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Neurological disorders dramatically impact patients of any age population, their

families, and societies. Pediatrics are among vulnerable age populations who

differently experience the devastating consequences of neurological conditions,

such as attention-deficit hyperactivity disorders (ADHD), autism spectrum disorders

(ASD), cerebral palsy, concussion, and epilepsy. System-level understanding of these

neurological disorders, particularly from the brain networks’ dynamic perspective, has

led to the significant trend of recent scientific investigations. While a dramatic maturation

in the network science application domain is evident, leading to a better understanding of

neurological disorders, such rapid utilization for studying pediatric neurological disorders

falls behind that of the adult population. Aside from the specific technological needs and

constraints in studying neurological disorders in children, the concept of development

introduces uncertainty and further complexity topping the existing neurologically driven

processes caused by disorders. To unravel these complexities, indebted to the availability

of high-dimensional data and computing capabilities, approaches based on machine

learning have rapidly emerged a new trend to understand pathways better, accurately

diagnose, and better manage the disorders. Deep learning has recently gained an

ever-increasing role in the era of health and medical investigations. Thanks to its

relatively more minor dependency on feature exploration and engineering, deep learning

may overcome the challenges mentioned earlier in studying neurological disorders in

children. The current scoping review aims to explore challenges concerning pediatric

brain development studies under the constraints of neurological disorders and offer an

insight into the potential role of deep learning methodology on such a task with varying

and uncertain nature. Along with pinpointing recent advancements, possible research

directions are highlighted where deep learning approaches can assist in computationally

targeting neurological disorder-related processes and translating them into windows of

opportunities for interventions in diagnosis, treatment, and management of neurological

disorders in children.
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1. BACKGROUND AND HISTORY

The brain, as the body commander in chief, evolves by passing
through multiple developmental and maturation stages, from the
neurogenesis (neuron production stage) and migration (neuron
translocation to the neocortex stage) to the differentiation
(neurons integration in specialized neural networks by
forming axonal connections) (Stiles and Jernigan, 2010).
Before transition into the postnatal phase, a massive systematic
synaptic exuberance and pruning occurs. After birth, axonal
myelination (the process of sheath formation) comes into play
that significantly improves axonal integrity and conductance. In
support of emerging brain connectivity, synaptic exuberance and
pruning continue to occur in parallel with myelination. Tackling
neurological disorders by studying the brain structure and
function has long been in the neuroscientific research spotlight.

In 1906, an exciting milestone was set for the history of
modern neuroscience when the Noble Prize of physiology
and medicine was shared between two people, let us indeed
reemphasize, between two opponent theories, proposed by
Camillo Golgi (1843–1926) and Santiago Ramon y Cajal
(1852–1934) (Swanson et al., 2007). Their opposition is rooted
in their opinions of how neurons, as the critical units of
nervous systems, intercommunicate. Golgi’s reticular theory
formulated the nervous system as a continuous organization,
wherein Cajal’s neuron doctrine expressed it as a contiguous
organization. While scholarly activities have been on the rise
more in favor of the contiguous organization, a growing belief
in networks’ role has persistently emerged in studying the
brain under normal and pathology. The emergence of brain
connectivity networks is an essential aspect of brain plasticity,
also known as neuroplasticity, a brain adaptation process from
experience and learning. During development, brain plasticity
rises as it is exposed to environmental events (Rosenzweig
and Bennett, 1996). Neuroimaging studies have confirmed the
dynamic evolution of these cortical networks through use-
induced plasticity to learn and improve functions (Hua and
Smith, 2004).

Our current understanding of the connectivity role is the
direct consequence of advancements in two main inter-related
domains, hardware and computational algorithms. The
breakthrough of network-level studies of brain activities was
expedited by a series of technology inventions that began
by Electroencephalography (EEG) (Britton et al., 2016) and
continued with Magnetoencephalography (MEG) (Cohen,
1968), X-ray, Computed Tomography (CT), and Positron
Emission Tomography (PET) in the 70’s (Raichle, 2009). In the
late 70s, Magnetic Resonance Imaging (MRI) was introduced,
further boosting brain-related discoveries. The expedition
offered by the MRI technology itself was obscured until the
advent of different MRI sequences. The MRI sequence refers to
a particular harmony set between radio-frequency pulses and
magnetic gradients, leading to capturing a specific perspective
from the tissue appearance. In 1990 (Ogawa et al., 1990),
oxygen consumption and supply to cerebral regions was, for
the first time, considered as an endogenous contrast agent
for recording brain functional activities. The method, called

Blood-Oxygen-Level-Dependant (BOLD) functional MRI, has
since been a dominant MRI method of choice in resting-state
functional MRI (rs-fMRI) task-based functional MRI, both based
on the regional association of brain activity with oxygen supply
and consumption. Shifting the focus from functional imaging,
The knowledge of brain microstructure diffusion properties
has driven diffusion-weighted imaging (Basser et al., 1994) to
streamline structural imaging. In parallel to hardware-related
technological advancements, computational and visualization
power has immensely matured following the development of
computing backbones such as C/C++ and python programming
languages and the ease of virtual memorization and parallel
processing. The development of tools like AFNI (Cox, 1996),
FreeSurfer (Fischl, 2012), FSL (Jenkinson et al., 2012), and SPM
(Penny et al., 2011) has complemented these inter-related efforts.
The rising investment in portraying the brain and its role in
diseases and disorders is reflected amid initiatives such as the
Brain Initiative or the International Brain Initiative.

The field has been immensely grown since Golgi and
Ramon y Cajal’s neuroanatomical work that emphasized the
role of the functional interplay among regional brain structures.
Nevertheless, the growth has happened at a lower rate
within discoveries related to the knowledge we have about
children’s brain networks. Figure 1 captures a synopsis of
scholarly activities within the “brain network” domain over the
years highlighted with milestones of technology advancements.
Contrasted by the age of 19 years old, the graphs show the annual
number of full-text articles found in the PubMed search engine
with [(brain) AND (network)] term, normalized by the total
number of publications found by [(brain)] keyword. From the
early 1970s, there has been a steady increase in brain research’s
scholarly activities, particularly under the umbrella of the brain
network. However, the increase in trends shows a slower rate for
studies in 19 years old and younger age population.

2. CHALLENGE AND PROSPECT

Natural and technical challenges (Figure 2) could be deemed for
the slower trend of scholarly activities related to pediatric brain
studies. The natural, or to better frame it, the inherent difficulty
in studying the developmental brain is the development factor’s
attachment. The development of a complex biological entity, such
as the human brain, entails significant synergies among phased
development stages, from the genetic blueprint to the formation
of brain structure on the foundation of millions of brain cells,
including neuronal and glial cells (Gibb and Kovalchuk, 2018).
It becomes even further intricate when adding the element
of functional network formation to the developmental stages.
Brain circuitry emergence is the result of brain cell interactions
over time. It is a set of highly dynamic processes, including
iterative formation and elimination of synapses and stabilization
of relevant synaptic connections to mature functional brain
activity in conjunction with brain structure (Kuczmarski, 2002;
Hua and Smith, 2004). Aside from the genetic blueprint, it is
recognized to depend upon other factors, including nutrition,
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FIGURE 1 | Brain network-related scholarly activities in the pediatric population (younger than 19 years old of age) have paced at a slower rate compared to the adult

population (more aged than 19 years old of age), a possible reason being the natural and technical challenges. Normalized ratio of the PubMed-indexed full text

articles including [(brain) AND (network)] term, normalized by the total number of publications found by [(brain)] keyword, overlaid with advancement milestones in the

field of technology and computation. The annual ratio is visualized for two age groups, younger and older than 19 years old.

environmental exposures, and experiences such as interactions
with people (Robinson et al., 2017).

The amendment of disease-driven processes to the ensemble
of normal brain development processes introduces further
uncertainty and complexity, particularly for studies concerned
with accurate delineation of normal development operations
from those operations driven by pathology. The natural challenge
is to an extent that cautious needs to be practiced before
generalizing findings in neuroimaging studies of children and
adolescents (Santosh, 2000). While neuroimaging, especially
non-invasive ones, has become increasingly popular in the era
of brain scientific investigation (Morita et al., 2016), its use is
confined by issues such as non-compliance (Schlund et al., 2011;
Raschle et al., 2012; Thieba et al., 2018). Non-compliance refers to
the interruption or failure of the experiment, often due to subject
movement or failure to abide by instruction due to anxiety. The
issue arises even further for the clinical neuroimaging studies in
children and adolescents to the extent that it necessitates proper
considerations and study protocols (Greene et al., 2016).

The unique challenges of clinical studies currently extend
beyond non-compliance to procedural difficulties, technical
obstacles, and data processing methodological limitations. In
this regard, The development and utilization of age-appropriate
equipment can further streamline clinical studies in children and
adolescents. Along with procedural and technical considerations,
specific adjustments, age-dependent protocol developments, and
analytical fine-tuning are essential for correct implications of
neuroimaging studies in the pediatric population (Sargolzaei
et al., 2015).

Figure 2 highlights an example of the technical considerations
that must be practiced when the neuroimaging study population
is pediatrics. It features the task of automatic intracranial volume
(ICV) estimation in brain research. ICV estimation is a critically
required task in neuroimaging studies. While the task may
be fulfilled by manual inspection and landmarks identification,
it is a tedious and laborious process. Automatic estimation
involves the utilization of neuroimaging software packages
and the implementation of a proper ICV estimation routine.
As it is apparent from the shown figure, different software
packages led into different ICV estimation when contrasted to the
reference estimation of such quantity under different condition
(control sample vs. pediatric patients with epilepsy)(Sargolzaei
et al., 2015). The study emphasizes methodological challenges
for pediatric neuroimaging studies, pointing out the necessity
of guided decision-making in selecting developed tools under
different circumstances.

To overcome the above-summarized challenges, indebted
to the availability of high-dimensional data and increased
computing capacities, approaches based on graph theory and
machine learning have rapidly emerged a new trend to
understand pathways better, accurately diagnose, and adequately
manage the disorders. Deep learning has recently gained an ever-
increasing role in the era of health and medical investigations
under the umbrella of machine learning-based solutions to
studies of neurological disorders. For the field of neurological
disorders in children, our prospect is at the conjunction
of applied deep learning engaged with graph theory on a
personalized scale.
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FIGURE 2 | Natural and technical challenges in the face of studying neurological disorders in the pediatric population. Over time, brain development involves many

ongoing processes from the cellular to the network level. In the presence of disease or disorder, The ensemble of normal brain development processes is occluded by

dynamic processes led by disease or condition, making the clinical studies naturally challenging in pediatric age groups. Technical challenges, including procedural

difficulties and data processing methodological limitations, are also surrounding the brain’s studies in the pediatric population. The presented technical problem here is

reproduced with permission from Figures 2, 4 of Sargolzaei et al. (2015) for the task of intracranial volume estimation (ICV) using automated tools in two pediatric age

group of human subjects (PE, Pediatric Epilepsy; PC, Pediatric Control).

3. DEEP LEARNING, SOMETHING NEW OR
THE NEW FACE OF THE OLD

Granting machines the gift of intelligence is an ever-increasing
appetite for humankind, and the learning skill is standing
at the forefront of this intellectual gift. Through decades of
artificial intelligence field evolution, machines learned through
human-generated rules and accurately engineered features. This
approach, conveniently referred to as the classical approach,
has phenomenally succeeded in multiple application domains,
yet extracting an optimized set of features and rules is not
always cumbersome. Further tasks, such as recognition, which is
intuitive for humans, remained a challenge for machines to learn
via classical approaches that rely upon the existence of high-level
abstract features (Goodfellow et al., 2016).

The deep learning approach’s neurobiological spirit roots
back in experimental studies (Hubel and Wiesel, 1959; Métin
and Frost, 1989; Roe et al., 1992) discovering the mutually
critical roles of intracortical circuit specifications and inputs
to such circuits in the learning process of brain neural
networks. Learning about the experience-dependant plasticity
of the brain (Simons and Land, 1987; Kirkwood et al., 1995;
Crist et al., 2001; Trachtenberg et al., 2002) inspires the
methodological possibility of letting the machine also acquire
knowledge by experience. Thorough experience-dependent
knowledge acquisition involves exposure to a vast amount of
such experiences, accompanied by corresponding outcomes, and
the capacity to automatically form an intra-circuitry that maps
these experiences to their corresponding outcome. Translating
these requirements to artificial neural networks’ jargon entails
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FIGURE 3 | Deep learning (DL) approach maturation motivated by scientific discoveries of brain structure and function and enabled by computing technology and

algorithms’ immense progress. The core of a neural network (NN) model is an artificial neuron, resembling a biological neuron in a limited way, evaluating the collective

input signals followed by conditional excitement. While early citations of NN models, as a linear regression variation, dates back to the 1800s, NN-based learning was

not widespread until the development of sophisticated training algorithms based on back-propagation of error signals, and gradient descent optimization

(Schmidhuber, 2015). The transition from classical NN-based learning, where the network examines extracted features from data to deep NN-based learning, where

the network scans raw data representation, requires equipping NN with self-exploring capacity through multiple layers of abstraction. The graphical processing unit

(GPU) based computing partially enabled such a self-exploratory multi-layered representation learning to the extent that deep learning becomes the choice method in

numerous domain-specific applications (LeCun et al., 2015).

a specialized architecture, ultra-large datasets, and sophisticated
linear and non-linear training algorithms, formulating the deep
learning approach to the machine learning task. The specialized
network architecture allows sequential processing of the supplied
raw data units through multiple layers without the need for
human-based feature design and engineering.

The deep learning approach (Figure 3) lets the network
itself find an optimized allocation of credits to basic units
(neurons) of these layers in sketching the desired outcome
(LeCun et al., 2015; Schmidhuber, 2015). The network depth
offers a way to break down a complex raw input into simplified
units of information, mainly through convolution and sampling
processes, and collectively map the input to the provided
network output. Self-exploration mapping is the backbone
of architectures such as deep convolutional neural networks
(CNN) and recurrent neural networks (RNN), with the latter
one empowering the learning of sequential data such as text
and speech. Alongside other application sectors, healthcare has
reported breakthroughs achieved with deep learning adoption
in neuroimaging, genetics, oncology, radiation therapy, and
drug discovery, to name a few (Wang et al., 2018, 2020;
Boldrini et al., 2019; David et al., 2019; Serag et al., 2019; Tang
et al., 2019; Zhu et al., 2019; Chen et al., 2020; Zhang et al.,
2020).

4. DEEP LEARNING AND NEUROLOGICAL
DISORDERS IN CHILDREN

To review the scope of deep learning application in diagnosis,
treatment andmanagement of neurological disorders in children,
we surveyed existing peer-reviewed literature. The search was
performed using PubMed (https://pubmed.ncbi.nlm.nih.gov),
and IEEE Xplore (https://ieeexplore.ieee.org/Xplore/home.jsp).
The search queries were set to [(deep learning) AND
((children) OR (child) OR (pediatric) OR (paediatric))] for
PubMed search, and to [((“All Metadata”:Deep learning)
AND ((“All Metadata”:children) OR (“All Metadata”:child)
OR (“All Metadata”:pediatric)))] for IEEE Xplore search.
Setting the inclusion criteria to peer-reviewed journal
articles reporting the deep learning approach utilization in
studying, diagnosing, or managing neurological disorders
in the pediatric (up to 19 years of age) population led
to a total of 22 records. Included articles were examined
to retrieve the following information, study neurological
condition (Condition), study population age range (Age
range), study goal (Goal), modality of the used data
(Modality), used deep learning model (Model), and backbone
implementation environment (Environment). Table 1

summarizes included studies.
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TABLE 1 | A summary of found peer-reviewed journal articles utilizing deep learning to study, manage, diagnose, and prognosis of neurological conditions in pediatric (18

years or younger) populations.

Condition* References Age range** Goal Modality*** Model**** Environment*****

ADHD Muñoz-Organero

et al., 2018

[6–15]ye Distinguishing medicated

from non-medicated activity

pattern

Tri-axial

accelerometer

CNN MATLAB

Amado-Caballero

et al., 2020

[6–15]ye Automatic diagnosis of

combined type ADHD

Activity

recordings

CNN MATLAB

Muñoz-Organero

et al., 2019

[6–16]ye Assessment of movement

patterns

Tri-axial

accelerometer

LSTM-based

RNN

Chen et al., 2019 [9–12]ye Detecting spatiotemporal

anomalies

EEG CNN

ASD Bahado-Singh et al.,

2019b

[24–79]ho Identification of early

biomarkers

Leucocyte

DNA

Deep neural

network

R h2o

Hazlett et al., 2017 [6–24]mo Prediction of autism

diagnosis

MRI Deep neural

network

MATLAB

Eni et al., 2020 [23–73]mo Prediction of ASD severity Speech CNN

Aghdam et al., 2018 [5–10]ye Classification of ASD from

typically development control

rs-fMRI and

sMRI

DBN Theano

Ghafouri-Fard et al.,

2019

[6–14]ye ASD status detection Genomic

data

Deep neural

network

Keras

CP Bahado-Singh et al.,

2019a

[24–79]ho CP prediction Leucocyte

DNA

Deep neural

network

R h2o

Concussion Boshra et al., 2019 [15–20]yy Classification of concussed

from control

EEG/ERP CNN Tensorflow v1.8.0

CHD brain

dysmaturation

Ceschin et al., 2018 [35–45]we Dysplastic cerebelli detection MRI CNN Theano

Epilepsy O’Shea et al., 2020 [39–42]we

gestational

Seizure detection EEG CNN

Ansari et al., 2019 Neonates Classifying epileptic from

non-epileptic seizures

EEG CNN with RF MATLAB

Bernardo et al., 2018 [2–60]mo Detection of fast-ripples EEG CNN Theano

Daoud and Bayoumi,

2019

[3–15]ye Early detection of pre-ictal

state

EEG CNN

Lin et al., 2020 [7–16]ye Distinguishing patients

without ED from controls

EEG CNN

Lee et al., 2020 [4–16]ye Tract classification for

preoperative analysis

MRI-DWI CNN PyTorch 0.2

Xu et al., 2019 [6–17]ye Preoperative detection of

axonal pathways

MRI-DWI CNN PyTorch 0.2

Brain tumor Quon et al., 2020 92mo median Posterior fossa tumor

detection

MRI CNN-ResNeXt Keras

Schizophrenia Aristizabal et al.,

2020

[9–16]ye Risk assessment EEG RNN Keras

TSC Sánchez Fernández

et al., 2020

[5–16]ye Cortical tubers detection MRI CNN TensorFlow

*Condition is the neurological condition studied in each reference (ADHD, attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder; CP, cerebral palsy; CHD, congenital

heart disease; TSC, Tuberous sclerosis complex). **Age range data is estimated and rounded from the given information for each reference (ye, years; ho, hours; mo, months; we, weeks).

***Modality refers to the data types used for learning (EEG, electroencephalograph, DNA, Deoxyribonucleic acid; MRI, magnetic resonance imaging; rs-fMRI, resting-state functional

MRI; ERP, event-related potential; DWI, diffusion-weighted imaging). ****Model describes the core model utilized for deep learning given provided information in each reference (CNN,

convolutional neural network; LSTM, long short-term memory; RNN, recurrent neural network; DBN, deep belief network; RF, random forest). *****Environment is where the deep learner

being implemented in each referenced study (MATLAB by MathWorks, R interface for H2O package for large-scale machine learning, Theano, python library supporting large-scale

multidimensional computations, Keras, A python deep learning API, TensorFlow, An open-source machine learning platform, PyTorch, an open-source machine learning framework.
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Perceived from Table 1, The deep learning architectures,
in particular convolutional neural networks, have reported
promises in a wide variety of applications, including automatic
diagnosis, biomarker identification, early detection, within-
condition type classification, and risk assessment for a variety
of neurological conditions in children. The survey reveals
the applicability potential of deep learning solutions beyond
neuroimaging modalities, such as EEG and MRI, extending
its use to other information sources such as speech and
activity-based modalities within the pediatric clinical population.
The latter inference from the survey is of utmost importance
due to the challenges discussed before regarding methodological
constraints of studies in pediatrics. While python-based libraries
are the dominant library of choice reported in the current
studies sample, MATLAB and R language libraries for large-scale
machine learning implementations are also cited.

While deep learning solutions are relatively free of
conventional feature engineering requirements, they are
entangled with their choice of architecture and learning
parameters, enforcing the need for careful implementation
and selection of such internal architecture and its relevant
parameters. The consequences of varying architecture are
reported to have an impact on the deep learner performance for
the use of convolutional neural network (Xu et al., 2019) and deep
belief network (Aghdam et al., 2018). Therefore, the inclusion of
benchmark routines, mainly reporting different architectures for
optimum architecture selection, can enhance study findings.

Our survey search has also identified a rising interest in
using deep learners to overcome inherent challenges, low tissue
contrast, and dynamic appearance variation for brain imaging
tasks in infants (Guo et al., 2014; Zhang et al., 2015; Kawahara
et al., 2017; Mostapha and Styner, 2019; Sun et al., 2019) and fetus
(Girault et al., 2019; Dou et al., 2020). A common goal for most
surveyed articles is to conduct more extensive validation studies
that involve multi-site investigations to make deep-learning-
based computational tools more suitable as the non-invasive and
inexpensive real-time clinical tool of choice.

5. VIEWPOINTS AND CONCLUSION

The current scoping review concentrated the scope on the rising
use of deep learning to study, diagnose, and prognosis for
children’s neurological disorders. The hallmark of neurological
disorders is the presence of brain dysfunction. Presentation of
behavioral and psycho-behavioral symptoms is a consequence
of such dysfunction. Neuroimaging studies have confirmed
the dynamic evolution of these functional cortical networks
through use-induced plasticity. In a similar context, neurological
disorders have been shown to leave the pathophysiological
signature on brain networks. Network neuroscience, in this
regard, has significantly matured and been extensively utilized
in studying neurological disorders; however, the pace of brain
network understanding and its role in driving neurological
conditions presentation in children falls behind that of the older
age population.

We discussed inherent challenges in the face of studying
neurological disorders in the pediatric population, contrasting it
to the task of hitting a moving target. Brain plasticity is a complex
and heterogeneous phenomenon, reflected as a multi-faceted
maturation. The pace of brain development process variation
occurs at a relatively higher rate in the early stages. Overlaying
such a dynamic with uncertainties imposed by neurological
disease and disorders turns the task of studying pediatric
neurological studies into a difficult one. Inspired by the way
our brain sees and learns the world, computational advancement
gave birth to a new horizon, called deep learning, promising
revolutionary insights into the field of medicine and biology.

Our scoping review of the current state of deep learning
utilization in children’s neurological disorders has identified a
rising interest from scientific investigators for deep learning
in various classification tasks related to children’s neurological
disorders. Data volume, along with, to a lesser extent, data
quality, remains among major barriers to incorporate deep
learning for studying neurological disorders (Miotto et al., 2018;
Valliani et al., 2019). The emergence of deep learning will further
continue in the era of pediatric clinical studies because of its lesser
reliance upon the existence of engineered features.

Aiming at the development of the generalized deep learner
to the level of clinical efficacy requires taking a steeper, and yet
clear, road. It involves conducting more extensive multi-sites
validation studies and performing benchmark evaluations of
deep learning architectures to intensify their utilization further.
Studying less utilized architectures such as recurrent neural
networks and auto-encoders to learn the joint temporal
dynamics of the disease and development in one shot will
form a valuable complement to the existing efforts. Legal,
privacy, and ethical challenges, with respect to the use of
deep learners in healthcare (Miotto et al., 2018; Valliani
et al., 2019), remain at place with greater emphasis for
the vulnerable populations such as pediatrics. Efforts such
as distributed deep learning schemes (Zeng et al., 2018;
Remedios et al., 2019) can partially help resolving such dilemma.
While deep learning is reported to outperform traditional
machine learning algorithms, joined solutions need to be
evaluated in cases where deep learners may supplement the
established solutions.

Like hitting a moving target, studying neurological disorders
in the developing brain is a cumbersome task. However,
as tracking a moving target before hitting it can increase
success, performing multi time-points longitudinal studies in the
pediatric population can improve our chances of understanding
and defeating the disease. Therefore, longitudinal modeling and
analysis of children’s neurological disorders using deep learning
architectures can unravel windows of opportunities to hit the
moving target.
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