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Targeted gene therapy strategies utilizing homology-driven
repair (HDR) allow for greater control over transgene integra-
tion site, copy number, and expression—significant advantages
over traditional vector-mediated gene therapy with random
genome integration. However, the relatively low efficiency of
HDR-based strategies limits their clinical application. Here,
we used HDR to knock in a mutant dihydrofolate reductase
(mDHFR) selection gene at the gene-edited CCR5 locus in pri-
mary human CD4+ T cells and selected for mDHFR-modified
cells in the presence of methotrexate (MTX). Cells were trans-
fected with CCR5-megaTAL nuclease mRNA and transduced
with adeno-associated virus containing anmDHFR donor tem-
plate flanked by CCR5 homology arms, leading to up to 40%
targeted gene insertion. Clinically relevant concentrations of
MTX led to a greater than 5-fold enrichment for mDHFR-
modified cells, which maintained a diverse TCR repertoire
over the course of expansion and drug selection. Our results
demonstrate that mDHFR/MTX-based selection can be used
to enrich for gene-modified T cells ex vivo, paving the way
for analogous approaches to increase the percentage of HIV-
resistant, autologous CD4+ T cells infused into HIV+ patients,
and/or for in vivo selection of gene-edited T cells for the treat-
ment of cancer.
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INTRODUCTION
Gene therapy approaches display enormous promise in a broad array
of genetic, infectious, and malignant diseases. Gene editing-based
strategies utilize targeted nucleases to induce DNA double-stranded
breaks (DSBs) at specific sites in the genome, which are preferentially
repaired by the nonhomologous end joining (NHEJ) pathway, result-
ing in therapeutic gene disruption. Previous studies have demon-
strated how gene disruption/NHEJ at the CCR5 locus can be applied
for HIV cure (Perez et al.;1 Holt et al.;2 Tebas et al.;3 Peterson et al.;4

and Peterson et al.5). Alternatively, homology-driven repair (HDR)
can be utilized to insert specified sequences at the nuclease-targeted
locus. Like lentiviral vector gene therapy, HDR-dependent gene
insertion restores or augments gene function by generating modified
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cells, which subsequently engraft in peripheral blood and traffic to
tissues. To facilitate HDR, a donor DNA molecule encoding a
transgene of interest is flanked by homology arms that are matched
to sequences on either side of the nuclease cut site. Gene insertion
occurs when the nuclease-induced DSB is repaired by the endogenous
HDR pathway, using the donor DNA sequence as a template. HDR-
based approaches are superior to lentivirus-based strategies in
several regards, including exquisite control over the location, copy
number, and expression of the introduced transgene. Several recent
publications demonstrate the power of this approach for diseases
such as HIV.6–9

The potency and safety of gene-modified cell therapy products is
dependent on the dose of gene-modified cells. Currently, both gene
editing and lentiviral vector-mediated gene modification strategies
are limited by the proportion of gene-modified cells that can be gener-
ated from a given cell product; frequently, the number of these cells is
insufficient to impact the disease in question. For example, we have
shown in a nonhuman primate model of HIV infection that lenti-
virus-modified cells and CCR5 gene-edited cells engraft, persist,
and undergo virus-dependent positive selection in vivo but are not
present in sufficient quantities to durably reduce plasma viremia
(Younan et al.;10 Peterson et al.;4 and Peterson et al.5). We are inter-
ested in strategies to select for gene-modified cells, in order to increase
the dose of gene-modified cell products to therapeutically relevant
levels. So-called in vivo chemoselection strategies utilize modified
human proteins with engineered point mutations that confer
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resistance to cognate small molecules. For example, we have previ-
ously used the P140K mutant of methylguanine methyltransferase
(MGMTP140K) to select for MGMTP140K-modified hematopoietic
stem and progenitor cells (HSPCs) following treatment with
O6-benzylguanine and temozolomide; this strategy has shown
clinical benefit in glioblastoma patients.11–13 Furthermore, since
these approaches utilize human genes with conservative point
mutations, transgenic proteins’ immunogenicity should be minimal,
relative to an exogenous chemoselection marker.

Importantly, different chemoselection platforms may be required for
different cell types; previous studies suggest that the MGMTP140K sys-
tem may be suboptimal in T cells.14 Because T cells are intrinsically
more proliferative than HSPCs, chemoselection with methotrexate
(MTX) is an ideal strategy to increase the proportion of gene-modi-
fied T cells in order to reach a minimal threshold for therapeutic ef-
ficacy. MTX is an antimetabolite used to treat some neoplasias, severe
psoriasis, and adult rheumatoid arthritis.15–18 MTX inhibits dihydro-
folate reductase (DHFR), which converts dihydrofolate to tetrahydro-
folate during the synthesis of purine nucleotides and thymidylate. By
allosterically inhibiting DHFR, MTX interferes with DNA synthesis,
repair, and cellular replication and preferentially impairs growth in
highly proliferative cells such as proliferating T cells.19 Mutant
DHFR (mDHFR) constructs have been developed that confer resis-
tance to lymphotoxic concentrations of MTX. Previous studies
demonstrated that cells transduced with the L22Y DHFR variant
can be enriched in vivo following treatment with antifolates.20–24 Sub-
sequently, an L22F/F31S double mutant was developed that outper-
formed L22Y,maintaining catalytic activity while exhibiting amarked
decrease in MTX-binding affinity.25 Another variant, F31R/Q35E,
could withstand up to 1 mM MTX; murine bone marrow cells trans-
duced with this mutant were enriched within a 4-day culture.25 Pre-
vious clinical trials have characterized serum concentrations of MTX
in order to better guide the selection of a relevant dose for chemose-
lection studies: 100 nM to 1,000 nM serum concentrations of
MTX have been achieved in patients who were on a low-dose
(10–500 mg/m2) regimen of the drug.26 Collectively, these studies
suggest that low-dose MTX is safe and could be used to efficiently
select for mDHFR proteins expressed in gene-modified T cells.

In this study, we evaluated a drug selection platform that may be
applied to clinical T cell gene therapies. The coupling of CCR5 gene
editing with the targeted insertion ofmDHFR variants enables efficient
selection of CCR5-disrupted T cells, is directly applicable to HIV+

patients, and can be easily modified for cancer immunotherapies.

RESULTS
Expression ofmDHFRConfersResistance toMTX in JurkatCells

We began by optimizing MTX dosage and evaluating various
mDHFR constructs in the Jurkat human T cell line. Cells were trans-
duced with a bicistronic expression cassette expressing the L22Y-
DHFR mutant along with a GFP reporter (Figure 1A). This vector
was previously shown to increase the engraftment of gene marked
cells in the bone marrow and peripheral blood of NOD SCID gamma
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(NSG) mice in the presence of MTX.24 At anMOI of 0.1, we observed
approximately 15% GFP+ Jurkat cells 48 hr after transduction with
this vector. The percentage of GFP+ cells was enriched to �80%
within 5 days of MTX treatment (Figure 1B), with no appreciable
impairment in proliferation kinetics (Figure 1C). These results pro-
vide proof of principle that an mDHFR/MTX chemoselection system
can be applied in cultured human T cells.

mDHFR-Modified Primary CD4+ T Cells Are Resistant to

Lymphotoxic Concentrations of MTX

We next applied the same culture scheme to select for mDHFR-modi-
fied primary human CD4+ T cells. We chose 100 nM MTX for these
experiments, consistent with previous studies,27,28 and because
100 nM serum concentrations of MTX are observed in patients
following low-dose treatment.26 Proliferation assays were performed
in T cells in the presence of 100 nMMTX, and selection for mDHFR-
modified cells was determined by measuring the expression of GFP
on days 7, 14, and 21 post-cell activation. No-drug control cells
were 15%–25% GFP+ at an MOI of 1, while MTX-treated cells were
enriched 3-fold over a 2-week culture period, with populations that
were more than 70% GFP positive (Figure 2). These data demonstrate
that mDHFR-modified primary CD4+ T cells undergo robust positive
selection in the presence of low-dose MTX.

Targeted Gene Insertion of mDHFR Constructs in Primary CD4+

T Cells

In contrast to lentivirus-based gene modification, HDR-based ap-
proaches enable greater control over the site, expression level, and
copy number of a given transgene. We paired CCR5 gene editing
megaTAL nucleases with a CCR5-targeted AAV donor template car-
rying mDHFR chemoselection cassettes (Figure 3A), a strategy that
we have shown to be highly efficient in primary T cells.6 AAV donor
constructs contained mDHFR variants F32R/Q36E (“DHFR1”),
L22F/F32S (“DHFR2”), or L22Y (“DHFR3”).20,25 Each mDHFR
variant was driven by an MND promoter and linked to GFP through
a thosea asigna virus 2A (T2A) sequence.29 The expression cassette
was flanked by CCR5 homology sequences to direct recombination
to the gene-edited CCR5 locus (Figure 3B). Cells were first transfected
with CCR5 megaTAL mRNA and a control blue fluorescent protein
(BFP) mRNA to measure transfection efficiency (>95% BFP+ cells
with minimal cell death; data not shown), then transduced with
AAV donor vectors. We first tested our strategy using AAV vectors
that expressed GFP, but not mDHFR (Figure S1). In control cells
that were only transduced with AAV, high levels of GFP (>30%)
expression were measured 48 hr post-transduction, but this decreased
to <1%within 2 weeks post-transduction. In contrast, GFP expression
in cells that received the megaTAL nuclease and the AAV donor vec-
tor remained high through the duration of the experiment (Figure S1).
In 10 total experiments with primary human CD4+ T cells isolated
from nine healthy donors, we achieved mDHFR insertion efficiencies
between 8% and 38% (Figures 3C and 3D). The presence of HDR-
mediated insertion at CCR5 was confirmed by PCR, using genomic
DNA extracted from gene-modified and control cells at days 14–16
in each experiment (Figure 3E). These results demonstrate that
18



Figure 1. Chemoselection of mDHFR-Modified Jurkat Cells with Low-Dose MTX

(A) Schematic of lentiviral construct. The L22Y-DHFRmutant is driven by an EF1a promoter and linked to GFP expression via an internal ribosome entry site (IRES). (B) Jurkat

cells were transduced with the vector in (A) then incubated with MTX. Transgene selection was tracked using GFP flow cytometry. Representative flow plots show a 5-fold

selection from day 1 (top row) to day 8 (bottom row) in 100 nM MTX. (C) Absolute numbers of gene-modified cells (cell count multiplied by %GFP+) at the indicated con-

centrations of MTX. Data shown represent the mean and SD of three experiments. *p % 0.05 by paired Student’s two-tailed t test.
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HDR-based approaches generate similar proportions of mDHFR-
expressing primary CD4+ T cells, as compared to lentivirus-based
strategies.

CCR5-Targeted mDHFR Alleles Are Efficiently Chemoselected

by Low-Dose MTX

Our data show efficient targeting of mDHFR to the gene-disrupted
CCR5 locus. To test if these cells could be further enriched following
chemoselection with MTX, we cultured mDHFR-modified T cells in
100 nMMTX and measured expansion of modified cells over 2 weeks
in culture. After the targeted insertion protocol, cells were re-
stimulated using a previously published rapid expansion protocol
(REP) in the presence of MTX30 (Figure 4A). Across seven healthy
donors, gene-modified CD4+ T cells were enriched from starting
levels as low as 3% to as high as 45% following a 2-week selection pro-
cess. At the physiologically relevant concentration of 100 nM, DHFR1
and DHFR2, as well as DHFR3, conferred comparable enrichment
and survival (Figures 4B and 4C). Hence, CCR5-targeted mDHFR al-
Molecu
leles are functional and facilitate chemoselection of CCR5-edited
CD4+ T cells.

Gene-Edited T Cells Maintain a Memory Phenotype and a

Diverse TCR Repertoire

We did not observe any significant change in growth kinetics of
mDHFR-modified CD4+ T cells in selection culture. To determine
the phenotype and clonality of our expanded, chemoselected prod-
ucts, we measured T cell subset markers and performed T cell recep-
tor (TCR) spectratyping. Our culture conditions were designed to
promote the growth of cells with a T central memory (TCM) pheno-
type, which have been shown to exhibit stem-cell-like properties
and persist long-term in vivo.31,32 We observed that gene-modified
cells retained robust expression of CD45RO throughout the culture
period, with a slight decrease in expression of CD62L over >5 weeks
in culture, suggesting retention of memory T cells, with a transition
from central to effector memory (Figure 5A). We analyzed the
T cell receptor repertoire using a PCR-based spectratyping assay.33
lar Therapy: Methods & Clinical Development Vol. 9 June 2018 349
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Figure 2. Expansion of Primary mDHFR-Modified CD4+ T Cells in MTX

Primary human CD4+ T cells were activated with anti-CD3/CD28 beads, transduced with mDHFR lentivirus, then incubated with varying concentrations of MTX.

(A) Representative flow plots showing 3-fold selection for mDHFR-modified cells in no drug (top) versus 100 nMMTX (bottom). (B) Absolute number of gene-modified cells in

the presence and absence of MTX, measured over the course of 2 weeks. MTX was added on day 4 post-transduction. Data shown is the mean and SD of five experiments

across four healthy donors. All experiments contained two biological replicates.

Molecular Therapy: Methods & Clinical Development
Similar to mDHFR lentivirus-modified T cells (Figure S2), CCR5
gene-edited/mDHFR-targeted T cells retained a comparable TCR
repertoire throughout the chemoselection process (Figure 5B). Both
modification strategies resulted in either a polyclonal Gaussian distri-
bution or polyclonal skewed distribution of TCR clones at 16 days
post-modification, which was maintained through a subsequent
2-week drug selection in MTX. These results demonstrate that our
gene modification strategy generates a clonally diverse T cell product
that is enriched for memory subsets, which is not impacted by drug
selection.

DISCUSSION
We demonstrate safe and highly efficient ex vivo gene editing using a
low-dose chemoselection strategy in primary human CD4+ T cells.
Targeted gene insertion efficiency at the edited CCR5 locus is compa-
rable to previously described lentivirus-based strategies. Most impor-
tantly, our approach not only facilitates close control over the location
and expression level of the inserted transgene, but also titration of the
number of modified cells in the final product. This approach could be
easily modified to include therapeutic/corrective transgenes both in
the setting of suppressed HIV infection and for T cell immunother-
apies for cancer.

Our study is the first to report robust targeting of an MTX resistance
cassette to the edited CCR5 locus in primary T cells, followed by
MTX-dependent expansion. We used the hybrid megaTAL nuclease
350 Molecular Therapy: Methods & Clinical Development Vol. 9 June 20
platform to target the CCR5 locus for gene editing in primary human
CD4+ T cells. Previously, single-cell molecular analysis demonstrated
that 82% of megaTAL-induced HDR events at CCR5 were biallelic,
persisted long-term in vivo, and showed no evidence of insertional
mutagenesis at off-target sites.6 Importantly, recent data suggest
that our approach can be easily recapitulated with other gene-editing
platforms such as zinc-finger nucleases (ZFNs) and CRISPR.7,34 Gene
editing overcomes many safety concerns associated with lentiviral
vector gene therapy, namely mutagenesis at random insertion sites
and dysregulated transgene expression. However, in both gene modi-
fication schemes, the generation of a therapeutically relevant number
of functional gene-modified cells presents a significant challenge for
clinical applications. We optimized an ex vivo selection strategy
that substantially enriches the proportion of gene-modified cells,
which presents multiple advantages in terms of reduced expense
and infrastructure for T cell manufacturing.

Drug-resistant DHFR and MGMTP140K mutants are two methodolo-
gies that have been previously evaluated to enrich gene-modified he-
matopoietic cells (reviewed in Sorrentino35). These platforms contain
key differences that must be considered for chemoselection of partic-
ular hematopoietic subsets. While the DHFR system utilizes antifolate
metabolic pathways, theMGMTP140K system uses an alkylating agent,
which may induce genotoxic DNA mutations; the long-term risk of
the latter therapy in patients is not well understood.36 In contrast,
MTX has been widely used, and safety is well characterized; adverse
18
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reactions to MTX treatment can be easily reversed by a leucovorin-
rescue regimen.37 The L22Y variant of DHFR was among the first
examples of a drug-resistance chemoselection strategy that enabled
enrichment of gene-modified hematopoietic cells without the risk
of genotoxicity. The kinetics of MTX selection in primary T cells
have been previously demonstrated in vitro.27 Previous studies in
immunodeficient mice demonstrated the survival advantage and
enrichment of lentivirus-modified, drug-selected T cells using
L22Y-DHFR.27,28 mDHFR-modified T cells engrafted in these ani-
mals, demonstrated robust enrichment in vivo after administration
of MTX, and expressed cell surface phenotypic markers that were
highly similar to unmodified cells.28 Central memory T cells ex-
pressed comparable levels of CD4, CD8, CD28, CD45, TCRab, and
CD127 surface expression before and after treatment with MTX
drug over a short-term 2-week culture period.28 Our results are
consistent with multiple past findings, which suggest that mDHFR/
MTX-mediated chemoselection is a safe and efficient method of
enrichment for gene-modified T cells.

Targeted gene insertion followed by low-dose chemoselection can be
incorporated into the manufacture of clinical-scale therapeutic T cell
products, namely autologous chimeric antigen receptor (CAR)
T cells. The AAV genome can accommodate constructs less than
4.4 kb in size.38 As such, CAR constructs could easily be linked to
mDHFR using a T2A sequence and flanked by donor homology
arms; these vectors would be analogous to the CCR5-targeted
mDHFR-2A-GFP transgenes, which were used to establish proof-
of-concept in our study. This approach would facilitate not only
the ex vivo enrichment of CAR+ T cells during clinical-grade
manufacturing, but also could be used for in vivo selection of modified
cells following low-dose MTX in transplanted patients. We have care-
fully selected a concentration of MTX in our ex vivo experiments to
match serum concentrations that are known to be safe in vivo.
Intriguingly, low-dose MTX in vivo selection has the potential to syn-
ergistically enhance T cell-based therapies targeting a broad spectrum
of cancers. For example, since MTX is used alone or in combination
with other anticancer agents in the treatment of a variety of CD19+

hematologic malignancies and other neoplasias,39–41 MTX selection
could act directly to restrict tumor cells, while simultaneously select-
ing for CAR-modified cells that will exert immune-based antitumor
effects. Making use of suicide switches and/or reversible transgene
expression systems such as the Tet-OFF system in CAR T cells has
the potential to further provide exquisite temporal control over the
long-term expression of our constructs.42,43 Whether used alone or
in combination with other immunotherapy approaches, efficient che-
moselection for mDHFR-modified cells represents a substantial step
forward in the delivery of potent cellular immunotherapy products.

The T cell chemoselection strategy we present here is also applicable
for HIV cure studies. Early clinical trials using CCR5-targeting ZFNs
demonstrated transient control of HIV infection during antiretroviral
treatment interruption.3 Coupling CCR5 knock out with drug selec-
tion should aid in achieving higher, therapeutically relevant levels of
HIV protection by enabling efficient selection of CCR5-mutated
Molecu
T cells in patients. Increased numbers of persistent, HIV-resistant
cells should also improve the broader anti-HIV immune response,
consistent with our past findings in the nonhuman primate model.44

We have shown that gene-protected CD4+ T cells lead to decreased
plasma viremia and enhanced virus-specific T cell responses both
in modified and unmodified cells.10 Hence, an increased dose of
HIV-protected, CCR5 mutant T cells, facilitated by mDHFR knock
in and MTX chemoselection, should enhance both adaptive and
innate immune responses against the virus.45 Furthermore, co-
administration of MTX and combination antiretroviral therapy is
safe, suggesting that in vivo selection strategies with low-dose MTX
are feasible in stably suppressed HIV+ patients.46 mDHFR expression
could also be linked to anti-HIV transgenes, such as broadly neutral-
izing antibodies, facilitating a titratable source of anti-HIV therapeu-
tics. For example, low-dose MTX could be administered immediately
upon detection of viral recrudescence, to induce expression of
neutralizing anti-HIV antibodies.

In summary, we demonstrate highly efficient gene insertion of MTX-
resistant variants of DHFR in CD4+ T cells using a CCR5-targeting
megaTAL nuclease and an AAV-delivered donor template, resulting
in stable gene insertion of mDHFR at the disrupted CCR5 locus. Sub-
sequent selection with therapeutically relevant concentrations of
MTX resulted in substantial enrichment of transgene expressing
T cells ex vivo. The MTX platform is well suited for in vitro selection
and holds promise for future in vivo selection studies. The application
of our approach promises to increase the efficacy of cell therapy stra-
tegies to combat both malignant and infectious diseases.

MATERIALS AND METHODS
megaTAL Nuclease

The CCR5-megaTAL nuclease was generously provided by bluebird
bio (Boston, MA), and the megaTAL platform has been previously
described.6 In brief, the CCR5-specific megaTAL is comprised of an
engineered LAGLIDADG-motif homing endonuclease (LHE), also
known as a meganuclease, fused to a 10.5-repeat variable di-residue
transcription-activator like (TALE) domain via a linker. The CCR5
megaTAL recognizes and cleaves a site in the CCR5 locus located
in the sixth transmembrane domain of the protein.

Cell and Culture Conditions

Jurkat cells (human T lymphoblast-like cell line) were purchased from
the American Type Culture Collection (ATCC) and cultured in
RPMI-1640mediumwith 10% fetal bovine serum (FBS) and 1% peni-
cillin/streptomycin. Cells were maintained at a concentration of be-
tween 1 � 105 and 1 � 106 viable cells/mL in T-75 flasks or 12-well
plates. Media was replenished every 3–4 days. Primary human pe-
ripheral blood mononuclear cells (PBMCs) were isolated from blood
of healthy human donors in accordance with institutional guidelines.
Untouched CD4+ T cells were enriched using either CD4+ T cell Isola-
tion kit (Miltenyi Biotec, Bergisch Gladbach, Germany) or EasySep
Human CD4+ T Cell Enrichment Kit (StemCell Technologies, Van-
couver, Canada). Cryopreserved stocks of CD4 cells were thawed,
activated ex vivo for 48 hr using cell therapy systems (CTS)
lar Therapy: Methods & Clinical Development Vol. 9 June 2018 351
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Figure 4. MTX-Dependent Selection of mDHFR-Modified, CCR5-Edited CD4+ T Cells

(A) Following bead stimulation and mDHFR targeting to CCR5, cells underwent expansion culture ex vivo using a rapid expansion protocol (REP). (B) Percentage of gene-

modified CD4+ T cells before and after selection with 100 nMMTX from seven independent donors. Shapes indicate individual donors’ trends before and after MTX selection;

DHFR3 data for donor 2 (open circles) was not available. *p% 0.05 by Wilcoxon matched-pairs signed-rank test. (C) Representative flow plots demonstrating enrichment of

three mDHFR mutants in the presence of MTX.
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Dynabeads CD3/CD28 (Life Technologies, Carlsbad, CA) at a bead-
to-T cell ratio of 1:1, and cultured in T cell media. Media consisted of
the following: RPMI-1640Medium (Thermo Fisher Scientific, Hamp-
ton, NH), 20% FBS (Thermo Fisher Scientific Hyclone), 50 ng/mL
interleukin-2 (IL-2) (Chiron, Emeryville, CA), 5 ng/mL IL-7 (Pepro-
tech, Rocky Hill, NJ), 5 ng/mL IL-15 (Peprotech), and no antibiotics.
T cells were seeded at 1–2 � 106 per mL in 48-well plates, with a half
media change every 2–3 days. Lentivirus gene-modified T cells were
expanded long-term using G-Rex 10 flasks (Wilson Wolf
Manufacturing, St. Paul, MN) using the same media formulation as
described above. Activated T cells were seeded at between 5 and
10 � 106 cells per flask. During expansion, 50% of the volume of
the medium was changed every 5 days, with expansion and chemose-
lection being monitored by flow cytometry every 7 days. HDR gene-
modified T cells were expanded according to a modified REP using
pooled irradiated feeder cells, IL-2 and anti-CD3 antibody (clone
OKT3, Ortho Biotech, Horsham, PA).30 Between 3 � 105 and
Figure 3. Targeted Insertion of mDHFR at the Gene-Edited CCR5 Locus

(A) Activated T cells were electroporated with CCR5 megaTAL nuclease mRNA and tra

editing. (B) Schematic of AAV targeting vectors used in HDR experiments. (C) Representa

as in (C) for 10 experiments from nine healthy donors: six male, three female. (E) PCR a

human CD4+ T cells. *WT CCR5 amplicon; **mDHFR-modified CCR5 amplicon.

Molecu
1 � 106 T cells were seeded in T25 flasks, along with 2.5 � 107 irra-
diated allogeneic PBMCs and 5� 106 irradiated CD19+ Epstein-Barr
virus (EBV)-transformed lymphoblastoid cell line TM LCL. Cells
were grown without antibiotics in 50 U/mL IL-2 and 30 ng/mL
anti-CD3 OKT3 for 2–3 weeks, and fed with fresh media every
3–5 days as needed.

Homologous Recombination Assay

To target sequences for homologous recombination at the gene-edi-
ted CCR5 locus, flanking CCR5 sequences 0.8 kb in length were iden-
tified on each side of the megaTAL cleavage site and included in our
viral vector donor constructs. The primers used in Figure 3E were de-
signed to amplify CCR5 sequences on either side of the megaTAL
cleavage site, allowing distinction of CCR5 with or without inserted
exogenous sequences such as mDHFR or GFP. The right primer
was located within the 30 homology arm, while the left primer
was located in the region upstream of the 50 homology arm. The
nsduced with AAV donor vectors, followed by cold shock to enhance CCR5 gene

tive flow plots from day 16 post-electroporation and transduction. (D) Summary data

mplification of the gene-modified CCR5 locus demonstrating targeted integration in
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primers used to amplify and distinguish between modified and
unmodified CCR5 loci were 50- CTGCCTCATAAGGTTGCCC
TAAGGAT-30 (sense) and 50-TCCTCACCTAGATCTCATGTGT
GA-30 (anti-sense).

Cloning of DHFR Mutant Constructs

Dual-expressing mDHFR/GFP gene-editing templates were created
by modification of the previously described CCR5 gene-editing tem-
plate,47 which introduced a GFP transgene under the control of the
MND promoter, into the disrupted CCR5 loci. mDHFR transgenes
were constructed as synthetic gBlocks (Integrated DNA Technolo-
gies, Coralville, IA).25,27 These cassettes were fused with CCR5
homology arms using Gibson assembly (InFusion HD EcoDry) and
linked to GFP via a T2A peptide (Figure 3B).

Production of Viral Vectors

Lentivirus and AAV vectors were produced as previously
described.48,49 Lentivirus particles were produced using a third-
generation self-inactivating lentiviral vector that we have shown to
be suitable for our previous gene-therapy studies and clinical trials.
Third-generation lentiviral production plasmids were co-transfected
into HEK293 cells along with a plasmid encoding the lentiviral
genomic RNA encoding the modified DHFR gene. Lentiviral particles
were pseudotyped with vesicular stomatitis virus G protein enve-
lope,23 concentrated, and titered using flow cytometry. The constructs
contained a human elongation factor -1alpha (hEF-1alpha) promoter
driving the expression of the mDHFR variant, and a GFP reporter
linked via a picornavirus internal ribosomal entry site (IRES). Similar
to lentivirus production, AAV6 stocks were produced by co-transfect-
ing HEK293T cells with plasmids for AAV vector (encoding the
mDHFR donor sequence), serotype helper, and an adenoviral
helper.49 These cells were harvested after 48 hr, lysed to release vi-
rions, treated with benzonase, and purified over an iodixanol density
gradient. Viral titer was determined using qPCR analysis for detection
of viral genomes. AAV6 stocks used in this study were titered at
approximately 1 � 1011 viral copies per mL.

Genetic Modification of Cells

Activated T cells were transduced with lentiviral vectors at an MOI
of 1. Lentivirus was added directly to the T cell media seeded at
2 � 106 cells/mL in a 24-well plate. Excess virus was washed off after
24 hr, and efficiency of transduction was assessed at day 2 by flow cy-
tometry. Targeted integration at the CCR5 locus was performed as
previously described.47 In brief, activated T cells were transfected
with 1 mg of CCR5megaTALmRNA in the Neon Transfection system
(Invitrogen, Carlsbad, CA) using the settings 1,400 V, 10 ms, and
3 pulses. Two to three hours later, cells were transduced with
AAV6 at 20% of the culture volume (independent of viral titer).
Figure 5. mDHFR-Modified, MTX-Chemoselected Cells Maintain a Memory Ph

(A) Phenotypic analysis of CD4+ T cells by surface marker expression of CD45RO and

modification with CCR5megaTAL andCCR5-targeted AAV-mDHFR, TCR spectratyping

their TCR repertoire following treatment with 100 nM of MTX.

Molecu
Excess virus was diluted by adding fresh media after 24 hr, and effi-
ciency of transduction was assessed at day 2 by flow cytometry. After
a day-long 30�C incubation, T cells were cultured in T cell media at
37�C, with fresh media added every 2–4 days during subsequent
T cell expansion as described above.

In Vitro Selection of Gene-Modified Cells

Chemoselection in the presence of MTX (GeneraMedix, Bridgewater,
NJ) was achieved by empirically determining the amount of drug and
timing of addition into culture. MTX was diluted in PBS, and aliquots
were stored at �20�C. During the REP stimulation protocol, 100 nM
MTX was added once on day 4 (Figure 4A). Drug-induced selection
was quantified by cell counting with trypan blue exclusion and by flow
cytometry for transgene expression and viability.

Flow Cytometry

T cells were phenotyped with antibodies against surface markers CD4
(BD PharMingen, San Jose, CA, Clone L200), CD8 (BD PharMingen,
Clone RPA-T8), CD195 (BD PharMingen, Clone 3A9), CD62L (BD
Biosciences, Clone SK11), and CD45RA (BD Biosciences, Clone
UCHL-1) according to manufacturers’ recommendations. Live/dead
discrimination was performed using propidium iodide staining.
Stained cells were processed on a FACSCanto II (BD Biosciences)
and analyzed using FlowJo software (Tree Star, Ashland, OR).

TCR Spectratyping

Spectratyping analysis of TCR Vb CDR3 subfamilies 1–25 using
multiplex transcription PCR was performed essentially as described
previously.33
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