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Summary
Background This study, based on multicentre cohorts, aims to utilize computed tomography (CT) images to construct
a deep learning model for predicting major pathological response (MPR) to neoadjuvant chemoimmunotherapy in
non-small cell lung cancer (NSCLC) and further explore the biological basis under its prediction.

Methods 274 patients undergoing curative surgery after neoadjuvant chemoimmunotherapy for NSCLC at 4 centres
from January 2019 to December 2021 were included and divided into a training cohort, an internal validation cohort,
and an external validation cohort. ShuffleNetV2x05-based features of the primary tumour on the CT scans within the
2 weeks preceding neoadjuvant administration were employed to develop a deep learning score for distinguishing
MPR and non-MPR. To reveal the underlying biological basis of the deep learning score, a genetic analysis was
conducted based on 25 patients with RNA-sequencing data.

FindingsMPR was achieved in 54.0% (n = 148) patients. The area under the curve (AUC) of the deep learning score to
predict MPR was 0.73 (95% confidence interval [CI]: 0.58–0.86) and 0.72 (95% CI: 0.58–0.85) in the internal validation
and external validation cohorts, respectively. After integrating the clinical characteristic into the deep learning score,
the combined model achieved satisfactory performance in the internal validation (AUC: 0.77, 95% CI: 0.64–0.89) and
external validation cohorts (AUC: 0.75, 95% CI: 0.62–0.87). In the biological basis exploration for the deep learning
score, a high deep learning score was associated with the downregulation of pathways mediating tumour proliferation
and the promotion of antitumour immune cell infiltration in the microenvironment.

Interpretation The proposed deep learning model could effectively predict MPR in NSCLC patients treated with
neoadjuvant chemoimmunotherapy.
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Research in context

Evidence before this study
We searched PubMed (https://pubmed.ncbi.nlm.nih.gov/) for
studies assessing the predictive value of radiomics for
neoadjuvant therapy response in lung cancer. We found
several studies (PMID: PMC5318226; PMID: PMC4930885)
attempted to use radiomics phenotypes to predict
pathological response to neoadjuvant chemotherapy in
NSCLC. In 2016, Coroller et al. extracted the radiomics
features of primary tumour based 127 NSCLC patients treated
by neoadjuvant chemotherapy, demonstrating that the
Wavelet HLL mean was the only significantly predictive
feature (AUC = 0.63, P-value = 0.01) for a pathological
complete response. In 2017, Coroller et al. further investigated
the value of radiomic data of the primary tumour and lymph
nodes in predicting pathological response after neoadjuvant
chemotherapy. They established a predictive model based on
85 patients, achieving an AUC of 0.73. Yet despite these
efforts, existing publications only limited in population of
neoadjuvant chemotherapy; thus, the predictive value of
radiomics for pathological response to neoadjuvant
chemoimmunotherapy which serves as a promising treatment
for NSCLC, remains uncertain. In addition, the previously cited
studies were based on a single-centre design whereas the

predictive value of radiomics requires robust external
validation. Finally, deep learning is a new branch of radiomics,
and its role in predicting response to neoadjuvant
chemoimmunotherapy warrants further evaluation.

Added value of this study
The current multicentre study constructed a CT-based deep
learning model to predict MPR probability in NSCLC after
neoadjuvant chemoimmunotherapy. By integrating the deep
learning score and clinical score, the combined model
achieved AUCs of 0.77 and 0.75 in the internal and external
validation cohorts, respectively. Furthermore, we investigated
the biological basis of the deep learning prediction, proving
that a high deep learning score was associated with the
downregulation of pathways for mediating tumour
proliferation and the promotion of antitumour immune cell
infiltration in the microenvironment.

Implications of all the available evidence
The proposed deep learning model can effectively predict
MPR in NSCLC patients treated with neoadjuvant
chemoimmunotherapy, which would promote personalized
medicine for NSCLC patients.
Introduction
For early and locally advanced non-small cell lung can-
cer (NSCLC), a surgical resection continues to the
mainstay of curative-intent therapeutic strategies.1

However, even with a radical resection, disease control
remains dismal, with postsurgical relapse occurring in
30%–55% of patients.2 Moreover, the addition of neo-
adjuvant or adjuvant chemotherapy confers limited
benefits in preventing recurrence, leading to an
improvement of only 5% in overall survival,3 which
promotes calls for therapeutic innovation in resectable
NSCLC. In the last several years, immunotherapy
comprising immune checkpoint inhibitors (ICIs) has
demonstrated tremendous antitumour efficacy and
dramatically shifted the treatment paradigms of
advanced NSCLC,4 providing a credible rationale for the
implementation of immunotherapy in the neoadjuvant
setting for resectable NSCLC.

The feasibility and efficacy of neoadjuvant immu-
notherapy have been investigated by multiple studies,5–8

indicating that neoadjuvant immunotherapy could
reduce tumour burden prior to surgery, potentially
increasing the chance of radical resection while con-
trolling micrometastases in early phases, thereby
www.thelancet.com Vol 86 December, 2022
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mitigating the recurrence risk. In this context, neo-
adjuvant immunotherapy has shed new light on the
potential therapeutic breakthroughs of resectable
NSCLC. Nevertheless, a significant percentage of pa-
tients could not achieve major pathological response
(MPR) through the neoadjuvant immunotherapy.9

Recently, preliminary results of the NADIM study
revealed that MRP was associated with significantly
improved 1-year progression free survival (88.4% versus
57.1%, P = 0.01) in NSCLC patients undergoing neo-
adjuvant chemoimmunotherapy,7 further emphasizing
the importance of MPR in evaluating neoadjuvant
immunotherapeutic efficacy for NSCLC. As such,
developing a robust biomarker for MPR to neoadjuvant
chemoimmunotherapy in resectable NSCLC is of para-
mount importance.

Deep learning, capable of quantifying the high-
dimensional radiological phenotypes that cannot be
captured by the human eye and directly developing
targeted predictive models for various clinical sce-
narios,10 provided a noninvasive instrument for disease
diagnosis,11 therapeutic decision,12 and prognosis eval-
uation.13 Previous publications have revealed that the
deep learning models could effectively distinguish TMB
and PD-L1 status, thereby screening out advanced
NSCLC patients benefiting from chemo-
immunotherapy.14,15 In addition, the deep learning im-
aging score could directly predict the prognosis of
chemoimmunotherapy in advanced NSCLC,16 which
implied the associations between deep learning features
and chemoimmunotherapy response, and laid the
theoretical foundation of the predictive value of deep
learning in the neoadjuvant context. However, no evi-
dence indicates feasibility of the deep learning tech-
nique in predicting the response of neoadjuvant
chemoimmunotherapy for NSCLC. The current study,
based on multicentre cohorts, purposes to utilize
computed tomography (CT) images to construct and
validate a deep learning model for predicting MPR in
NSCLC patients treated by neoadjuvant ICIs combined
with chemotherapy and further explore the biological
basis under its prediction.
Methods
Ethics
The study was approved by the Ethics Committee (L20-
333-1) of Shanghai Pulmonary Hospital, Ningbo Hwa
Mei Hospital, The First Affiliated Hospital of Nanchang
University and Sir Run Run Shaw Hospital. Informed
consent was waived due to the retrospective nature of
this study.
Patients
Patients undergoing curative surgery after neoadjuvant
chemoimmunotherapy for NSCLC at Shanghai
www.thelancet.com Vol 86 December, 2022
Pulmonary Hospital, Ningbo Hwa Mei Hospital, The
First Affiliated Hospital of Nanchang University and Sir
Run Run Shaw Hospital from January 2019 to
December 2021 were included. Patients were excluded
when they met either of the following criteria: missing
image data and pathological N3 disease. The baseline
characteristics and chest CT images taking in the 2
weeks preceding neoadjuvant administration were
retrospectively collected.
Pretreatment evaluation and neoadjuvant
administration
A full evaluation of tumour diagnosis and staging was
conducted before neoadjuvant therapy and included a
CT scan, abdominal ultrasound, magnetic resonance
imaging of the cerebrum, positron emission tomogra-
phy, and endobronchial ultrasound-guided trans-
bronchial fine needle aspiration. The neoadjuvant
chemoimmunotherapy regimens consisted of 2–4 cycles
(3 weeks per cycle) of pembrolizumab (200 mg) or
nivolumab (360 mg) combined with platinum-based
chemotherapy. The physician in charge decided which
immune-checkpoint inhibitor and treatment cycles to
administer. Surgical resection with systematic lymph
node dissection was planned at around 4 weeks after the
completion of neoadjuvant therapy.
Pathological evaluation
The pathological response was assessed according to the
following criteria,17 as the percentages of viable tumour
cells, necrosis and stroma were respectively determined.
The MPR was defined as no more than 10% of a viable
tumour in the primary tumour bed, and the circum-
stance in which no viable tumour was observed was
defined as a pathologic complete response (pCR). All
specimens were evaluated by two independent patholo-
gists (L.K.H. and C.Y.W.) with more than 15 years of
experience, disagreements were resolved by consensus
after discussion.
CT examination and tumour annotation
Chest CT scans were manufactured by Siemens
(Somatom Definition AS+, Biograph64), Philips (Bril-
liance 40, iCT256, Ingenuity Flex, MX 16-slice), GE
Medical System (Bright Speed), and United Imaging
(uCT 510, uCT 760, uCT S-160). All images were
reconstructed and then imported into 3D slicer (http://
www.slicer.org) for annotation.

The region of interest (ROI) was annotated by a
bounding box that included the entire tumour volume.
Two radiologists (T.T.W. and Y.Y.) with 5 years of
experience independently performed tumour annota-
tions in the lung window setting (mean, −450 HU;
width, 1500 HU), and interobserver disagreements were
3
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resolved by consulting a senior radiologist (X.W.S.) with
more than 10 years of experience.

A key issue is that the original CT images have
different voxel lengths. Thus, before feeding data into
our network, we interpolated the original images to the
same voxel spacing (1 mm × 1 mm × 1 mm). We also
used Slope and Intercept in the dicom header infor-
mation to standardize tumour images to HU values, and
set cut-off value to prevent extreme values in images.
We calculated the mean and variance of three-
dimensional (3D) tumour images in the training
cohort and normalized all images by Z-score. This
normalization method, which conforms to the normal
distribution, could facilitate the network learning.
Finally, we generated new data for training by shifting
the bounding box of several voxels in different di-
rections to mitigate the intra- and inter-observer differ-
ences created by annotations.
Model construction and validation
We developed a deep learning model for predicting
MPR to neoadjuvant chemoimmunotherapy via a con-
volutional neural network. Before constructing the
model, we randomly stratified all patients into cohorts
by the centres (Fig. 1). Patients in Shanghai Pulmonary
Hospital were divided into a training cohort and an in-
ternal validation cohort at a ratio of seven to three, and
25 patients with genetic data were guaranteed to be
included in the internal validation cohort. In addition,
all patients at Ningbo Hwa Mei Hospital, The First
Affiliated Hospital of Nanchang University and Sir Run
Run Shaw Hospital were considered to be the external
validation cohort.

The complete model contained a convolution module
and a classification module, and was constructed in
three main steps: 1) using a convolutional network to
connect a linear classifier to obtain an effective feature
extractor; 2) freezing the convolutional network to dock
a fully connected network with 512 hidden layer nodes
was used to further integrate high-dimensional features
to obtain high-precision classifiers; and 3) unfreezing all
parameters of the network for end-to-end training with a
small learning rate. For the convolutional network, we
intended to use 3D-ShuffleNetv2x05 for the feature
extraction of images in the bounding box. The 3D-
ShuffleNetv2x05 is the 3D version of the model, which
was a mainstream lightweight neural network with the
smallest number of parameters in ShuffleNetv2.18 The
body of Shufflenetv2 contains five modules, which we
named Conv1+maxpool, Stage 2, Stage 3, Stage 4, and
Conv 5. Meanwhile, we also compared the results of 3D-
Resnet18,19 3D-densenet12120 and 3D-MobilenetV321 as
convolutional networks. For the fully connected
network, we added a hidden layer with 512 nodes before
the output layer to further fuse the features obtained by
the convolutional network.

As the Softmax function is added to the output layer,
we directly obtained the MPR probability by the model
output. To assess the stability of the constructed model,
we validated the deep learning model and compared it
with a clinical model in the internal validation and
external validation cohorts. Furthermore, we combined
the deep learning and clinical models to generate a
combined model to comprehensively evaluate the effi-
ciency of the imaging marker.
Biological basis exploration
To explore the underlying biological basis of the deep
learning prediction, gene analyses were conducted
among 25 patients with RNA-sequencing data in the
internal validation cohort. Using the median value of the
deep learning score, the 25 patients were divided into 10
patients with a high deep learning score and 15 patients
with a low deep learning score. The R package limma
was used to identify differential expression genes be-
tween two groups according to the criteria of log FC >2
and adjusted P value <0.05. Subsequently, Kyoto Ency-
clopedia of Genes and Genomes (KEGG) analyses were
conducted using the R package clusterProfiler to iden-
tify the signalling pathways related to the deep learning
score. Immune microenvironment analyses were per-
formed via CibersortX (https://cibersortx.stanford.edu)
to estimate the abundances of member cell types in a
mixed cell population.
Statistical analysis
The category and continuous baseline characteristics of
patients were described using frequency (percentage)
and mean ± standard deviation, which were compared
using a Chi-square test and t test, respectively. The
receiver operating characteristic curve (ROC) and area
under the curve (AUC) were mainly used to evaluate the
efficiency of the model. The Delong test was used to
calculate the difference between the AUCs. In addition,
we used the bootstrap method to calculate the confi-
dence interval by repeating the sampling with replace-
ment 500 times. All analyses were performed in R
(version 3.5.2; http://www.R-project.org) and Python
(version 3.6.7; http://www.python.org/). P values less
than 0.05 were considered a significant difference. The
Python and R packages are presented in the
Supplement.
Role of the funding source
The funder of the study played no role in the study
design, data collection, data analysis, data interpretation,
or writing of the report.
www.thelancet.com Vol 86 December, 2022
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Fig. 1: Flowchart illustrates the study design. (I) A total of 274 patients acquired from four institutions are divided into three cohorts; (II) The region of interest is
annotated with a bounding box covering the lesion on CT images; (III) The deep learning model is built using convolutional neural network algorithm; (IV) The predictive
efficiency of the deep learning model is assessed in the internal/external validation cohorts, and the underlying predictive mechanism of the deep learning model is
investigated with the visual analysis and genetic analysis.
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Results
Clinicopathological characteristics
The baseline information is summarized in Table 1. In
total, 274 patients were included in this study, and
divided into the training cohort, internal validation
cohort and external validation cohort (142, 61, and 71
patients, respectively). R0 resections were achieved for
all included patients. The mean age of the entire cohort
was 62.1 years; 88.3% (n = 242) patients were male.
There were 170 (62.0%) squamous cell carcinomas and
82 (29.9%) adenocarcinomas. With respect to pretreat-
ment staging, most patients were evaluated as T2
(n = 109, 39.8%) and N2 (n = 173, 63.1%) stage, and
stage III (n = 225, 82.1%) accounted for the largest
proportion of the whole population. In the evaluation of
the pathological response, most patients (n = 148,
www.thelancet.com Vol 86 December, 2022
54.0%) were evaluated as MPR, and pCR was achieved
in 29.9% (n = 82) of patients. Compared to the internal
cohort, an earlier pretreatment stage (T1 stage: 38.0%
versus 16.4%, P < 0.001; stage I: 15.5% versus 0%,
P < 0.001) and higher proportion of squamous cell
carcinoma (77.5% versus 57.4%, P < 0.001) were
observed patients in the external cohort had and the
remaining characteristics were similar between two
cohorts.

Moreover, as exhibited in Table 2, the external vali-
dation cohort was comprised of 15 patients from Ningbo
Hwa Mei Hospital, 11 patients from The First Affiliated
Hospital of Nanchang University and 45 patients from
Sir Run Run Shaw Hospital. Patients in The First
Affiliated Hospital of Nanchang University in an earlier
pretreatment stage (T1 stage: n = 5, 45.5%, P = 0.015;
5
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Characteristics Entire cohort
(n = 274)

Internal cohort (n = 203) External validation cohort
(n = 71)

P
valuea

Training cohort
(n = 142)

Internal validation cohort
(n = 61)

Age, mean ± SD, years 62.1 ± 8.7 61.4 ± 9.3 61.8 ± 8.6 63.6 ± 7.3 0.38

<65 151 (55.1) 79 (55.6) 35 (57.4) 37 (52.1)

≥65 123 (44.9) 63 (44.4) 26 (42.6) 34 (47.9)

Gender 0.07

Female 32 (11.7) 21 (14.8) 8 (13.1) 3 (4.2)

Male 242 (88.3) 121 (85.2) 53 (86.9) 68 (95.8)

Smoking status 0.23

Never smoked 145 (52.9) 82 (57.7) 28 (45.9) 35 (49.3)

Smoker 129 (47.1) 60 (42.3) 33 (54.1) 36 (50.7)

Pretreatment T stage 0.11

T1 41 (15) 22 (15.5) 9 (14.8) 10 (14.1)

T2 109 (39.8) 60 (42.3) 19 (31.1) 30 (42.3)

T3 64 (23.4) 33 (23.2) 11 (18) 20 (28.2)

T4 60 (21.9) 27 (19.0) 22 (36.1) 11 (15.5)

Pretreatment N stage <0.001

N0 52 (19) 15 (10.6) 10 (16.4) 27 (38)

N1 49 (17.9) 29 (20.4) 6 (9.8) 14 (19.7)

N2 173 (63.1) 98 (69) 45 (73.8) 30 (42.3)

Pretreatment TNM stage <0.001

I 13 (4.7) 2 (1.4) 0 11 (15.5)

II 36 (13.1) 15 (10.6) 5 (8.2) 16 (22.5)

III 225 (82.1) 125 (88) 56 (91.8) 44 (62)

Surgical procedure 0.67

Lobectomy 223 (81.4) 115 (81) 51 (83.6) 57 (80.3)

Bilobectomy 31 (11.3) 16 (11.3) 8 (13.1) 7 (9.9)

Pneumonectomy 20 (7.3) 11 (7.7) 2 (3.3) 7 (9.9)

Pathological N stage 0.88

N0 179 (65.3) 90 (63.4) 43 (70.5) 46 (64.8)

N1 34 (12.4) 19 (13.4) 7 (11.5) 8 (11.3)

N2 61 (22.3) 33 (23.2) 11 (18) 17 (23.9)

N downstage in pretreatment
N2 disease

0.58

N2 to N0 105 (60.7) 59 (60.2) 31 (68.9) 15 (50)

N2 to N1 25 (14.5) 15 (15.3) 5 (11.1) 5 (16.7)

N2 43 (24.9) 24 (24.5) 9 (20) 10 (33.3)

Histology 0.02

SCC 170 (62.1) 80 (56.3) 35 (57.4) 55 (77.5)

ADC 82 (29.9) 48 (33.8) 19 (31.1) 15 (21.1)

Others 22 (8) 14 (9.9) 7 (11.5) 1 (1.4)

Response 0.11

MPR 148 (54) 70 (49.3) 30 (49.2) 48 (67.4)

pCR 82 (29.9) 40 (28.1) 17 (27.9) 25 (35.2)

Non-MPR 126 (46) 72 (50.7) 31 (50.8) 23 (32.4)

ADC, adenocarcinoma; MPR, major pathological response; pCR, pathological complete response; SCC, squamous cell carcinoma; SD, standard deviation. aComparisons were
conducted between the internal cohort and external cohort.

Table 1: Clinicopathological characteristics of all included patients.
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N0 stage: n = 9, 81.8%, P = 0.010; stage I: n = 7, 63.6%,
P < 0.001), had a higher proportion of lobectomy
(n = 11, 100%, P = 0.008), and had an earlier patho-
logical N stage (N0: n = 9, 81.8%, P = 0.029).
Predictive performance the deep learning model
The deep learning model based on Shufflenetv2x05
shows the optimal performance (Table S1). The AUC to
distinguish MPR was 0.77 (95% confidence interval
www.thelancet.com Vol 86 December, 2022
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Characteristics NB cohort (n = 15) NC cohort (n = 11) SRRS cohort (n = 45) P valuea

Age, mean ± SD, years 65.2 ± 7.2 64.7 ± 8.4 62.9 ± 6.8 0.56

< 65 8 (53.3) 6 (54.5) 23 (51.1)

≥65 7 (46.7) 5 (45.5) 22 (48.9)

Gender 0.70

Female 1 (6.7) 0 2 (4.4)

Male 14 (93.3) 11 (100) 43 (95.6)

Smoking status 0.24

Never smoked 7 (46.7) 3 (27.3) 25 (55.6)

Smoker 8 (53.3) 8 (53.3) 20 (44.4)

Pretreatment T stage 0.02

T1 1 (7.1) 5 (45.5) 4 (8.9)

T2 6 (42.9) 6 (54.5) 17 (37.8)

T3 4 (28.6) 0 16 (35.6)

T4 3 (21.4) 0 8 (17.8)

Pretreatment N stage 0.01

N0 7 (46.7) 9 (81.8) 11 (24.4)

N1 3 (20) 1 (9.1) 10 (22.2)

N2 5 (33.3) 1 (9.1) 24 (53.3)

Pretreatment TNM stage <0.001

I 1 (6.7) 7 (63.6) 3 (6.7)

II 5 (33.3) 3 (27.3) 8 (17.8)

III 9 (60) 1 (9.1) 34 (75.6)

Surgical procedure 0.01

Lobectomy 9 (60) 11 (100) 37 (82.2)

Bilobectomy 1 (6.7) 0 6 (13.3)

Pneumonectomy 5 (33.3) 0 2 (4.4)

Pathological N stage 0.03

N0 6 (40) 9 (81.8) 31 (68.9)

N1 5 (33.3) 0 3 (6.7)

N2 4 (26.7) 2 (18.2) 11 (24.4)

N downstage in pretreatment N2 disease 0.03

N2 to N0 0 1 (100) 14 (58.3)

N2 to N1 3 (60) 0 2 (8.3)

N2 2 (40) 0 8 (33.3)

Histology 0.38

SCC 11 (73.3) 11 (100) 33 (73.3)

ADC 4 (26.7) 0 11 (24.4)

Others 0 0 1 (2.2)

Response 0.07

MPR 12 (80) 9 (81.8) 28 (60)

pCR 3 (20) 6 (54.5) 16 (35.5)

Non-MPR 3 (20) 2 (18.2) 18 (40)

ADC, adenocarcinoma; MPR, major pathological response; NB, Ningbo Hwa Mei Hospital; NC, The First Affiliated Hospital of Nanchang University; pCR, pathological
complete response; SCC, squamous cell carcinoma; SD, standard deviation; SRRS, Sir Run Run Shaw Hospital. aComparisons were conducted among the NB cohort,
NC cohort and SRRS cohort.

Table 2: Clinicopathological characteristics of patients in the external validation cohort.

Articles
[CI]: 0.70–0.84), 0.73 (95% CI: 0.58–0.86) and 0.72 (95%
CI: 0.58–0.85) in the training cohort, internal validation
cohort and external validation cohort, respectively
(Fig. 2a). The results of each step of the model training
are recorded in Table S2.
www.thelancet.com Vol 86 December, 2022
Patients achieving MPR were associated with a
significantly higher deep learning score than those with
non-MPR in all three cohorts (Fig. 2b). In the con-
struction of the clinical model, only the histological type
of squamous cell carcinoma (odds ratio: 2.415; 95%
7
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Fig. 2: The performance of the deep learning model and clinical model for predicting the MPR to neoadjuvant chemoimmunotherapy. (a) ROC curves of the deep
learning model in three cohorts; (b) The box figure shows the distribution of the deep learning score between MPR and non-MPR groups in three cohorts; (c) ROC curves
of the clinical model in three cohorts; (d) Histograms shown the percentage of squamous cell carcinoma between MPR and non-MPR groups in three cohorts; (e–j) ROC
curves of the deep learning model based on the clinicopathologic factors, including the pretreatment clinical T stage (e), N stage (f), TNM stage (g), Histologic subtype (h),
gender (i) and age (j) in the whole population; (k) Waterfall plot for deep learning score in the whole population. (l) Line chart for delta range of deep learning score and
AUCs in the whole population. AUC, area under the curve; MPR, major pathological response; ROC, receiver operating characteristic curve; SCC, squamous cell carcinoma.
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CI: 1.222–4.771; P = 0.011) proved to be independently
associated with a lower probability of MPR after the
multivariable logistic regression-based backward selec-
tion (Table 3 and Fig. S1). Although the clinical model
could screen out the patients with MPR to a certain
extent, with AUCs of 0.61 (95% CI: 0.53–0.69), 0.61
(95% CI: 0.53–0.69) and 0.65 (95% CI: 0.53–0.77) in the
training cohort, internal validation cohort and external
validation cohort (Fig. 2c and d), respectively, its pre-
dictive efficiency was significantly poorer than the deep
learning model (Fig. 3b–d).

We also established different subgroups by clinical
characteristics to evaluate the performance stability of the
deep learning model (Fig. 2e–l), indicating that the deep
learning model achieved relatively stable and satisfactory
predictive performance in certain subgroups with the
clinical characteristics, such as TNM stage (stage I:
AUC = 0.95; stage II: AUC = 0.86; stage III: AUC = 0.75)
(Fig. 2g), tumour pathological subtype (squamous cell
carcinoma: AUC = 0.77; adenocarcinoma: AUC = 0.81)
(Fig. 2h) and gender (male: AUC = 0.76; female:
AUC = 0.83) (Fig. 2i). In the remaining subgroups, there
wereweak aspects of the deep learningmodel, such as the
T3 subgroup (Fig. 2e; AUC: 0.71), N2 subgroup (Fig. 2f;
AUC: 0.72) and older subgroup (Fig. 2j; AUC: 0.71).

To further evaluate the clinical utility of the deep
learning model, we attempted to find the score intervals
with better and worse predictions in the deep learning
model. When a patient’s score falls within the better
prediction range, clinicians can give more trust to the
www.thelancet.com Vol 86 December, 2022
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Variables Univariable Multivariable

OR (95% CI) P value OR (95% CI) P value

Age (≥65) 1.114 (0.574–2.160) 0.75

Gender (male) 2.807 (1.021–7.721) 0.04

Smoking status (ever smoked) 1.179 (0.605–2.295) 0.63

Maximam diameter 1.002 (0.992–1.011) 0.73

Pretreatment T stage

T1 Reference

T2 1.871 (0.684–5.113) 0.22

T3 2.100 (0.695–6.349) 0.19

T4 1.625 (0.514–5.136) 0.41

Pretreatment N stage

N0 Reference

N1 3.273 (0.883–12.125) 0.08

N2 1.843 (0.587–5.788) 0.30

Pretreatment TNM stage

I Reference

II 1.143 (0.060–21.870) 0.93

III 0.953 (0.058–15.579) 0.97

Histology (SCC) 2.415 (1.222–4.771) 0.01 2.415 (1.222–4.771) 0.01

CI, confidence interval; OR, odds ratio; SCC, squamous cell carcinoma.

Table 3: Univariable and multivariable analyses for major pathological response in the training cohort.
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model. Ultimately, we calculated the cutoff value of the
deep learning score as 0.439 based on the Youden Index.
The waterfall plot, which ranks patients’ scores from
smallest to largest, shows patients with a deep learning
score higher than the cutoff value were mostly MPR
(Fig. 2k). Subsequently, we gradually increased the
calculation interval of AUC by delta (0.01 as a change
unit) starting from the cutoff value of 0.439 (Fig. 2l). We
found that patients with a deep learning score between
0.429 and 0.449 (delta = 0.01) had the highest AUC of
0.81, which then dropped sharply to 0.56 at a delta of 0.02,
and stabilized above the AUC of 0.60 and 0.70 at deltas of
0.03 and 0.05, respectively. Hence, as the delta increases
from 0.03, doctors can give themodelmore confidence in
clinical use.When the delta is less than 0.03, doctors need
to integrate othermarkers tomake decisions. It should be
noted that the delta is the absolute value of the difference
between the score and the cut-off value.
Multifactorial exploration of deep learning model
and clinical characteristics
In the preceding results, we generated the image-based
deep learning model and clinical model. To obtain the
most accurate quantification for the probability of MPR
to neoadjuvant chemoimmunotherapy, we fit the deep
learning model and clinical model together by logistic
regression to construct a combined model. The com-
bined model achieved better performance than the deep
learning model in the training cohort (Fig. 3a; AUC:
0.80, 95% CI: 0.72–0.87), the internal validation cohort
(Fig. 3b; AUC: 0.77, 95% CI: 0.64–0.89), and the
www.thelancet.com Vol 86 December, 2022
external validation cohort (Fig. 3a; AUC: 0.75, 95% CI:
0.62–0.87), and a significant difference was observed in
the training cohort (P = 0.002) and the external valida-
tion cohort (P < 0.001), but not in the internal validation
cohort (P = 0.499) (Fig. 3b–d).

In addition, we revealed the deep learning features
output from the convolutional layers of the model, and
plotted the predicted distributions of the deep learning
score (Fig. 3e) and combined score (Fig. 3f) after
reducing them to two dimensions using t-SNE.22 The
distribution graphs of the two models both indicated
that the deep learning features had a certain spatial
structure difference in the two-dimensional space of
t-SNE, and the introduction of the fully connected
network enabled the model to construct a nonlinear
discrimination surface based on the differences in the
feature space. This result also reflected the need to
construct high-dimensional hidden layers in the classi-
fication module. In addition, we extracted the samples
using different discrimination between the combined
score and deep learning score to draw a distribution
graph (Fig. 3g), which clearly showed that the combined
model increased the number of positive samples with
higher accuracy than the deep learning model.
Biological basis exploration
As illustrated in Fig. 4a and b, significant differences
were proved regarding gene expression between 10
high-score patients and 15 low-score patients. The dif-
ferential expressed genes were mainly distinguished as
two clusters, which was in accordance with divisions
9
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Fig. 3: The performance of the combined model for predicting the MPR to neoadjuvant chemoimmunotherapy. (a) ROC curves of the combined model in three
cohorts; (b) DeLong test for AUCs among the clinical model, deep learning model and combined model in the training cohort; (c) DeLong test for AUCs among the clinical
model, deep learning model and combined model in the internal validation cohort; (d) DeLong test for AUCs among the clinical model, deep learning model and
combined model in the external validation cohort; (e) Distribution graph for two-dimensional spatial structure and diagnostic metrics of the deep learning score in the
whole population; (f) Distribution graph for two-dimensional spatial structure and diagnostic metrics of the combined score in the whole population; (g) Distribution
graph for two-dimensional spatial structure and diagnostic metrics of the deep learning score and combined score for patients with different predicted outcomes between
two models in the whole population. AUC, area under the curve; MPR, major pathological response; ROC, receiver operating characteristic curve.
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based on the deep learning score. For tumours with a
low deep learning score, pathways promoting tumour
proliferation, such as ECM−receptor interaction
(enriched genes: COL2A1, COMP, and THBS4), Wnt
signaling pathway (enriched genes: CTNND2, SFRP1,
and NOTUM) and focal adhesion (enriched genes:
COL2A1, COMP, and THBS4), were significantly un-
regulated (Fig. 4c). In addition, tumours categorized as a
high score exhibited less infiltrated M0 macrophage and
regulatory T cells, but exhibited more activated NK cells
than those categorized as a low score (Fig. 4d).
Discussion
Neoadjuvant chemoimmunotherapy, which allows for
conferring superiority in increasing the chance of
radical resection and improving prognosis compared to
conventional neoadjuvant chemotherapy, has been a
promising treatment for NSCLC.5–8 Despite the
tremendous advancements, a significant proportion of
NSCLC population could not achieve MPR to neo-
adjuvant chemoimmunotherapy.9 In such instances, an
effective signature for screening out patients potentially
benefiting from this state-of-the-art therapeutic strategy
is urgently needed. The current multicentre study con-
structed a CT-based deep learning model to predict
MPR probability in NSCLC after neoadjuvant chemo-
immunotherapy. By integrating the deep learning score
and clinical score, the combined model achieved AUCs
of 0.77 and 0.75 in the internal validation and external
validation cohorts, respectively.
The pathological response has served as a well-
recognized surrogate in neoadjuvant immunotherapy tri-
als for numerous solid tumours.23 Unlike other tumours
such as breast and bladder cancers, the proportion of pCR
in NSCLC post-chemoimmunotherapy was relatively
scarce, only 9%–63%.24 In contrast, MPR could be achieved
in 27%–86% of NSCLC patients after neoadjuvant chemo-
immunotherapy,24 indicating that setting MPR as the pre-
dictive endpoint could make the training sample more
balanced and recognize almost twice as many patients
potentially benefiting from neoadjuvant chemo-
immunotherapy compared to pCR. Recently, preliminary
results of the NADIM study also revealed that MPR was
associated with significantly improved 1-year progression
free survival (88.4% versus 57.1%, P = 0.01) in NSCLC
patients undergoing neoadjuvant chemoimmunotherapy,7

emphasizing the importance of predicting MPR. In addi-
tion, a potential concern for utilizing MPR is the lack of
precision due to the inter and intra-observer variability in
pathological evaluation. Weissferdt et al.25 conducted a
prospective trial, where two pathologists independently
quantified the residual tumour cells percentage in the
resected specimens after neoadjuvant therapy. The diag-
nostic agreements between the pathologists were satisfac-
tory (R2 = 0.994), further supporting the rationality of
predicting MPR. Therefore, in this study, we selected MPR
as the main predicting endpoint.

CT is a routine modality used in clinical practice to
evaluate the post-therapy response in NSCLC. To a
certain extent, lesion diameters in CT images could
directly reflect tumour burden, and changes in diameter
www.thelancet.com Vol 86 December, 2022
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Fig. 4: The genetic analysis for investigating the underlying biological basis of the developed deep learning model. (a) Heatmap of z-score
normalized gene expressions presenting the differential expressed genes in samples categorized as low deep learning score compared with that
categorized as high deep learning score; (b) Volcano diagram of gene expression profiles in samples separated by low deep learning score versus
high deep learning score. The red dots represent genes upregulated in patients categorized as high score, whereas the blue dots represent genes
upregulated in patients categorized as low score. The x-axis denotes the fold change (log2 scale), whereas the y-axis indicates statistical
significance (−log10 format); (c) Bubble plot of the top 10 enriched pathways identified by gene enrichment analysis for the set of differential
expressed genes, ranked by the odds ratio; (d) Box plot representing the estimation of the abundances of member cell types in a mixed cell
population. FDR, false discovery rate. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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might provide dynamic monitoring for the therapeutic
response. Evidence has emerged on the feasibility of
tumour diameters in CT for predicting the MPR of
neoadjuvant chemotherapy and target therapy. Howev-
er, in the unique context of chemoimmunotherapy,
where drugs mediately suppress the growth of tumour
cells by leveraging the activation of the immune system,
meaning the therapeutic response might have occurred
prior to the regression of tumour gross size,26 radio-
logical regression could not accurately imply
www.thelancet.com Vol 86 December, 2022
pathological regression after neoadjuvant chemo-
immunotherapy, which has been demonstrated in clin-
ical trials.7 In certain case with MPR, the tumour
radiological size might even become larger due to im-
mune cell infiltration. Thus, superficial CT characteris-
tics were incapable of accurately predicting the
pathological response, and high dimensional and
throughput imaging features should be extracted to
quantify the probability of MPR after neoadjuvant che-
moimmunotherapy in the NSCLC population.
11
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The advent of deep-learning-based radiomics, which
harbors the potential of mining the deep-level imaging
features not being recognized by the human eye,10 shed
new light on the prediction of neoadjuvant immuno-
therapeutic efficacy. The application of deep learning for
the radiomics analysis of tumours has been playing an
increasingly significant role in disease diagnoses, treat-
ment decisions, and prognosis predictions.11–13

Numerous studies have confirmed that significant as-
sociations exist between CT radiomics features and
immunotherapy response in advanced NSCLC receiving
ICI treatment,14,27,28 which provided a rationale for
conducing the current study. Furthermore, in the
context of neoadjuvant therapy, previous publications
have managed to construct radiomics models to obtain
the pretest probability of pathological responses after
neoadjuvant chemotherapy in various tumours
including NSCLC, achieving AUCs of 0.63–0.73.29,30

Despite all these efforts, no study has attempted to
investigate the feasibility of radiomics representations in
predicting neoadjuvant immunotherapeutic efficacy.

Our study resorted to the deep learning algorithm to
generate a CT radiomics model for quantifying the MPR
probability in NSCLC receiving neoadjuvant chemo-
immunotherapy, and after integrating the clinical char-
acteristics, the combined model achieved an AUC of
0.75 in the multicentre external validation cohort.
Although the efficiency was not adequate to serve as a
direct determinant of MPR, the proposed model could
assist doctors in optimizing the administration of neo-
adjuvant chemoimmunotherapy for NSCLC. On the one
hand, for patients predicted to have a high probability of
MPR, further molecular tests could be conducted to
further evaluate the suitability for neoadjuvant immu-
notherapy. On the other hand, in patients predicted to
have a low possibility of MPR, invasive core biopsies and
expensive molecular tests might be avoided, which
hinted at its utility in potentially recognizing NSCLC
patients who might be sensitive to neoadjuvant
chemoimmunotherapy.

The main drawback of the deep learning model is its
inability to be interpreted, which posed a stubborn
conundrum on the deployment of this black-box tech-
nique in clinical practice. Helping doctors understand
these nameless features and the underlying mechanism
of their predictive ability requires further elucidation. To
study the prediction process of our proposed model, we
output the areas deemed important by the network
through the visualization method (Supplement), it was
worth mentioning that the tumour microenvironment
played an irreplaceable role in predicting neoadjuvant
immunotherapeutic efficacy, which was supported by
previous studies.14,28 To move forward, we adopted gene
analyses of the RNA-sequencing data to uncover the
biological basis of the deep learning model, finding that
the deep learning phenotypes were associated with the
pathway of tumour proliferation, which in turn
supported the fact that high deep learning score was
associated with a greater likelihood of MPR.

Limitations still exist regarding the current study.
First, due to the retrospective nature of the study, pa-
tient selection bias and potential deviations in the MPR
distribution were inevitable. Future large-scale studies
with multiethnic patients in a prospective design are still
warranted. Second, all patients included were treated
after 2019; thus, is remains unclear the deep learning
features or related infiltrative component are associated
with survival outcomes. Future studies should include
the endpoint of survival to comprehensively evaluate the
predictive efficiency of our proposed model. Finally,
only CT modality was adopted in the model construc-
tion, so room for improvement remains in terms of the
precision of the algorithm. In subsequent studies, we
will increase the modalities input into the network to
optimize the accuracy of the deep learning for predict-
ing neoadjuvant immunotherapeutic efficacy.
Conclusions
This is the first study to investigate the predictive value
of deep learning features for neoadjuvant chemo-
immunotherapeutic efficacy in NSCLC. The proposed
deep learning model based on CT images can effectively
predict MPR in NSCLC patients treated with neo-
adjuvant chemoimmunotherapy. Moreover, the under-
lying biological basis of deep learning score may be
related to the pathways mediating tumour proliferation
and the promotion of antitumour immune cell infiltra-
tion in the microenvironment.
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