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Background: Prostate cancer (PCa) is one of the most popular cancer types in men.

Nevertheless, the pathogenic mechanisms of PCa are poorly understood. Hence, we

aimed to identify the potential genetic biomarker of PCa in the present study.

Methods: High-throughput data set GSE46602 was obtained from the comprehensive

gene expression database (GEO) for screening differentially expressed genes (DEGs).

The common DEGs were further screened out using The Cancer Genome Atlas

(TCGA) dataset. Functional enrichment analysis includes Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) to study related mechanisms. The Cox

and Lasso regression analyses were carried out to compress the target genes and

construct the high-risk and low-risk genemodel. Survival analyses were performed based

on the gene risk signature model. The CIBERSORT algorithm was performed to clarify

the correlation of the high- and low-risk gene model in risk and infiltration of immune cells

in PCa.

Results: A total of 385 common DEGs were obtained. The results of functional

enrichment analysis show that common DEGs play an important role in PCa. A

three-gene signature model (KCNK3, AK5, and ARHGEF38) was established, and the

model was significantly associated with cancer-related pathways, overall survival (OS),

and tumor microenvironment (TME)-related immune cells in PCa.

Conclusion: This new risk model may contribute to further investigation in the

immune-related pathogenesis in progression of PCa.

Keywords: prostate cancer (PCa), bioinformatics analysis, immune cell infiltration, survival analysis, ARHGEF38,

KCNK3, AK5

INTRODUCTION

Prostate cancer is regarded as the second foremost reason of death from cancer in men that affects
men’s health worldwide (1–3), especially in European and American countries (4–6). Surgery
and radiotherapy are considered to be the most effective treatment strategies at an early stage
(7). Androgen deprivation therapy (ADT) is the main treatment for advanced prostate cancer
(8). Although the incidence rate of prostate cancer is low in China, the life span and the dietary
structure change are also increasing year by year, with poor differentiation, high malignancy, and
poor prognosis (9). Metastatic events are the main cause of death for men with prostate cancer
for the reason that PCa can spread to multiple organs in the body (10). The 5 year survival ratio
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of metastatic prostate cancer is only about 30%. Nevertheless,
androgen-deprivation therapy, in general, is not curative.
Patients can develop to castration-resistant prostate cancer,
which is lethal (10, 11). Therefore, timely diagnosis of PCa is of
great importance for treatment and prognosis.

As a heterogeneous disease, the progression of PCa is closely
associated with genome instability (12). Studies have indicated
that PCa includes a complicated pathogenesis driven by multiple
molecular pathways that are highly associated with the survival,
metabolic, and metastatic characteristics of aggressive cancers
(13). The genes are considered as loci of susceptibility to
tumorigenesis in humans (14). Alterations in expression of
genetic biomarker have been reported in various tumors (15, 16).
However, in the current study, the development and progression
of PCa are poorly understood at molecular and genetic levels.

Tumor immunotherapy is becoming a pillar of the cancer
therapy armamentarium (17, 18). A growing number of studies
suggest that immune responses may be involved in the clinical
outcome of prostate cancer (19–21). As we know, tumor-
infiltrating immune cells play a very important regulatory role in
the tumor microenvironment and are an attractive therapeutic
target (22). PCa has been shown to be significantly associated
with immune infiltration in several clinical and genomic trials
(23, 24). Multiple genes, such as COL3A1, RAC1, FN1, SDC2, and
TNB-585, have been proved to be associated with high infiltration
immune cells in prostate cancer (25, 26).

Bioinformatics analysis based on high-throughput next-
generation sequencing technology enhances our understanding
of gene expression function in cancer (27). In addition,
transcriptomic data analysis is a useful method to identify DEGs
at the genome-wide level, which is beneficial for our better
understanding of the potential molecular mechanisms of the
regulatory role of gene expression (28). Hence, the application of
bioinformatics is useful for the investigation into the underlying
mechanism of molecular cell biology in PCa.

In this study, through the integrated analysis of PCa data
from the public databases, we screened out the potential
genetic biomarkers that play a vital role in PCa. Functional
enrichment analysis was performed to study the related
underlying mechanism and signaling pathways, including gene
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG). The Cox regression and Lasso regression analyses were
conducted to construct the high- and low-risk gene model. The
CIBERSORT algorithm was utilized to clarify the correlation of
high-risk and low-risk gene model in risk and infiltration of
immune cells in PCa. Integrated analysis for identifying novel
biomarkers might be beneficial to PCa treatment and has a better
understanding of the pathological mechanism.

MATERIALS AND METHODS

Data Preparation and Processing
The high-throughput datasets GSE46602 (29) of PCa was
acquired from the public GEO database (https://www.ncbi.
nlm.nih.gov/geo). The GSE46602 dataset contains 36 tumor
tissues and 14 normal prostate biopsies. In addition, the RNA-
sequencing data of PCa and normal control tissues were

obtained from the The Cancer Genome Atlas (TCGA) database
(https://portal.gdc.cancer.gov/). The PCa samples were analyzed
using integrated bioinformatics methods, and samples without
complete clinical information were excluded. In addition, the
RNA-seq data and clinical information of 492 PCa samples were
obtained from the TCGA database.

Identification of Differential Expression
Genes (DEGs) in PCa
The RNA expression profile carried out normalization with the
Affy package. The RNA expression profile was analyzed by the
limma R package (30). The DEGs were displayed in the form of
the volcano plot and heat maps and identified old change of log2
> 1.5 and p-value< 0.05. The R ggplot2 package in the R analysis
platform was plotted to present the heat maps and clustering
of DEGs.

Functional Enrichment Analysis
To evaluate the potential role of common DEGs in PCa
development, GO functional enrichment analyses were used
to analyze the biological process (BP), cellular component
(CC), and molecular function (MF) of DEGs. In the current
study, GO analysis of DEGs was performed by DAVID
(31, 32) (https://david.ncifcrf.gov/conversion.jsp). Functional
enrichment analysis of KEGG was mainly used to analyze
the signaling/metabolic pathway through which differentially
expressed genes may perform their biological functions (33). P-
value< 0.05 was considered as the critical value for screening the
significant enrichment pathway.

Cox Regression and Lasso Regression
Analysis
Lasso regression was performed to characterize the high
frequency features (34). Then, the univariate Cox regression
analysis was performed to screen out the genes with significant
correlation (p < 0.05). Next, the least absolute shrinkage and
selection operator (lasso) regression was carried out to further
reduce the number of genes. We used the glmnet3 package
(35) to conduct Lasso cox regression analysis based on machine
learning to identify the optimal prognostic signature. In the
next step, multivariate regression analysis was carried out, step
function was used for stepwise regression screening, and finally,
the model constructed by the three genes was obtained. Based on
the expression of 3 genes in the constructed model, a new risk
scoring model was constructed by multivariate Cox regression
evaluation. The risk score was then determined, and the sample
was stratified into high- and low-risk groups according to the
median risk score to verify whether the risk score was an
independent predictor.

Immune Infiltration by the Cibersort
Analysis
CIBERSORT algorithm (36) was a mean to discriminate a
signature between twenty-two human immune cell phenotypes,
including memory B cells, activated CD4+ T cells, neutrophils,
and so on. The CIBERSORT algorithm was used to quantify the
proportion of immune cells in PCa. PCa gene expression profiles
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FIGURE 1 | The differentially expressed genes (DEGs) in prostate cancer. (A) The Volcano plot shows the differentially expressed genes in the dataset GSE46602. The

red color indicates the upregulated genes in prostate cancer, and the green color indicates the downregulated genes in prostate cancer. (B) The heat map shows the

DEGs between prostate cancer tissue and normal controls.

from the TCGA database were uploaded to the CIBERSORT, and
1,000 permutations were run. Data with p-value < 0.05 after
the CIBERSORT were performed for the analysis to improve
the accuracy of the deconvolution method. The CIBERSORT
software package in R software was used for data analysis. Wilcox
test was used to compare the relative abundance of the TIIC
between high- and low-risk groups.

Survival Analysis
Correlation between 3 genes and the overall survival of patients
with PCa were analyzed utilizing the GEPIA database (37).
According to each hub gene’s best-separation cutoff value,
samples of patients with PCa within the dataset were divided into
two groups to obtain the Kaplan–Meier (K–M) survival curves.
ROC curves were carried out to investigate the prognostic value
in 1, 3, and 5 years by utilizing the survival ROC package (v1.0.34)
based on the GSE46602 dataset.

Gene Set Enrichment Analysis (GSEA) of
High- and Low-Risk Patients With Pc
GSEA (Version 4.1.0) was used to screen for gene
clusters associated with risk score phenotypes, which were
overrepresented in large groups of genes. Enriched P-values
were calculated based on 1,000 permutations; FDR values
were calculated using the Benjamini–Hochberg multiple test
correction program (p < 0.05). In addition, the enrichment
pathways of each phenotype were classified by nominal P-value
and standard enrichment score (NES) (38).

RESULTS

Identification of Differentially Expressed
Genes
Firstly, in order to find out the difference in genetic expression
between PC tissue and normal tissue, DEGs were identified
based on the RNA-Seq dataset (GSE46602) (p < 0.05 and log2
FC > 1.5). As seen in Figure 1A, a total of 841 DE-pcRNAs
were identified, which include 269 upregulated DEGs and 572
downregulated DE-pcRNAs. What is more, to have a clearer
understanding of the expression distribution of differential
genes in the ischemic stroke group and the normal group,
we performed heat map cluster analysis on DEGs (Figure 1B).
Besides, we also screened out the TCGA database for DEGs in
PCa and took the intersection with DEGs in the GEO database. A
total of 385 common DEGs were obtained.

Functional Enrichment Analysis of
Common DEGs
Thereafter, to further uncover the function and pathways
of common DEGs in PCa, functional enrichment analysis,
including GO and KEGG functional enrichment analysis, was
conducted. The top 10 significantly enriched terms of biological
processes (BP), cell component (CC), and molecular function
(MF) were shown. As seen in Figure 2A, terms like response
to oxidative stress and epithelial cell morphogenesis were
significantly enriched in BP (Figure 2A), collagen–containing
extracellular matrix and basement membrane were significantly
enriched in CC (Figure 2B), extracellular matrix structural
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FIGURE 2 | Functional enrichment analyses of the common DEGs. (A) The top 10 significantly enriched biological process terms. (B) The top 10 significantly enriched

cellular component terms. (C) The top 10 significantly enriched molecular function terms. (D) The KEGG pathway analysis of the common DEGs.

constituent and peroxidase activity were significantly enriched
in CC (Figure 2C). What is more, the results of the KEGG
pathways analysis of DEGs showed that signaling pathways like
glutathione metabolism, histidine metabolism, and so on were
significantly enriched (Figure 2D). The functional enrichment
results revealed that the common DEGs are vital to the progress
of PCa.

Cox Regression and Lasso Regression
Analysis
In the next step, to further compress the target gene and
construct immune gene models, Cox regression analysis was
carried out with a threshold of p < 0.05. Lasso regression, a
kind of compression estimation (39), was further compressed to
reduce the number of genes (Figures 3A,B), and six genes were
obtained. Then, multivariate regression analysis was performed.
Step function was used to screen by the stepwise regression
method, and finally, the risk model constructed by three genes
(KCNK3, AK5, and ARHGEF38) was obtained. Next, the samples

were divided into high-risk and low-risk groups based on the
risk model for the following analysis. The expression level of
KCNK3, AK5, and ARHGEF38 in primary tumor and solid
normal tissue is shown in Figure 3C. AK5 and ARHGEF38
have lower expression in the solid normal tissue compared to
primary tumor. The expression of KCNK3 is higher in the
primary tumor. Besides, the relative expression of KCNK3,
AK5, and ARHGEF38 in low-risk and high-risk samples is
presented in Figure 3D. The sensitivity and specificity of
the risk score model were demonstrated by constructing an
ROC curve. The area under the curve (AUC) was calculated
to be 0.6 at 1 year, 0.87 at 3 years, and 0.88 at 5 years
(Figure 3E).

Survival Analysis of the Risk Model
To investigate the clinical significance of the risk model, the
survival analyses were performed. Overall survival (OS) analysis
was conducted to assess the effectiveness of the KCNK3, AK5,
and ARHGEF38. As seen in Figures 4A–C, the high expression
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FIGURE 3 | Cox regression and lasso regression analysis. (A,B) Cox regression and Lasso regression were performed to obtain six genes. (C) The relative expression

of AK5, KCNK3, and ARHGEF38 in primary tumor and normal solid tissue. (D) The heat map of AK5, KCNK3, and ARHGEF38 expression profiles.

(E) Time-dependent ROC curves.

of ARHGEF38 was associated with a lower survival probability
(p = 0.00226), while the high expression of KCNK3 (p =

0.0339) and AK5 (p = 0.0382) was related to a better survival
probability. The results indicated that gene changes of KCNK3,
AK5, and ARHGEF38 were significantly related to the OS
of patients with PCa. What is more, patients with high-risk
(red line) PCa presented remarkably worse OS than low-risk
ones (blue line). As shown in the survival risk heat map,
patients with PCa with higher risk scores had higher mortality
(Figures 4E,F).

Immune Cell Infiltration Analysis
The immune microenvironment is highly correlated with
its overall survival (40). In order to study the correlation
between immune microenvironment and the risk model,
CIBERSORT algorithm, to evaluate the infiltration of twenty-
two kinds of immune cells in PCa tissues, was performed
(Figure 5A). Infiltration of plasma cells, mast cells resting,
M0 macrophages, B cells memory, NK cells activated, M2
macrophages, dendritic cells activated, eosinophils was
remarkably different in the high-risk and low-risk groups
(Figure 5B). Other types of immune cells did not differ
significantly between the two groups. The above results
demonstrated that macrophages may be significant in the
development and progression of PCa. The estimated method
was utilized to predict tumor purity, stromal score, and immune.
Significantly different in the high-risk and low-risk groups
were shown in in Figures 5C–E. What is more, in order to

distinguish the gene expression profiles between high-risk
and low-risk PCa samples, GSEA analysis was performed to
characterize important functional phenotypes and different
gene sets between the high-risk and low-risk score groups.
GSEA indicated enrichment of gene sets associated with
aminoacyl-tRNA biosynthesis, chemical carcinogenesis—DNA
adducts, drug metabolism-cytochrome P450, Fanconi anemia
pathway, glycosphingolipid biosynthesis-ganglio series, histidine
metabolism, nucleocytoplasmic transport, Ribosome biogenesis
in eukaryotes, RNA degradation, staphylococcus aureus infection
(Figure 5F).

DISCUSSION

Prostate cancer (PCa) is one of the pervasive carcinoma
occurring in men and a large health burden worldwide (41).
The lethality of PCa is due to the lack of treatment options
that can produce a lasting response at the genetic and cellular
biological levels (42, 43). The progression and pathogenic
mechanisms of PCa remain unclear. Currently, analysis used
for gene expression has benefit analysis for oncological research
with the development in sequencing technologies. In this
study, the high-throughput dataset of PCa (GSE46602) was
obtained from the GEO database for further comprehensive
bioinformatics analyses.

The PCa-related DEGs were screened out and explored,
and the related biological processes and signaling pathways
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FIGURE 4 | Survival analysis of the risk model. (A–C) The overall survival (OS) analysis in high and low AK5, KCNK3, and ARHGEF38 expression samples. (D)

Kaplan–Meier survival analyses show the OS of patients in the high-risk score and the low-risk score groups. (E,F) The risk plot between the high- and low-risk

score groups.

that make a better understanding of their functions were also
studied. Terms like response to oxidative stress were significantly
enriched in BP. Oxidative stress referred to the increase in
the formation of reactive oxygen species, which destroys the
body’s antioxidant protection and causes a variety of diseases,
including various cancers (44). Mukha et al. indicated that
PCa cells can be radiosensitized by glutamine deprivation,
resulting in DNA damage, oxidative stress, and epigenetic
modifications (45). Glutathione-related metabolism is the main
mechanism of cellular resistance to oxidative stress factors
(46). The results of the KEGG analysis of DEGs demonstrated
that glutathione metabolism and histidine metabolism were
significantly enriched. The functional enrichment results suggest
that the common DEGs were a vital regulator in the procession
of PCa.

About 15% of patients with PCa are diagnosed with high-
risk disease (47). Therefore, through utilizing univariate Cox and
iterative lasso Cox regression analyses, a 3-gene (KCNK3, AK5,
and ARHGEF38) risk signature model in PCas was constructed.
The ROC curves further approved the accuracy of our risk

model. It is reported that KCNK3 influenced physiological
processes, ranging from vascular tone to metabolic diet through
inflammation (48). Also, KCNK3 was correlated with prolonged
survival after surgery in colorectal cancer (49). AK5 was
reported as a new prognosis marker that promotes autophagy
and proliferation in human gastric cancer (33). Interestingly,
ARHGEF3 was proved to be an oncogene and may be a novel
biomarker for predicting invasive PCa (50).

The 3-gene risk signature model emerges clinical significance.
The results indicated that gene changes of KCNK3, AK5,
and ARHGEF38 were remarkedly associated with the overall
survival of patients with PCa. What is more, patients with
high-risk PCa have remarkably worse OS than low-risk ones.
Dysregulated expression of ARHGEF38 is associated with
poor prognosis in nasopharyngeal carcinoma (51). Currently,
immunotherapy has not been utilized in advanced PCa, and
more novel methods are needed to overcome immune rejection
and suppressive tumor microenvironment (52). As for the
immune microenvironment, 8 kinds of immune related cells
were remarkably various between the high-risk and low-risk
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FIGURE 5 | Immune cell infiltration in PCa tissues of high- and low-risk patients. (A) The distribution of 22 types of immune cells between primary and metastatic PCa

tissues. (B) Comparisons between immune cells in the high- and low-risk groups in TCGA. *p < 0.05, **p < 0.01, ****p < 0.0001. The stromal score (C), tumor purity

(D), immune score (E) in the high- and low-risk groups. (F) The GSEA analysis was performed to characterize important functional phenotypes and different gene sets

between the high-risk and low-risk score groups.

Frontiers in Surgery | www.frontiersin.org 7 March 2022 | Volume 9 | Article 856446

https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org
https://www.frontiersin.org/journals/surgery#articles


Liang et al. Prostate Cancer Risk Genetics Biomarkers

score groups, including plasma cells, mast cells resting, M0
macrophages, M2 macrophages, NK cells activated, B cells
memory, dendritic cells activated, and eosinophils. The risk
model could further illuminate the immune-related pathogenesis
of the therapeutic method by permitting early diagnosis and
prognosis of PCa.

CONCLUSION

In this study, we unraveled the DEGs in PCa from GEO datasets,
which were further verified by TCGA data and identified the
common DEGs. The functional enrichment results suggest that
the commonDEGs play an important role in the progress of PCa.
A three-gene signature model (KCNK3, AK5, and ARHGEF38)
was constructed, and the model was significantly related to
cancer-related pathways, overall survival, and TME cells in PCa.
This new risk model might benefit the further elucidation about
the immune-related progression in PCa.
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