends
on this task. The article also describes how DIANA could be improved in the future in order to even
better resemble the behavior of human listeners.

Keywords: speech comprehension; computational model; process-oriented model

1. Introduction

This paper presents DIANA, a new, computational model of human speech process-
ing. This model has been developed over a number of years. Implementation details
of the model and specific simulations have been described in [1-7]. The current paper
presents DIANA at the conceptual level and explains how its features are inspired by
psycholinguistic and neurophysiological data. In addition, it makes explicit how and why
DIANA differs from existing models of speech comprehension. Computational details that
are relevant for the operation of DIANA are described in the Appendices.

In the following subsections, a number of existing computational models of human
speech processing and their characteristics are described. There are more models, such as
those based on episodes, but those mentioned here provide a framework for discussion
about DIANA’s position. In Section 2, we introduce DIANA and describe how this model
differs from existing models at the conceptual level. In Sections 3 and 4, we describe and
illustrate the operation of two of DIANA’s components, while in Section 5 a number of
future research directions are discussed.

1.1. Computational Models of Speech Processing

A substantial part of psycholinguistic research focuses on the cognitive processes that
take place when listeners perceive speech. Based on a vast body of empirical psycholinguis-
tic results obtained since the nineteen-eighties, a number of influential models of human
speech comprehension have been developed. These models are based on three basic princi-
ples that are assumed to underly human speech processing. These principles are: (1) during
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the unfolding of the acoustic signal, multiple word candidates are activated in parallel;
their activation is based on the degree of match between the input speech signal and their
representations in the mental lexicon, (2) this mental lexicon contains information about
the pronunciations and meanings of words, (3) the comprehension process is incremental;
listeners do not wait until the end of a word before they start interpreting the input.

Most current theories of spoken-word recognition are computationally implemented.
Computational models have the advantage that they may be able to simulate the conditions
of experiments. They thereby allow a direct comparison between model predictions and
behavioral results obtained from human listeners using the same stimuli. An unavoid-
able potential drawback of any computational model is that various implementational
assumptions need to be made that are possibly unsupported by empirical data or are left
unspecified by psycho-linguistic theories [8].

1.1.1. Cohort Model

The Cohort model [9-11] was one of the first models of spoken word recognition. It
used phonemic transcriptions as input and accounted for incremental processing. In this
model, spoken-word recognition is modeled as a three-stage process, involving access,
selection, and integration. The input is dealt with phone-by-phone. Only words for which
the beginnings match with the phonemic transcription of the input speech, aligned from
a specific onset, are activated and make up a cohort (access). During processing of the
next phone in the input, candidate words that no longer match are removed from this
cohort. In the end, only one candidate remains (selection). At that moment, the semantic
and syntactic properties of the winning word become available (integration).

A challenge for the Cohort model is that it cannot recover from early local mismatches:
for instance, a /k/ instead of /g/ in the input blocks the activation of ‘garden’, no matter
the support for this word after the /k/. Because the properties of the winning word
only become available after selection, the cohort model also cannot use word frequency
information during the recognition process. This behaviour is not in agreement with
empirical data: many speech comprehension experiments have shown that recovery from
errors is possible, and that word frequency has a substantial impact on accuracy and speed
(see, e.g., [12] for an overview). Its successor version Cohort II [13,14] addressed these
issues, but a major challenge for the cohort models remained the impossibility of defining
activation based on the later parts in the word [15].

The Cohort model, like most models (see below), explains specific aspects of the
speech comprehension process at Marr’s computational level [16]. The model assumes
that the acoustic signal is converted into a prelexical representation. It is this prelexical
representation that is then matched with the words presented in the mental lexicon. In
addition, the Cohort model assumes that this prelexical representation consists of phones
(or phonemes). The advantage of a prelexical level consisting of categorical units is that the
matching of the prelexical representation with the lexical representations is unproblematic.
For example, different realizations of /a/ as produced by a male and female speaker,
while acoustically very different, can be mapped on the same prelexical unit /a/, which
then maps on any lexical /a/. It is unclear, however, how these categorical units are
extracted from the acoustic signal because individual sounds are often highly ambiguous.
As phone annotation tasks show, listeners can often only solve these ambiguities after they
have recognized the word, based on other acoustic properties of the word or based on
the linguistic context. The same is suggested by recent neurophysiological studies which
indicate that how a phone sequence is recognized is influenced by the patterns in the lexicon
from the very start [17-19]. It is therefore not likely that, just on the basis of the acoustic
input, categorical decisions on the identity of units are made before lexical access takes
place, and it is doubtful whether categorical units are instrumental in the comprehension
process proper, e.g., [20].
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1.1.2. TRACE

The TRACE model [21] has an entirely different design. It is a connectionist interactive-
activation model that consists of three layers: a feature, a phoneme, and a word layer.
The input to TRACE consists of a sequence of multidimensional (manually crafted) feature
vectors, and each word’s pronunciation in the TRACE lexicon is represented as a phoneme
sequence. TRACE activates multiple word candidates that match any part of the speech
input in proportion to their degree of fit with the complete input. As a result, partially
overlapping words are considered in parallel. After nodes are activated, their activation
spreads through the layers (feature nodes spread activation to matching phoneme nodes,
phoneme nodes spread to word nodes).

In the TRACE model, inhibition takes place within the phoneme layer and within
the word layer; the phoneme with the highest activation suppresses candidate phonemes
with lower activations, and idem for words. Finally, the candidate word that matches the
input best is ‘recognized’. The activation of a word does not decrease in the presence of
mismatching input. In its original version, word frequency was not taken into account,
but later versions of TRACE do (see, e.g., [22]).

The model includes a ‘lexical feedback loop’, which makes it possible to revise the
phonemic interpretation of feature vectors to make these comply with the phonemic
representation of words. The use of such a feedback loop was criticized by [23] on the basis
of the argument that such a loop would not be necessary and was theoretically unjustifiable.
This argument continues to play a role in recent models (see, e.g., [24], and commentaries).
Another aspect that received criticism was the implausible architecture of the network—
each time the next phoneme in the input is to be processed, the search network has to be
entirely duplicated.

1.1.3. Shortlist and Shortlist B

The Shortlist model [23] can be considered a response to the TRACE model. A major
aim of Shortlist [23] was to show that the lexical feedback loop in TRACE is unnecessary.
Its input consists of a phoneme string (again, handcrafted on the basis of an acoustic signal).
It consists of two stages. Shortlist’s first stage consists of an exhaustive serial lexical search,
which results in a shortlist of maximally 30 candidate words that match the input processed
so far (other candidates are not considered). In the competition stage, these candidate
words compete in an interactive-activation network in which the word candidates that
receive support from the same sequence of input phonemes are connected via inhibitory
links. Mismatches with the acoustic signal do not completely block the recognition of a
word but lead to decreasing word activation. The word with the highest activation inhibits
candidate words with lower activations, and finally the candidate word that best matches
the input is recognized. Shortlist’s interactive activation network is equivalent to the word
layer of TRACE. Instead of adapting the existing shortlist, the entire process is repeated
with each new phoneme symbol in the input, which necessitates a new shortlist for each
input phoneme.

Shortlist B [25] is an updated version of the Shortlist model. The theoretical as-
sumptions underlying Shortlist B are identical to Shortlist, but it implements the word
competition as a Bayesian update process. Its input is created as follows: first a phonemic
transcription is created (by hand) of the speech signal, after which this transcription is
transformed into a sequence of phone—phone confusion probabilities. These phone—phone
confusion probabilities (defined over three time slices per phoneme) are derived from a
large-scale perception study using gated diphones [26,27]. By using these probabilities
as input, instead of categorical descriptions, Shortlist B addresses listeners’ capability to
process ambiguous speech signals. Shortlist B incorporates word frequencies as prior
probabilities, and deals with matches and mismatches using the framework of likelihoods.
There is no inhibition, and there is no feedback in the sense of higher layers modulating
computations in lower layers. A drawback of Shortlist B is that it does not specify how it
would extract information about phone-phone confusion probabilities from the acoustic
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signal and instead produces them from combining a phone transcription of the acoustic
signal with data from perception experiments. In addition, the strict use of the Bayesian
framework leads to a rather particular interpretation of how listeners process novel words:
listeners can only process an unknown word after they have produced a prior for the
acoustic realisation of that new word.

1.1.4. Fine-Tracker

The Fine-Tracker model [28,29] is based on the principles underlying Shortlist B. This
model is specifically developed to account for the role of fine phonetic detail in speech
comprehension. It is one of the first models that takes acoustic speech signals as input,
rather than some kind of segment-level symbolic transcription. Fine-Tracker is a two-stage
model. The first stage uses an artificial neural network (ANN) to convert the acoustic signal
into a sequence of articulatory-phonetic feature vectors. In Fine-Tracker’s lexicon, words
are represented as sequences of such feature vectors, instead of phone labels. In the lexical
representations the phonetic features have values 0 (absent) or 1 (present), or NA (not
applicable, for example for the component plosive in a lexical feature vector representing a
vowel). Phonetically longer segments are lexically represented by duplication of the vectors
of those segments. For instance, the first syllable of the English words "ham” and "hamster’
differ from each other in their lexical representations in that the vowel & of 'ham’, which is
reportedly longer than that of “hamster” [30], is duplicated. The bottom-up ANN outputs
real-valued feature vectors for which each component can take any value between 0 and 1.
The use of the ANN vectors and the lexicon’s vectors allows feature values to ‘spread” into
neighboring feature vectors through assimilation and co-articulation. Fine-Tracker’s word
recognition stage uses a probabilistic word search based on classical dynamic programming
to find the most likely word sequence.

Fine-Tracker has the advantage of using a flexible signal representation in the form
of feature vectors. TRACE also uses feature vectors, but these are essentially recoded
phonemic symbols. Another advantage is Fine-Tracker’s ability to use real speech as input.
The model has two disadvantages. The performance of Fine-Tracker crucially depends
on the ANN: If the ANN makes an error, Fine-Tracker cannot recover. Finally, the exact
definition of the match between full-dimensional estimated feature vectors (by the ANN)
and the (possibly partially defined) canonical lexical feature vectors is an unsolved issue,
since it is unclear how to faithfully compare distances between fully specified vectors and
distances between partially specified vectors in the definition of the match between the
input signal and lexical representation.

1.1.5. EARSHOT and LDL-AURIS

Recently, computational models have been proposed that avoid pre-lexical levels
consisting of explicit abstract units or phonetic/articulatory features. EARSHOT [24] and
LDL-AURIS [31] do so by mapping the acoustic signal directly to vectors in a distributed
semantic vector space, instead of to words, as in ‘localist’ models, by using neural networks:
a two-layer long short-term memory (LSTM) neural network [32] (which models non-
linear mappings) in EARSHOT, and a linear discriminative learner (with a linear mapping)
in LDL-AURIS. These models are end-to-end in the sense that they circumvent explicit
pre-lexical and lexical representations during the processing of the input; instead, these
representations may be implicitly present in the layers of these networks. The semantic
target vectors can be defined in different ways, e.g., chosen randomly or based on the
outcome of a word-to-vector algorithm (e.g., word2vec [33]).

EARSHOT and LDL-AURIS do not claim to explain all putative cognitive processes in-
volved in speech comprehension. Instead, they aim to serve as a cognitive model of human
speech recognition without explicit phonetic training and by replacing words by distributed
semantic representations, thereby leaving a word’s articulation entirely unspecified.
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2. Towards DIANA, A Novel Process-Oriented Model

In the past, the absence of empirical evidence about processes in the brain involved
in speech comprehension was a valid argument for limiting models to the computational
level. The rapid advancement of brain imaging techniques, and especially the availability
of a growing corpus of knowledge derived from electrocortocography (ECoG) recordings,
e.g., [34,35], make it possible to develop models that are also realistic at the neurophysio-
logical level. DIANA takes into account the limitations that the ‘wetware’ of the human
brain imposes on the type of computational processes than can be implemented [36-38].
In addition, it is based on psycho-linguistically motivated principles underlying the group
of “localist’ computational models (including the Cohort model, Shortlist, Shortlist B and
Fine-Tracker). From these ‘localist’ models, DIANA adopts the use of a lexicon, the concept
of word activations and the unfolding of word hypotheses in parallel (i.e., the activation of
words and competition among words as a function of time). DIANA does not assume a
prelexical layer in which hard decisions have to be made about abstract prelexical units
before lexical access. Instead, the acoustic signal is converted into representations that are
neurophysiologically attested. These representations have a statistical relation with the
representations in the mental lexicon.

In contrast to nearly all other models, DIANA is process-oriented by including activa-
tion and decision processes about word candidates in line with what we know about the
neurophysiological basis of perception (via spectro-temporal receptive fields) and human
decision making (ambiguity resolution). This will be elaborated upon in Sections 3 and 4.
DIANA’s behavioral adequacy can be tested as it takes as its input the acoustic signal and
produces as its output decisions (e.g., on the identity of a word or on whether the word is a
real word) and reaction times. It can therefore simulate a literate adult listener who takes
part in a psycholinguistic experiment.

Figure 1 shows the architecture of DIANA. The model contains three interrelated com-
ponents: an activation component, a decision component and an execution component. The
activation component implements acoustic processing and activation of words; the decision
component implements the word competition and the decision about the winning hypothesis.
The activation and the decision components operate in parallel: the decision component
receives a full set of activation scores at each time step from stimulus onset to stimulus offset.
The execution component simulates the externalization of the decision, mimicking the time
it takes for traveling neural signals to be effectuated eventually as an overt decision. This
component adds a constant time (in the current implementation: 200 ms) to DIANA’s RT
prediction, and we will not discuss this component further in this article.

acoustic
models
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Figure 1. Overall architecture of the DIANA model. The acoustic signal is input for the activation

time

component. During the unfolding of the input, the activation component computes activations
and hypotheses which are input for the decision component. The output of DIANA is an overt
decision (e.g., word identification or word evaluation) and corresponding reaction time. The two
activation and decision components operate in parallel, while the decision and execution components
operate serially.
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3. The Activation Component

Given the input speech signal, the activation component computes activations of
words in the lexicon, on the basis of which the decision component decides how the input
is evaluated (e.g., the identity of the word is established). Before word activations can be
computed, the acoustic signal has to be interpreted and represented in such a way that
it can connect with the mental lexicon. This section first describes this process, then the
assumptions about the mental lexicon, and finally the details of the activation process via a
number of examples.

3.1. From the Input Signal to Spectro-Temporal Receptive Fields

Experiments producing electrocorticography data (ECoGs, e.g., [34]) with speech
input suggest that the neural responses in the primary auditory cortex can be described in
the form of so called spectro-temporal receptive fields (STRFs, [39]). STRFs describe the
spectro-temporal processing in the human superior temporal gyrus (STG) during natural
speech processing (see, e.g., [34,40,41]), and form a neural representation for time-varying
sounds, reminiscent of conventional sonagrams [42]. One STRF contains information from
both the static spectral (stable portions) and the dynamic spectro-temporal properties
(transients) of a short stretch (approximately 20-30 ms) of the speech signal. STRFs also
obey the “tonotopic” frequency-locus relation, known from cochlear processing [43].

Approximations of the ‘cortical’ STRFs can be computed directly from the audio signal
(see, e.g., [40]). This property is used in DIANA to map the input speech signal into
a computational approximation of an STRF sequence in two steps. The first step is the
mapping of the input speech to a sequence of feature vectors. Each feature vector represents
the static and dynamic part of a 25 ms short stretch of the audio signal. This choice is based
on knowledge about temporal alternation of stable regions and transients in speech [44—46].
The stable part is coded by 13 Mel-frequency cepstral coefficients, MFCC, [47]. These
coefficients take into account the tonotopic properties of cochlear representations and the
frequency and loudness sensitivity of the human auditory system (see, e.g., [48]). The
dynamic changes of the spectrum are coded by the first and second time derivatives of
the MFCCs, cf. [48]. The feature vectors (of dimension 39) are updated every 10ms. Taken
together, each audio input is represented by a trajectory of (39-dimensional) feature vectors
in the MFCC space, with a sampling rate of 100 per second. Such a trajectory captures the
acoustic fine structure of the audio input to a degree that is sufficient for nearly all types of
speech analyses [49].

The second step converts the MFCC feature vectors into the STRFs as used in DIANA.
These ‘audio-based” STRFs are very similar to STRFs based on ECogG data (e.g., [34], see
also [50]), and they distinguish phones and broad phonetic classes as the cortical STRFs
do (see Appendix A.1 for more details on how STRFs are computed). Figure 2 shows the
relation between frequent phones (vertical axis) and DIANA’s STRFs (indexed along the
horizontal axis). The off-diagonal cells indicate patterns that are shared among related
phones. Importantly, they are very similar to the relation between ECoGs and phones
found in neurophysiological studies [34].

STRFs form the link between the pronunciation representations in the lexicon, on
the one hand, and the MFCC feature vectors that encode acoustic signals on the other.
The match between audio input and a word is computed via the statistical match be-
tween the MFCC vectors from the audio input and the STRFs associated with the lexical
representation of that word (see Appendix A.1).
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Figure 2. Correspondence between DIANA’s STRFs and frequent phones, organized along broad
phonetic classes. Phones are represented using SAMPA.

3.2. The Lexicon in DIANA

DIANA uses an internal lexicon, in which words with their pronunciations are stored.
The pronunciations are described in the form of phone sequences. A phone-based rep-
resentation helps to explain how listeners may divide a word in speech sounds, and it
enables DIANA to differentiate between word candidates during the word competition on
a phonetically-linguistically relevant level. Another advantage of lexical phone sequences
relates to sufficiency; listeners are usually not aware of subtle phonetic differences between
different instances of a phone that may arise during speech production.

The lexical representation of words determines how they are modeled in DIANA’s
computations. When any two words share a phone with the same pre- and post-context,
that phone is modeled by the same articulatory model. For example, since the words
‘speech’” and ‘speed’ share the same word-initial /s p/ in their lexical description, their
pre-context is the same (word start) and the post-context is the same (/i/), they share the
same /s p/ model. In contrast, ‘spell’, ‘speed” and ‘speech’ only share the /s/ model, but
not the /p/ model, because the post-context of the /p/ is different in ‘spell’. In the same
vein, the words ‘ham’ and ‘hamster’ share the same /h 2/ model, but not the /h &= m/
model. If word stress is not expressed in DIANA’s lexicon, it is not taken into account.
That is, words such as ‘household” and ‘leasehold’ (with stress on the first syllable) share
their word-final three-phone model with words such as ‘withhold’, ‘behold” and ‘uphold’
(with have stress on the second syllable), because the phone representation for the final
syllable is the same. Due to the context-dependency, DIANA can process coarticulation
effects within a limited scope.

For each (context dependent) phone in the lexical representation, the corresponding
articulatory model is a three-state Markov model, in which each state is associated with an
STREF. Via self-loop probabilities, the Markov model can deal with duration variation in
the input, while the use of three states reflects the head-body-tail structure of the acoustic-
phonetic realisation of that unit.

Two observations must be made. First, even though words may share parts of their
lexical representations, they can still be in competition with each other. This will be
clear from the examples in Section 3.4. Second, the fact that the pronunciation of a word
is represented by a sequence of symbols does not imply that these symbols must be
(completely) present in the audio input. This flexibility is based on the probabilistic relation
between feature vectors (MFCCs) and lexical representations (STRFs) (see Appendix A.1).
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3.3. Obtaining Activation Scores from Bottom-Up and Top-Down Information

Neurophysiological research using the phonetic mismatch negativity (a measure of
mismatch between expected and actual phonetic input) in EEG traces has shown that,
from word onset onwards, listeners develop expectations about which word is uttered,
based on both the bottom-up information from the acoustic signal, and the top-down
expectations from the (linguistic) context [51,52]. In DIANA, the words’ activations are
also based on a combination of both types of evidence. The bottom-up support for a word
is formed by the match between the MFCC vectors from the audio input with the STRFs
associated to the lexical representation of that word (see Section 3.1, and Appendix A.2 for
details). The top-down support for a word depends on the task. When a word has to be
recognized out of context (e.g., in a psycholinguistic experiment), the bottom-up supports
boils down to the word’s frequency of occurrence. In a meaningful context, instead, the top-
down information is approximated by the probability of the word given the preceding
words, which is computed with a statistical language model (in terms of, e.g., conventional
word N-grams).

Since DIANA is a model for spoken word comprehension with as input the speech
signal unfolding over time, the activation component does not only assign activations to
complete words, but also to cohorts of those words. Longer word candidates match a
longer stretch of the acoustic input than short word candidates and, therefore, longer word
candidates receive more bottom support. Nevertheless, the input stretch of speech may
consist of a series of short words rather than of a long one. In order to compare activations
of word candidates with different durations, word activations are normalized by dividing
by the word candidate’s duration.

Activations can be computed for words, pseudo-words and parts of words via es-
sentially the same combination of bottom-up and top-down support. Pseudo-words do
not appear in the lexicon but obey the phonotactic patterns in the lexicon. They can be
neologisms the listener has not heard before, or they can form the pseudo-words in a lexical
decision experiment. During the search, DIANA can create pseudo-words as hypotheses
on the fly, on the basis of a phone network in which phones are represented as nodes
such that only those phone combinations that are phonotactically licensed appear as pos-
sible paths through the network. The top-down support for pseudo-words may be very
low (e.g., for neologisms in a conversation), but in simulations of experimental outcomes
they can be adjusted, e.g., to model the listener’s updated estimation of the proportion of
pseudo-words in a lexical decision experiment. Details about the involved computations
can be found in Appendix A.3.

3.4. Examples of Word Activations

This section presents a number of concrete examples of activations, with emphasis
on their evolution during the unfolding of the input signal. The first example, shown in
Figure 3, shows the activations of the words ‘housing” and ‘houses’ and parts thereof, while
the speech input is ‘housing’.

In the figure, the vertical and horizontal axes show the frame-normalised word acti-
vation and time, respectively. The black traces show the activation of individual cohorts,
the phonetic transcription of which (using SAMPA symbols [53]) are shown at the right
hand side of the figure. For the sake of clarity, the figure only shows the activations of the
words ‘housing” and ‘houses’ and their cohorts (instead of all words in DIANA’s lexicon).
The activation of the word ‘housing’, shown by the red trace, starts to ‘win’ over all other
hypotheses at about 500 ms after stimulus onset, and it remains on top until the end of
the input. Note that hypotheses that have activations at stimulus offset do not necessarily
correspond to existing words, since partial word forms that are part of longer existing
words may still be activated on the basis of the complete input signal.

Another example is presented in Figure 4, in which the audio input is the word
‘hamster’. Att = 380 ms after onset, the competing word ‘ham’ branches of from the
winning hypothesis, indicating that the acoustic information disfavours ‘ham’ in the com-
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petition with hams” and other longer cohorts of ‘hamster’. The figure also shows the effect
of shared representations of ‘ham’ and the first syllable of ‘hamster’; both activation plots
overlap, until t = 380 ms.
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Figure 3. Example of DIANA'’s activation over time corresponding to the input English word
‘housing’. The figure shows the activations of the competing words ‘housing’ and ‘houses’, and their
word starts (cohorts). The red line shows the evolution of the winning candidate over time. The pink
band around the red line indicates the p = 0.05 confidence interval. The competing forms are denoted
(using SAMPA) at the right-hand side of each plot. A few competitors almost overlap with each other
until stimulus offset.
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Figure 4. Example of DIANA's activation over time corresponding to the input English word
‘hamster’. The figure shows the activations of the competing word forms ‘ham’ and ‘hamster” and
their cohorts. The competing forms are denoted (using SAMPA) at the right-hand side. A few
competitors overlap with each other until stimulus offset.

The following example is in Dutch. Figure 5 presents the activations of the Dutch noun-
noun compound ‘pindakaas’ (SAMPA /pIndakas/, Eng. ‘peanut butter’). Certain cohorts
of this word are real words themselves, such as the Dutch semantically unrelated word "pin’
(/pIn/), which can be a noun and a verb form (as its English equivalent "pin’), and the first
constituent of the compound 'pinda’ (/pInda/, Eng. ‘peanut’). The figure shows that the
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full word ‘pindakaas’ receives its activation from its cohort /pIn/ until about ¢ = 250 ms,
while later in the signal, "pindakaas’ receives it activation from /pInda/. In general, each
full form adopts its activation from its shorter cohorts underway, representing the idea that
these shorter cohorts are considered as part of the full form under development.

i pindakaas
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Figure 5. Example of DIANA’s activation over time corresponding to the Dutch word ‘pindakaas’
(SAMPA /pIndakas/; Eng. ‘peanut butter’). The pink band around the red line indicates the p = 0.05
confidence interval.

3.5. Presence of Noise in the Input

DIANA behaves like humans in that it can recognize words that are partly produced
in noise. This can be seen by comparing Figures 6 and 7. Figure 6 (clean condition) shows
the competition between the Dutch derived words begroting (/bexrotiy/, Eng. "budget’)
and begroeting (/bexrutiy/, Eng. ‘greeting’), which only differ in the vowel in the syllable
that carries word stress. As soon as this vowel is processed, the hypotheses boxro, and
boxru, and their longer counterparts, are clearly distinct from each other, showing that
activations can differentiate hypotheses on the basis of their final segment.
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Figure 6. Activation plot of two competing words which form a minimal pair (clean recording
condition): the Dutch real word ‘begroting’ (SAMPA /boGrotIN/, IPA /boyroty/, Eng. ‘budget’)
with ‘begroeting” (SAMPA /boGrutIN/, IPA /beyrutiy/, Eng. ‘greeting’). The audio is the real word
‘begroting’. The competitor word ‘begroeting” looses directly after the /o/, at time 450 ms from onset.
Clearly, many competitors overlap until the stimulus offset.
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Figure 7. Same as Figure 6, but the noise on the vowel /o/ in the second syllable now yields a
reduced and delayed differentiation in the activations of competitors, manifest from 450 ms after
onset. Many competitors overlap with each other until stimulus offset.

Figure 7 (noisy condition) shows the activation as a function of time when the word
begroting is distorted by superimposing background noise (white noise) on the stressed
vowel /o/ in the second syllable with a signal-to-noise ratio of —5 dB. Comparison with the
clean condition in Figure 6 shows that the activations are identical between stimulus onset
and the noise onset, while soon after the noise onset differences emerge. Compared to the
clean condition, the distortion has two substantial effects: first and foremost, the activation
score of the ‘correct’ word in the noisy condition shows a steep drop that is completely
absent in the clean condition. Second, the divergence between competing cohorts is much
smaller in size and occurs later in the noisy condition, compared to the clean condition.
(The smaller difference in activation in the case of noise slows down DIANA’s decision,
as will become clear in Section 4). In the end, the word is still recognized correctly.
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These effects on activation scoress are observed in all cases of segment noisification.
Quantitative effects appear substantially stronger in case of distortion of those segments
that differentiate between real words, such as the /0/ in begroting versus begroeting.

4. The Decision Component

As mentioned above, while the activation component is independent of the listener’s
task, the decision component is not. In word identification tasks, it assigns the winning
word candidate, while in lexical decision tasks, it determines whether the acoustic in-
put forms a real word or a pseudo-word. In these processes, DIANA only takes into
account a selection of the activated words and pseudo-words, as described in Section 4.1.
Sections 4.2 and 4.3 describe the selection procedures in a simple identification task and
in a lexical decision task, respectively. In Section 4.4, we discuss situations in which the
activation component does not provide sufficient evidence to take a decision.

4.1. Selecting Promising Word Candidates

Theoretically, for the purpose of word recognition, the number of potential word
candidates can be very large, up to 100,000 words or more. This would correspond to
the situation in which a participant is presented a randomly chosen real word. From a
neurophysiological perspective, however, it is unlikely that so many competing hypotheses
are entertained. For this reason, DIANA reduces the number of activated word and
pseudo-word candidates; at each time point, hypotheses with activations too far away
(determined by a threshold) from the hypothesis with the highest activation are discarded
for further consideration. These hypotheses are considered too poor to have a chance to
win later.

As mentioned above, DIANA not only assigns activations to complete words but also
to parts of words. This implies that, simultaneously, words and their parts, or parts and
their parts, may be activated. For instance, the partial input /k o 6 i/ (from “cathedral”)
may activate hypotheses such as /k o 6/, /ko 01/ and /o 0 i/. In DIANA, such ‘nested’
candidates (one candidate is a part of the other) are not assumed to be competitors of each
other, as they lead to the recognition of the same longer candidate. The decision component
therefore ignores all candidates that are part of other candidates with higher activations.

It is worthwhile to observe that this issue is not or cannot be accounted for in the
computational models that use a purely symbolic description of the input signal, in which
the list of competitors is based on character string comparisons. Neither is it addressed by
EARSHOT and LDL-AURIS, because these models do not have a level were such nesting
could occur.

4.2. The Decision Strategy for Simple Word Identification

The activation data as presented in the Figures 3—6 show that the difference in activa-
tion between the ‘correct’ word and its best competitor tends to increase (in a non-linear
fashion) as the acoustic signal unfolds. Since the activation and the decision components op-
erate in parallel (the decision component receives activations at each time step t), the latter
component does not have to wait until the end of the word to make a decision.

The decision component selects the word hypothesis with the highest activation, once
this activation differs from the activation from the second best word by a certain amount
(a threshold 8). DIANA'’s use of a decision criterion based on the difference between two
activations is commonly used in general models of human decision and RT distributions,
for instance, the ballistic accumulation model (BAM) [54] and the linear approach to
threshold with ergodic rate models (LATER, [55,56]).

For several reasons, among others between-speaker pronunciation variation and the
probabilistic relation between MFCCs and STRFs, it is not guaranteed that the activation
for the correct word is always higher than the activation for other words. Inevitably, this
may result in word identification errors.
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We showed in [2] that an older version of DIANA can predict identification times
for words presented in isolation well. In normal running speech, the role of contextual
evidence will be higher than for words presented in isolation, and a substantial difference
in activation between the correct word and the competing candidate words is likely to
be reached earlier than for words presented in isolation. Context may also inhibit the
activation of a candidate word, for example, if the word is unexpected given the pre-
context, such that a decision is likely be delayed. Via the Bayes’ formula the pre-context
modulates the exact activations of words unfolding over time, and thereby the moment
at which the decision component can decide about potential winning hypotheses. Words
that receive bottom-up support in line with top-down expectations are responded to more
quickly, while words that receive bottom-up information that conflicts with the top-down
expectation are decided upon later (to what extent this takes place depends on the effect of
this context-modulation on all competing hypotheses).

Many experiments have shown that there is a speed-accuracy trade off; for example,
when participants are faster, they tend to be less accurate, and vice versa. In the literature
on decision making (see, e.g., [54,57-62]), this interaction between speed and accuracy
is underpinned by neurophysiological and modeling accounts. In DIANA, the speed-
accuracy trade off is the result from a parameter (6) that determines the value of the
threshold difference needed between the activations of the best and the second best word
for the best word candidate to be selected. Higher values of 6 decrease the risk of making a
wrong decision, because more evidence has to be gathered before a decision can be made,
which implies longer reaction times. Lower values of 6, instead, increase the risk of making
a wrong decision, because less evidence has to be gathered before a decision can be made,
which implies short reaction times. The exact speed-accuracy relation depends on the
nature (e.g., difficulty) of the task. In [2], we discussed how the threshold 6 can affect the
speed-accuracy trade off.

4.3. The Decision Strategy for Lexical Decision

Participants in a lexical decision experiment may make their lexicality decision, com-
paring the evidence for the pertinent word to be a real word and the evidence for it to
be a pseudo-word. Accordingly, DIANA bases lexicality judgments on the difference in
activation between the real word and the pseudo-word with the highest activations. Once
this difference has reached a threshold, 60,;, the decision can be made. If the real word
has the highest activation, the lexical judgment will be ‘real word’, otherwise it will be
‘pseudo-word’. This decision strategy implies that it is not strictly necessary to decide
exactly which word was uttered, but just whether the real word candidate has a higher or
lower activation than the pseudo-word candidate.

For a real word as input, DIANA’s competition may involve all lexical items that are
acoustically close to the input, in combination with pseudo-words that differ from the input
in terms of one or more segments. For example, for an input such as ‘elephant’ (SAMPA:
Elofont; IPA: elofont), the number of potential competing pseudo-words may easily reach
100 to 200, which is hard to elucidate in a clear picture. Conceptually, it will be clear that
the more acoustic information becomes available, the number of viable lexical candidates
that are active in the competition will decrease over time. Simultaneously, the number of
potential pseudo-words that may play a role in the competition increases over time, due to
the increasing length of the hypotheses.

In a lexical decision experiment, the exact nature of the pseudo-words will influence
whether participants will make the lexicality decision as soon as the difference in activation
exceeds the threshold. If the experiment contains many stimuli that start as real words
but turn into pseudo-words only at their final segments, participants may not do so.
Instead, they may adopt the strategy to postpone their decisions until they have heard the
complete words [63].

Note that a given real word can receive activation as if it is a real word and as
if it is a pseudo-word (i.e., via the non-lexically-constrained activations). Importantly,
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the top-down activation may make the difference; the activation of pseudo-words is only
differentiated by the bottom-up activation (since their top-down activation is stimulus
independent) while the activations of real words are modulated by top-down information
(e.g., the frequency of occurrence of that word). The precise balance between bottom-up and
top-down probabilities depends on the listener’s task. In the simulation of a lexical decision
experiment during which the listener is confronted with a fifty-fifty proportion of real
words and pseudo-words, the priors for ‘word” and “pseudo-word’ will be 0.5. With this
decision strategy, DIANA thus is also able to explain a lexical bias that is often observed
in psycholinguistic experiments. In [2,3], we analyzed accuracy scores and reaction times
from large Dutch and north-American-English datasets of lexical decisions. We showed
that DIANA’s decision strategy can distinguish between real words and pseudo-words
well and can predict well the lexical decision times (in terms of the Pearson correlation
with participants’ reaction times).

4.4. Ambiguity during DIANA'’s Search Process

As explained above, DIANA can make a decision about the identity of a word or about
the lexicality of a stimulus once the difference in activation between two candidates exceeds
a certain threshold. In some situations, however, this threshold may not be reached at
stimulus offset. DIANA’s decision component then selects the candidate with the highest
activation and expresses the ambiguity within this selection process in terms of additional
reaction time.

DIANA defines the reaction time for a stimulus in these situations as the sum of
the duration of the word (during which no decision could be made), a so called ‘choice
reaction time’, and an execution time. The computation of the choice reaction time is based
on Hick-Hyman law [64—66], which states that the more choices are available (expressed
in terms of entropy), the longer it takes for a decision to be made. In [67], following a
number of early and more recent behavioral studies [64,65,68-70], it is shown that the
Hick-Hyman law has a neural underpinning in the cognitive control network (CCN) and
the default mode network (DMN), which deal with the mental representation of uncertainty
and the generation of behavioral responses [71,72] and which support adaptive behavioral
control across a broad range of cognitive demands [73-76]. It appeared that the entropy
of the decision problem increased the activity of the CCN that is involved in uncertainty
processing and response generation, and decreased the activity of the DMN, which is only
involved in uncertainty representation. In short, these studies provide a neurophysiological
link between entropy in a choice to be made on the one hand, and associated response
latencies on the other. From this point of view, entropy may well explain delays in reactions.

The entropy which forms DIANA’s basis for the computation of the choice RT takes
the activation scores of all candidates (words, pseudo-words, parts of words) into account,
after removal of nested variants with lower activations from the competitor list. More
details about the entropy computation can be found in Appendix A 4.

5. Future Research Directions

DIANA is transparent about all processes and assumptions, both at the conceptual
and computational level. Transparency, in combination with a process-oriented account,
provides clarity about what exactly DIANA can explain and account for. Neurological
arguments play a guiding role in DIANA’s design; both for the activation and the decision
components, the conceptual choices are based on neurophysiological findings (such as the
role of STRFs in the auditory cortex, and the neurological underpinning of the Hick-Hyman
law). In this section, we will illustrate a number of future research directions for improving
DIANA, in particular the structure and content of its lexicon, the computation of the
top-down information, the aspect of learning, and several implementation choices.
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5.1. Lexicon

As described in Section 3.2, the pronunciation of words in DIANA'’s internal lexicon
is defined in terms of phone sequences. Words sharing a phone subsequence in the lexicon
share the articulatory model pertaining to that subsequence. This structure is adequate
insofar as differences between words can be expressed at the phone level. It cannot model
subtle acoustic differences between the phone sequences that words share. For instance,
the present structure of the lexicon cannot capture effects due to prosodic lengthening
which listeners may be sensitive to (e.g., [30]). Similarly, homophones, such as ‘time’
and ‘thyme’, have in DIANA's present lexicon identical representations, and the present
structure of the lexicon, therefore, cannot deal with durational differences among the
members forming a homophone pair [77]. Note that DIANA can detect duration differences
in the acoustic signal; duration modeling is performed via the transition and self-loop
probabilities of the hidden Markov models. The question then arises of whether and to
what extent to incorporate these ‘fine phonetic cues’ in the mental lexicon, or, in other
words, how to make DIANA’s word recognition sensitive to fine phonetic details insofar
as they are perceptually relevant [78]. One of the options is to completely disentangle
the representations of the different lexical entries, such that ‘discolor” and ‘discover’,
‘time” and ‘thyme’, ‘ham’” and ‘hamster’, and so on, do not share any common spectro-
temporal structure. Such an option raises the question of where the detailed pronunciation
information to be incorporated in the lexicon has to come from. It requires the analyses of
either speech corpora in which the prosodic and spectral differences can be inferred in a
statistically and perceptually significant way, or an implementation of a solid theory about
the morphological-acoustics interface.

Another shortcoming of DIANA'’s present structure of the lexicon is that each word is
considered a separate, independent entry. This implies that, for instance, morphological
information about shared stems is missing and that DIANA cannot model the influence of
family size on the speed with which a word is recognized (e.g., [79]). These types of effects
could be accommodated in a model of the lexicon where words are interconnected on
the basis of all kinds of similarities (morphological, phonological, pragmatic, syntactical),
as proposed by Bybee [80]. One of the future research directions is therefore the enrichment
of DIANA'’s lexicon by designing a network in which words are linked in a weighted fash-
ion on the basis of all these different similarities. This network will modulate both the set
of word candidates considered during the search and their activations. Connecting words
on the basis of formal similarities (e.g. phonological or morphological) is a relative easy
step compared to connecting words on the basis of their semantics. The latter may require
that, in DIANA'’s lexicon, words are coupled with semantic (distributed) representations
(see also [81]).

5.2. Generalizing to Other Languages

So far, DIANA has been tested with Dutch and English [2,3]. This raises the question
of to what extent it can also perform well with typologically different languages. One
challenge is presented by languages that are morphologically more complex than Dutch
and English, such as Finnish. They form a challenge because the fact that the same stem
may be incorporated in a very high number of words increases the necessity of a flexible
way of incorporating morphological structure, moving away from the current "localist’
approach in DIANA in which each word form is represented as a single entry in the lexicon.
Testing DIANA on such languages is on our agenda.

Another challenge is formed by tone languages. In the current version, DIANA is
insensitive to pitch and to tone. Tone languages will ask for an extension of the acoustic
feature extraction with pitch-related vector components (e.g., pitch itself, its first time-
derivative). This is feasible since this extension has been incorporated in several speech
decoding systems, for example, Mandarin [82]. To what extent the decoding approach in
DIANA is compatible with the lexical structure of tone languages is another topic to be
investigated in more detail.
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In its current implementation, DIANA is monolingual. In principle, DIANA can
also simulate multilingual listeners. In a multilingual setting (see, e.g., [83]), the potential
number of competitors is much larger than in a monolingual listener, as multiple lexicons
are activated simultaneously. As a consequence, the competition will be more involving,
especially if stimuli are presented without any pre-context indicating the language. How
this could be accomplished in DIANA is a challenging topic of further research.

5.3. Top-Down Information

Word activations result in DIANA from a combination of bottom-up information and
top-down information. In the present version of DIANA, the top-down information is
provided via a conventional statistical language model (SLM, in the form of an N-gram [49])
that estimates the (scaled) log probability of each word given the directly few preceding
words (or given its frequency of occurrence when the word is presented out of context).
The value of N depends on the available type of text materials; in the case of a list of
isolated words, N = 1 (unigram). Previous work has shown that these types of models
predict reasonably well the following word [48]. However, these models may be argued to
be cognitively too simplistic, as these models only consider a few preceding words, ignore
the meanings of the words, ignore the syntactic structure of the sentence, and so on.

We aim to enrich the present top-down information in several ways. First, we will
expand the number of preceding words that are taken into account by replacing the simple
statistical language model by, for example, LSTM-based neural network-based language
models (e.g., [49,84]) which can capture longer span word prediction. Second, we aim to
produce expectations about the likelihoods of the different parts of speech, extracted from
tagged corpora (for example by a modern dependency grammar approach, e.g., [85]). Third,
we aim to enrich the top-down information with the meanings of the preceding words,
expressed, for instance, in word2vec [33]. In further steps, the likelihoods of words could
even be modulated by visual information presented to DIANA, as is done in image—caption
retrieval models, such as [86].

5.4. Is DIANA A Learning Model?

One may require from a model that it not only simulates adult listener’s processing,
but also how this adult acquired the knowledge to do so (language acquisition) and how
this adult can learn new words and pronunciations. Language acquisition is a process
mediated by social interaction in a multi-modal context that enables infants and toddlers to
infer associations between acoustic forms and meanings with as a side-effect a capability
to break up stretches of speech into words, syllables and sounds. It has been shown that
all representations currently used in DIANA could be acquired incrementally [87-94], see
also [95]. This paves the way to advance DIANA in the direction of an ecologically defen-
sible model of speech comprehension. The present implementation of DIANA, however,
lacks the capability of automatically learning new words, or new, deviant pronunciations
of words that are already in the lexicon. We consider the aspect of dynamic word learning
as a very relevant way to proceed. Conceptually, this word acquisition process could be
associated with the detection of a pseudo-word in the sense of an out-of-vocabulary word,
in combination with the inclusion and consolidation of the new form into DIANA’s lexicon.
How this could be achieved is a topic for further research.

The present version of DIANA needs specifications of the probabilistic relations
between MFCC feature vectors and STRFs. The question may be raised of how these are
‘learned’ by DIANA. We derived these low-level parameters by some kind of iterative
optimization procedure using a large transcribed speech corpus. Obviously, this iterative,
corpus-based approach is not a realistic proxy for language acquisition. DIANA could
learn the low-level parameters incrementally, but doing so would be time consuming, and
it would most probably contribute little to the insights that can be gathered with the current
implementation in adult word recognition.
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5.5. Implementation

The activation component in DIANA used in previous experiments (e.g., [2,6]) relied
on speech analysis and decoding algorithms in the HTK software package, which can also
be applied for automatic speech recognition [96]. The present version of DIANA [7,52] uses
algorithms from a different software package, the KALDI toolkit [97]. The most important
advantage of KALDI over HTK is the availability of more flexible tools for handling lattices
that contain the dynamically changing activations of word and pseudo-word candidates
as the acoustic stimulus unfolds. Another advantage of KALDI is that it allows lexicons
with a practically unlimited number of entries, whereas the lexicon size in the HTK-based
implementation was limited to about 25,000 entries.

Although parts of DIANA are built upon speech decoding algorithms that can also
be used for automatic speech recognition, DIANA cannot be regarded as a variant of
automatic speech recognition. The way in which activations are computed as functions
over time is different, the way in which short input signals may activate longer words is
entirely different, and DIANA'’s activation computations are more neurologically inspired
by the use of STRFs. Fully neural-network inspired approaches (such as EARSHOT) may
stimulate the development of a variant of DIANA in which not only the representations
(e.g., STRFs) but also processes are neurally informed. Considerations, as put forward
by [36-38] about restrictions on relations between the implementation on lower and higher
Marr levels, will be guiding in this direction.

6. Conclusions

This article presented DIANA, a process-oriented computational model of human
word recognition. It differs from many models in that its input is the same acoustic signal
as enters the human ear and in that its output are the outputs that can be produced by
human participants in psycholinguistic experiments, so that DIANA’s plausibility can
be directly tested. More importantly, DIANA’s design accounts better for the recent
findings in neurophysiological and psycholinguistic research than previous models. Most
importantly, DIANA does not assume a pre-lexical layer in which hard decisions are
made about abstract pre-lexical units before lexical access, but converts the acoustic signal
into representations (i.e., spectro-temporal receptive fields) that are neurophysiologically
attested. In addition, DIANA resolves ambiguity following the Hick-Hyman law.

These features also imply that DIANA is fundamentally different from ASR models,
including those based on deep neural networks. As a consequence, with DIANA we have
a cognitively more plausible model of word recognition, which makes it easier to test new
hypotheses about the human word recognition process in a cognitively valid way.

DIANA is work in progress. We have published several short papers on older versions
of the model, mostly focusing on aspects of its implementation. In the present article, we
have focused on the conceptual choices we made for DIANA, which resulted in those
implementations (which are described in more detail in Appendix A). In the near future,
we hope to further extend DIANA such that it reflects even better everything that is known
about the human word-recognition process. We trust that, also in its present version,
among the recently proposed computational models, DIANA can play a seminal role for
the advancement of process-based accounts of human word recognition.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN artificial neural network

CCN cognitive control network
DMN  default mode network

DNN  deep neural network

ECoG electrocortocography

STRF  spectro-temporal receptive field
MFCC  mel-frequency cepstral coefficient
RT reaction time

LM language model

SLM statistical language model

NDL naive discriminative learner
LDL linear discriminative learner

Appendix A. Appendices

The four appendices below provide more detailed information about the computa-
tional approach underlying DIANA. In Appendix A.1, we discuss the statistical relation
between MFCC feature vectors and spectro-temporal receptive fields. In Appendix A.2, we
discuss the activation of words, pseudo-words and word cohorts. In Appendix A.3, we
discuss the procedure for modeling lexical decisions. Finally, in Appendix A.4, we discuss
various aspects of DIANA’s entropy.

Appendix A.1. MFCC Feature Vectors and Spectro-Temporal Receptive Fields

In DIANA, the competition between words, parts of words and pseudo-word can-
didates is determined by the degree of match between the audio input and the internal
representations of these candidates. The audio input is represented as a sequence of mel-
frequency cepstral coefficient (MFCC) feature vectors [48]. Any candidate is, via its phone
sequence representation and the corresponding hidden Markov model, represented as
a sequence of so-called spectro-temporal receptive fields (STRFs) (see, e.g., [34]). Each
Markov state is associated to an STRF. The match between the signal and the candidate
is then defined by the statistical match between the MFCC sequence and the STRF-based
Markov model.

Each individual MFCC feature vector is based on a speech segment of 25 ms wide,
and is updated with a 10 ms time shift sliding through the speech signal. In this feature
vector, both static and dynamic parts in the speech signal are accounted for [48]. For an
utterance, this vector sequence forms a trajectory in the MFCC space, sampled 100 times a
second. Obviously, new realisations of the same utterance (even when uttered by the same
speaker) may lead to slightly deviant trajectories which may be acoustically different but
count the same on a phonemic level. This implies that neighboring MFCC feature vectors
along a trajectory probably belong to the same speech sound.

This suggests a statistical relation P(STRF|MFCC) between MFCCs and STRFs. This
relation is established outside of DIANA via a conventional forced-alignment procedure
between audio recordings and a parallel phone-level annotation. This alignment defines
each STREF as a statistical distribution (cluster) in the MFCC space. STRFs pertaining to
states belonging to one phone are similar and may have a substantial overlap in MFCC
space, while STRFs related to different phones may be very dissimilar. Because STRFs
partition the MFCC space in a statistical way, each trajectory in the MFCC space passes
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though a number of MFCC regions, thereby activating the hidden Markov states via
P(STRF|MFCC) (see Appendix A.2).

The use of phones in the alignment is not essential for creating a useful set of STRFs,
neither is the forced alignment procedure (Viterbi algorithm). Other clustering methods,
e.g., an unsupervised clustering of MFCC vectors, may yield equally useful STRFs, but the
current choice for phones makes it possible to interpret DIANA’s output (e.g., the outputs
in Section 3.4) and the candidates during competition in phonetic terms.

Appendix A.2. Activation of Words, Pseudo-Words and Word Cohorts

The activation of word candidates, parts of words and pseudo-words is based on a
combination of bottom-up evidence from the speech signal and top-down prediction. For
the computation of this activation, Bayes is the starting point (similar to [25,98]):

P(W|S) = P(S|W)P(W)/P(S) (A1)

in which the left-hand side is the probability sought. The speech signal and the word
candidate(s) are denoted by S and W, respectively. S is represented as a sequence of MFCC
feature vectors, and W is represented by a Markov model, each Markov node modeled by
an STRE.

In the computations, DIANA follows the actual practice in which the denominator
P(S) is ignored since it is independent of the word candidate W (see [48]). This step,
turning probabilities into likelihoods, makes sense for psycholinguistic experiments; what
counts is the activation of some word (sequence) W relative to the activation of competing
word (sequences) Wy,,i =1, -- -, M. This allows us to ignore the prior probability P(S) of
the speech signal from the equations, since it is the same for all candidates. Moreover, all
computations are performed in the logarithmic domain, that is, in terms of log-likelihoods.

During the unfolding of the signal S, DIANA must not only be able to deal with
gated input signals, such as ‘cathedr’, but also with partial word candidates and pseudo-
words. To compute on-line activations for word cohorts (parts of words starting at the
beginning) and pseudo-words W while the acoustic signal S unfolds, DIANA extends
Equation (A1) to:

log P(W|S[0 : t]) ~ log P(S[0 : t]|W) +log P(W) (A2)

in which S[0 : t] denotes the gated part of the signal S up to time ¢, and W may be a
complete word or word part or pseudo-word. The ~-sign is used because this equation is
actually in terms of log likelihoods. Due to the assumption of independence of subsequent
hidden Markov states, log P(S[0 : t]|W) in the right-hand side of (A2) can be written as a
sum over sequences of vectors (MFCC feature vectors) and corresponding states (STRFs):

log P(S[0: t]|W) = ) log P(vector|state) (A3)
vector, state

in which P(vector|state) is provided by the forced alignment that was used to construct
the STRFs (Appendix A.1). As a result, log P(W|S[0 : t]) is an accumulation of feature
vector-based contributions from 0 to t.

In order to enable DIANA to compare activation scores of hypotheses with different du-
rations, we perform a duration normalization. This accounts for the fact that longer utterances
yield more acoustic evidence, but what essentially counts is the amount of evidence per unit
time. This has a parallel with human speech processing in which the time window within
which a listener may revise an hypothesis cannot be not arbitrarily long. This normalisation is
performed by dividing the log likelihood by the duration ¢ of the speech signal S[0 : ]. By do-
ing so, we obtain a duration-normalized log likelihood log(P(W|S|0 : t]) /t. This normalized
value is referred to as the activation of a word at time .
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Appendix A.3. Lexical Activation Score and Lexically Unrestricted Activation Score

To simulate a participant’s lexicality judgments in a lexical decision experiment,
DIANA adopts a strategy for making a word or pseudo-word decision. In a word iden-
tification task, words go into competition with other words. This situation is different
from lexical decision, in which the competition is between words on the one hand and
pseudo-words on the other. Since the criteria for word decisions may be different from the
criteria for pseudo-word decisions [99], DIANA uses a strategy based on the comparison
of two activation scores that are computed in parallel, a lexical score (based on all words in
the lexicon) and a lexically unrestricted score (based on all phonotactically licensed phone
sequences), for each gated signal S[0 : ¢] for all ¢:

argmax log P(form|S[0 : t]) /¢t (A4)

any lexical form

the lexical score, and

argmax log P(form|S[0 : t]) /¢t (A5)

any phonotactically licensed form
the lexically unrestricted score.

The results of the computation of the first, ‘lexical’, activation are presented in
e.g., Figures 4 and 5. For the computation of the second activation, DIANA’s search space
is dynamically enlarged to allow all phonotactically licensed word forms, such as "cath’,

‘cathedral’, ‘cathedruke’, "thedruke’, etc. DIANA can create such pseudo-words as word

hypotheses on the fly, on the basis of a phone network in which phones are represented as
nodes, such that only those phone combinations that are phonotactically licensed appear as
possible paths through the network. With respect to the computation of activation scores,
pseudo-words or word parts do not behave in a principally different way from real words.

Conceptually, both the lexical and lexically unconstrained activation scores make sense,
albeit in different ways; the lexical activation is the key ingredient in the word-to-word
competition in speech comprehension of known words, while the second activation is at
stake when listeners are confronted with unknown words (e.g., new names) or pseudo-
words. Recent studies using EEG analyses [17] show how listeners can take recourse to a
phonological grammar to process unknown words. This is related to DIANA’s network-
based strategy (described above) underlying the lexically unrestricted activation score.

If all top-down predictions are equal, the second score is always at least as good as the
first, since the lexically constrained phone sequences form a subset of the phonotactically
licensed phone sequences. This implies that the difference between these activations is an
indication for the lexicality of the stimulus. DIANA’s use of a decision criterion based
on the difference between two activations is commonly used in general models of human
decision and RT distributions, e.g., the ballistic accumulation model (BAM) [54] and the
linear approach to threshold with ergodic rate models (LATER, [55,56]). For several reasons,
among others the effect of between-speaker pronunciation variation and the probabilistic
relation between MFCCs and STRFs, it is not guaranteed that the activation score difference
distinguishes lexical from non-lexical inputs in a fully reliable way. Inevitably, this will
give rise to lexicality judgment errors.

Figure A1 (see also [1,2]) shows the distributions of the lexical activations for existing
words (in blue) and the lexically unconstrained activations for pseudo-words (in red) of the
2780 existing and 2761 pseudo-words in BALDEY [63]. For each stimulus, the difference
between the highest lexical and the highest non-lexical activation is displayed on the
horizontal axis. The dashed vertical line represents the position of a criterion value 6
(a model parameter) that can be used as a threshold to decide the lexical status of a stimulus.
If the difference between lexical and non-lexical activation exceeds 0, the stimulus is
classified as a real word, otherwise it is assumed to be a pseudo-word. The expected
classification error will depend on the structure of the pseudo-word stimuli in a lexical
decision experiment and the exact way they violate lexicality. For example, in stimulus
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sets in which pseudo-words only deviate from real words in one phone, the blue and red
distributions might overlap to a large extent (due to the small acoustic difference between
the pseudo-word and its closest real word). In the case of clear acoustic differences between
pseudo-words and real words, the blue and red distribution would hardly overlap.

i T
I pseudo words
I rcal words

0.1

relative frequency

-10 -8 -6 -4 2~ 0 2 4 6
difference between lexical and non-lexical (unconstrained) activation

Figure A1l. Histogram of the difference of lexical activation and non-lexical activation of 2780 existing
words (blue) and 2761 pseudo-words (red) in BALDEY. The dashed vertical line indicates the lexical
decision threshold (denoted 6 with subscript 1d, lexical decision); its optimal value depends on the
task. In the figure, it is chosen such that the probability of words erroneously receiving a pseudo-word
label would be minimal.

Appendix A.4. Computation of Entropy

In DIANA, entropy, a measure of the ‘degree of disorder” in a physical system or of
the ‘complexity of a decision process’, is assumed to be a contributing factor to the long
latencies manifest in many psycho-linguistic tasks. During the word search, the entropy is
computed from the word probabilities, which are computed from the scaled log likelihoods
log P(W|SJ0 : t]) in Equation (A2). This is performed for each t, such that entropy values are
available as a function of time. To compute the probabilities from the scaled log likelihoods,
DIANA used a procedure that is similar to the probability normalization step often applied
in speech decoding research (A6). In this procedure, the scaled log likelihoods are first
transformed into unscaled log likelihoods, by applying a multiplication with a constant ¢
(which is to be estimated from data). Next, the ‘softmax’ Luce rule is applied to convert the
log likelihoods to probabilities, via normalisation to make the sum equal to 1. In total:

- exp(c-log P(W|S[0: t]))
* = Thwexple-log POWIS[0: 1))

(A6)

for each time point ¢. The sum in the denominator runs over all hypotheses viable at time
t. The value of c is estimated to be approximately —0.05, by using the word-confidence
estimation approach described in [100]. This value is an approximation; a more precise
value can be obtained if the list of candidates is made more precise. The value of c is not
critical for the evaluation of the entropy. Similar methods are also applied to compute
word confidence measures [101]. In DIANA the entropy was computed after removal of
all ‘nested” hypotheses from the list of hypotheses (see Section 4). Although the conceptual
aspects underlying this procedure are transparent, the required computations are often
quite technical in nature.
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Appendix A.4.1. Entropy as A Contributing Factor of Reaction Time

Reaction times in a behavioral experiment are a good example of outcomes of a
complex cognitive process in which many factors play a role at various time scales
(e.g., [3,7,12,102-104]. One of the factors that is likely to play a role in the explanation
of reaction time is the complexity of the problem that a participant must solve while mak-
ing a decision. In lexical decision tasks, the RT distributions are typically very skewed with
a long tail towards long RTs [63,105]. For example, in the large-scale Dutch lexical decision
database BALDEY [63], which contains over 110,000 lexical decisions and reaction times,
only a very small subset of the stimuli receive a valid reaction before the end of a stimulus,
about 50% of all RTs (when measured from stimulus offset) exceed 510 ms, and 10% exceed
1560 ms. Moreover, Ref. [105] reports similarly substantial RTs. These long tails indicate
that participants may need a substantial amount of time to make a decision, since the time
that elapses between stimulus offset and an overt response (e.g., a button press) largely
exceeds the neural traveling time required to effectuate an overt response (which is 200 ms
at most).

The long tail in RT distributions form a challenge for modeling. In regression models of
RT, the dependent variable is often transformed using log(RT) or the inverse (1/RT), which
makes the distribution of the transformed RTs more Gaussian-like. In BAM and similar
models [54,56], the skewness is dealt with by putting constraints on the distribution of the
drift rate. DIANA, as a process-oriented model, must be able to explain reaction times far
beyond the stimulus offset on the basis of activations that are computed before stimulus
offset. This is performed by relating the additional reaction time with the complexity of the
choice. DIANA takes the Hick-Hyman law as a starting point [64—66]. In the case of N
options with equal probability p = 1/N, the time necessary to choose one option is linear
in the log-transformed number of items:

AT=A+B-log(N)=A+B- Y —plog(p) (A7)
all N items

with A and B constants that depend on the details of the experiment. In DIANA, this
situation is translated into the choice a listener has to make among N hypotheses, each
with different probabilities (p, from Equation (A6)). To that end, the right-hand term in
Equation (A7) is generalized to the entropy Y| —p;log(p;) = H(p1, .., pn). DIANA’s
choice RT, the contribution to the overall RT due to entropy, is then modeled as

choice RT = 8- H(p1,...,PN) (A8)

in which the factor B > 0 is one of the meta-parameters in DIANA, translating entropy
into additional reaction time, and p; are the probabilities of the hypotheses as derived from
Equation (A6). A larger degree of ambiguity (e.g., more close competitors, very similar
words in the competition, pseudo-words close to real words) leads to larger entropy and so
will increase the reaction time. In the case that there is no ambiguity, H equals zero and so
the choice RT vanishes.

When entropy is taken into account, one option to express DIANA’s RT predictions
beyond stimulus offset reads as follows:

DIANA RTonget = stimulus duration+ - H()+
f (morpho-syntactic factors)+ (A9)
execution time

in which DIANA’s meta-parameter j translates entropy H() to additional choice RT (via
choice RT = B- H(p1,...,pn))- Here, f denotes a zero-mean (as yet unspecified) function
that modulates the reaction time on the basis of morpho-syntactic factors of the stimulus.
In the following subsection we show that this option is supported by regression modeling,
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by simulating data on a morphologically homogeneous subset of BALDEY, such that the
variation in f is limited.

An even more challenging option for integrating entropy would be in line with what
has been discussed in the Discussion section concerning the extension of DIANA’s lexicon
with morphologically and semantically relevant information:

DIANA RTonset = stimulus duration+
B - H(morpho-syntactic-semantic factors)+ (A10)
execution time

in which first morpho-syntactic properties, such as stem sharing, family size effects, and se-
mantic relations, modulate the hypotheses” probabilities, on the basis of which a new
entropy H() is computed.

Figure A2 illustrates the distribution of the entropy (a density plot) as computed
in DIANA'’s decision component for all 5541 auditory stimuli used in BALDEY [63].
The distribution shows a tail towards 0. This tail is due to relatively long stimuli, some of
which have no—or at best very few—competitors left at their offset. The mismatch between
the highly asymmetric distribution of entropy values (long tail towards the lower values)
and the fairly symmetric distribution of log-transformed RTs shows that entropy on its own
may not be a very powerful predictor of RTs, but nevertheless may serve as a significant
predictor of RTs in regression models. An example is shown in the next subsection.

density plot of H()

1.0

0.8
|

0.6
1

0.2

0.0
)

entropy

Figure A2. Density of the entropy H() over all 5541 BALDEY stimuli.

Appendix A.4.2. Entropy as a predictor of the RTs in BALDEY

To illustrate the impact of DIANA's entropy computed at offset of the acoustic stimuli
in predicting RT values, we present one linear mixed-effects [106] -based regression analysis
using the data in BALDEY [63]. In DIANA, it is assumed, via Hick’s law, that a larger
entropy leads to longer reaction times when all other factors are assumed equal, while
taking into account the challenges connected to this interpretation as voiced in [66]. If true,
this should correspond to the entropy having a positive regression coefficient in models
of RT.
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Since RT distributions typically comprise some extremely fast, and a long tail of very
slow, reactions that arguably are not representative of the ‘normal” cognitive processes,
we ignored all trials with an RT measured from stimulus onset (RTonset) in the lowest
percentile (pertaining to an RT threshold of 550 ms) and all RTs beyond p + 2¢. This step
removed approximately six percent of the BALDEY trials, respectively. In the analysis,
we further limited the trials to those BALDEY stimuli that were correctly responded to.
The reaction times were log-transformed and served as the dependent variable.

We also added the predictor “‘wordiness’, defined as the ratio of the activation of
the best lexical candidate and the activation of the winning candidate (word or pseudo-
word). Furthermore, we added conventional predictors (see also [63]), such as logwdur
(log-transformed word duration), logFreq, session, trial, wordclass, and compoundtype.
The predictor wordclass is a factor with three levels (adjective, noun, and verb, with, in
BALDEY 22,154, 48,861 and 32,917 tokens, respectively). ‘Adjectives’ are on the inter-
cept. Compoundtype distinguishes four types of compounds (simple, adj+noun, noun+adj,
and noun+noun). Here, ‘simple” is on the intercept. Since the correlation between
logwdur and entropy was r = —0.51, entropy was residualized over log word dura-
tion, with entrlogwdur as a new predictor. Finally, we added two predictors prevBVis and
maRT [104,107] as control predictors. These predictors model the local trends that exist in
human RT sequences that are independent of the stimulus itself but have a mid-term range
of about 10-20 stimuli due to, e.g., learning effects, fatigue and fluctuating attention (for
details about prevBVis and maRT, see, e.g., [104]).

Model search was by backward elimination starting from a regression model with
all predictors and plausible interactions in the fixed structure and control predictors as
random slopes without interactions. The final Imer model reported here has been derived
according to the guidelines in [102,108,109]. Insignificant interactions and main predictors
are left out of the final model. Random slopes were only included insofar as the resulting
models converged and the AIC value was improved. Table A1l presents the results of the
final Imer model for RTonset. The AIC of this model (m) equals —753.2811.

m = lmer(logRT ~ logwdur*logFreq+entrlowdur+wordiness+
sessiont+trial+wordclass+maRT+prevBVis+compound_type+(1|word)+
(1 |subject)+(0+maRT |subject),
data=data4[datad$response == "correct",])

Table Al. Output of Imer model modeling RTonset, including the DIANA-based predictors
entrlogwdur, which is the entropy residualized over log word duration, and wordiness. For details
see the text.

RTonset

Estimate Std. Error t Value
(Intercept) 6.742 x 1071 3.265 x 1071 2.065
logwdur 3.306 x 107! 6.513 x 1073 50.760
logFreq 7.011 x 1072 1.135 x 1072 6.178
entrlogwdur 2.354 x 1072 2.039 x 1073 11.548
wordiness 5.559 x 1072 9.084 x 1073 6.119
session 2.564 x 1073 2919 x 1074 8.783
trial 2.672 x 1075 4.883 x 107° 5.472
wordclass(nom) 6.933 x 1073 2.965 x 1073 2.338
wordclass(verb) 3.106 x 1072 2.951 x 1073 10.526
maRT 6.000 x 1071 4299 x 1072 13.958
prevBVis 2,651 x 1073 2.883e x 104 9.196
compoundtype(A+N) —3.023 x 1072 8.855 x 1073 —3.414
compoundtype(N+A) —~7.375 x 1073 1.018 x 1072 —0.724
compoundtype(N+N) 4197 x 1073 4.236 x 1073 0.991
logwdur:logFreq —1.277 x 1072 1.785 x 1073 ~7.153
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The final model for RTonset was significantly better (in terms of AIC) than alternative
models, including models in which entrlogwdur or wordiness were left out. Table Al
provides regression coefficients and t-values of this model; under the assumption of the
validity of the t-distribution, all values of |t| > 1.96 are considered to indicate significance
at the level p < 0.05. In this model the two-way interaction between logwdur and log
frequency is kept, and maRT serves as a random slope under subject without correlation
with the intercept. As expected, (log) word duration (1ogwdur) is one of the most significant
predictors of reaction time measured from stimulus onset.

Interestingly, the Table shows that both DIANA-related predictors (entrlogwdur and
wordiness) are significant, with positive Bs. A larger entropy (measured at stimulus offset)
thus leads to a larger reaction time, all other factors being equal. The positive  for wordi-
ness shows that the more probability mass is attributed to word hypotheses, the slower
the decision. This seems counter-intuitive, since one would expect that the larger the
probability mass attributed to one hypothesis, the faster the decision should be. However,
wordiness is the score of the top-ranking hypothesis, irrespective of whether that is an exist-
ing word or a pseudo-word. It appears that the number of cohorts formed by sequences of
transcription symbols resulting from trying the ‘transcribe’ pseudo-word stimuli is much
smaller than the number of cohorts that make up the words in a large lexicon.

The other coefficients can be explained on the basis of earlier findings (e.g., [63]).
Higher word frequency leads to smaller RTs, but modulated by an interaction with word
duration. In general, later sessions and trials lead to slower RTs. Compared to adjectives,
nouns and verbs yield longer RTs. Noun-noun compounds produce the slowest RTs among
compounds. The ‘local trend’-related control predictors maRT and prevBVis are highly
significant with 8 > 0, again showing the usual substantial local speed effect [104].

Finally, Figure A3 shows the predictions of DIANA when simulating a word iden-
tification task. The dataset was chosen to be a morphologically homogeneous subset of
BALDEY (real words, morphologically simple, bi-syllabic), such that morphological factors
are factored out as much as possible (see also [1-3]).

cor
0.60
|
T
RT {ms)

0.54
|

beta

Figure A3. DIANA'’s simulations for a word identification task. The dataset is a morphologically
homogeneous subset of BALDEY. The black dotted curve shows the correlation between DIANA’s
RTs and the average RT of participants as a function of beta (p), the coefficient of the entropy in the
equation for DIANA’s RT. The solid blue line shows the average of DIANA’s RT as a function of
B, while the dashed blue horizontal line indicates the participant’s mean RT. The right-hand side
vertical axis pertains to the blue curves.
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The figure shows the performance of DIANA via Equation (A9) in terms of the
correlation between DIANA’s RT sequences and the average RTs from participants in
BALDEY (the dotted black line) and the average RT (solid blue line), both as a function of
the coefficient B in Equation (A9). The black dotted line shows that the highest correlation
between DIANA and the participants is obtained for a value of § > 0 (omax = 0.651, 95%
confidence interval [0.641-0.663]), i.e., significantly higher than the prediction without
entropy (B = 0).

The dashed blue horizontal line indicates the participant’s mean RT. The right-hand
side vertical axis pertains to the blue curves. The figure suggests that there is no single value
for 8 for which both the correlation is optimal (highest point in black curve) and the average
RT prediction is correct (crossing of solid and dashed blue lines). This strongly indicates that
the operational definition of entropy, as currently used, can be refined, by, e.g., taking into
account more complex (morphologically oriented) word-word relation during DIANA’s
word competition stage, in line with the discussion of Equations (A9) and (A10).
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