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Abstract: Developing novel drugs/targets remains a major effort toward controlling obesity-related
type 2 diabetes (diabesity). Melatonin controls obesity and improves glucose homeostasis in rodents,
mainly via the thermogenic effects of increasing the amount of brown adipose tissue (BAT) and
increases in mitochondrial mass, amount of UCP1 protein, and thermogenic capacity. Importantly,
mitochondria are widely known as a therapeutic target of melatonin; however, direct evidence of
melatonin on the function of mitochondria from BAT and the mechanistic pathways underlying these
effects remains lacking. This study investigated the effects of melatonin on mitochondrial functions
in BAT of Zücker diabetic fatty (ZDF) rats, which are considered a model of obesity-related type 2
diabetes mellitus (T2DM). At five weeks of age, Zücker lean (ZL) and ZDF rats were subdivided
into two groups, consisting of control and treated with oral melatonin for six weeks. Mitochondria
were isolated from BAT of animals from both groups, using subcellular fractionation techniques,
followed by measurement of several mitochondrial parameters, including respiratory control ratio
(RCR), phosphorylation coefficient (ADP/O ratio), ATP production, level of mitochondrial nitrites,
superoxide dismutase activity, and alteration in the mitochondrial permeability transition pore
(mPTP). Interestingly, melatonin increased RCR in mitochondria from brown fat of both ZL and
ZDF rats through the reduction of the proton leak component of respiration (state 4). In addition,
melatonin improved the ADP/O ratio in obese rats and augmented ATP production in lean rats.
Further, melatonin reduced mitochondrial nitrosative and oxidative status by decreasing nitrite
levels and increasing superoxide dismutase activity in both groups, as well as inhibited mPTP
in mitochondria isolated from brown fat. Taken together, the present data revealed that chronic
oral administration of melatonin improved mitochondrial respiration in brown adipocytes, while
decreasing oxidative and nitrosative stress and susceptibility of adipocytes to apoptosis in ZDF rats,
suggesting a beneficial use in the treatment of diabesity. Further research regarding the molecular
mechanisms underlying the effects of melatonin on diabesity is warranted.
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1. Introduction

Mitochondrial dysfunction is a main mechanism underlying insulin resistance in
obesity and type 2 diabetes mellitus (T2DM) [1,2]. An imbalance between energy intake
and expenditure in tissues related to the regulation of whole-body energy homeostasis,
including liver, muscle, white, beige, and brown adipose tissues (BAT), results in impair-
ment of mitochondrial function [3,4]. Taken into consideration, mitochondrial dysfunction
encompasses a broad range of abnormalities, but primarily a reduced ratio of ATP produc-
tion from cellular respiration [5]. In addition, alterations in other processes, such as the
generation and detoxification of reactive oxygen/nitrogen species (ROS/RNS), organelle
biogenesis, and the regulation of mitochondrial matrix calcium are involved [5].

Of importance, increased intramitochondrial oxidative and nitrosative stress and
elevated cytosolic calcium concentration, along with increased mitochondrial permeability,
contribute to various types of mitochondrial dysfunction [6–8]. The neurohormone mela-
tonin is mainly produced by the pineal gland during darkness [9], in addition to many
other tissues [10], where it mediates photoperiodic entrainment of endogenous circadian
rhythms [11,12]. Additionally, melatonin is a potent antioxidant [13–17] that participates
in energy homeostasis [17–19] and confers potential benefits in several physiological and
pathological conditions [20–22].

Importantly, several studies have demonstrated that melatonin supplementation
limited obesity in rodents without affecting food intake or locomotor activity [23–27]. In
previous studies, we demonstrated that chronic oral administration of melatonin induced
browning of inguinal white adipose tissue [4] and increased the mass and activity of BAT,
which together have thermogenic properties [28].

Furthermore, previous reports have documented that melatonin enhances mitochon-
drial respiration and alleviates oxidative stress in different pathological conditions and in a
broad variety of organs and tissues [14,29], including the brain [30,31] and liver [32–36],
as well as cardiac [37–39] and skeletal muscle [40]. Additionally, a body of experimental
evidence suggests that melatonin directly inhibits the mitochondrial permeability transition
pore (mPTP) [41], which is involved in signaling apoptotic and necrotic cell death [42].
Data from our laboratory showed that melatonin improved mitochondrial function of dif-
ferent organs and tissues like liver, kidney, and inguinal white adipose tissue in diabesity
conditions in Zücker diabetic fatty (ZDF) animals [20,36,43].

However, no available data were reported on the potential influence of melatonin
on the mitochondrial function of BAT in obesity or diabetes. Thus, the present work
investigated the effect of chronic oral melatonin administration on the mitochondrial func-
tion of BAT isolated from obese–diabetic ZDF rats (a well-established model of metabolic
syndrome and T2DM) and their Zücker lean (ZL) littermates.

2. Materials and Methods
2.1. Ethical Statement

Ethical approval was obtained as described by the ethical standards of the University of
Granada (Granada, Spain), which is in accordance with the European Union guidelines for
animal care and protection. The ethical approval number of the project is 4-09-2016-CEEA.

2.2. Reagents

All reagents, chemicals, and materials used in the present study were of analytical
grade and the highest purity. Melatonin and other chemicals were purchased from Sigma
Chemicals (Madrid, Spain).

2.3. Animals and Experimental Protocols

In this work, male ZDF rats (fa/fa n = 16) and male lean littermates (ZL, fa/- n = 16)
were obtained at the age of 5 weeks from Charles River laboratory (Barcelona, Spain).
Animals were then maintained on Purina 5008 rat chow (carbohydrates 58.5%, protein
23%, ash 8%, fat 6.5%, and fiber 4%), and housed at rate of two rats per clear plastic
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cage in a climate-controlled room. Animals were maintained at 28–30 ◦C and 30–40%
relative humidity, with a 12 h dark/light cycle. The animals were acclimated for one
week after their arrival to room conditions combined with recording water intake. The
experimental animals (ZL and ZDF rats) were then subdivided into two groups: (1) the first
group included animals treated with melatonin in their drinking water for 6 weeks and
comprised the two melatonin-treated subgroups M-ZDF (N = 8 rats) and M-ZL (N = 8 rats);
and (2) vehicle-treated control subgroups, which included C-ZDF (N = 8 rats) and C-ZL
(N = 8 rats). Melatonin was dissolved in absolute ethanol with a final concentration of
0.066% (w/v) ethanol and diluted in the drinking water to yield a dose of 10 mg/kg
body weight (BW)/day. Water intake and BW were recorded twice weekly during the
experiments. Importantly, melatonin and vehicle solutions were freshly prepared twice
a week, the drinking fluid was changed twice weekly, and the dose of melatonin was
adjusted according the BW of each animal throughout the study period. Aluminum foil
was used to cover the bottles of drinking water to protect the mixture from light.

2.3.1. Mitochondrial Preparation

Animals used in the experiments were anesthetized using sodium thiobarbital (thiopen-
tal) and sacrificed at the end of the treatment period. BAT samples (approximately 300 mg)
were excised from brown regions of the interscapular fat pad. Adipocyte mitochondria
were then isolated from these depots using a serial centrifugation method according to
a previously described protocol with slight modifications [44]. Tissues were removed,
excised, washed with cold saline, and homogenized in isolation medium containing 10 mm
Tris, 250 mm sucrose, 0.5 mm Na2EDTA, and 1 g/L free fatty acid bovine serum albumin
(BSA) (pH 7.4, 4 ◦C) with a Teflon pestle. The homogenate was then centrifuged at 1000× g
for 10 min at 4 ◦C, followed by centrifugation of the supernatant at 15,000× g for 20 min
at 4 ◦C. The resultant pellet was then resuspended in 1 mL of isolation medium without
BSA, and an aliquot was frozen for measurement of protein concentration. The remaining
mitochondrial suspensions were then centrifuged at 15,000× g for 20 min at 4 ◦C, followed
by resuspension in 1 mL of respiration buffer (200 mm sucrose, 20 mm HEPES, 20 mm
taurine, 10 mm KH2PO4, 3 mm MgCl2, 0.5 mm EGTA, and 1 g/L free fatty acid BSA),
followed by keeping the mitochondrial suspensions on ice for 10–15 min.

2.3.2. Mitochondrial High-Resolution Respirometry

Mitochondrial respiration was investigated using a high-resolution Oxygraph-2k
(Oroboros Instruments, Innsbruck, Austria), which was composed of a two-chamber
respirometer with a Peltier thermostat and electromagnetic stirrers [45]. The analysis
was conducted in 2 mL of respiration medium that was previously equilibrated in each
chamber with air at 30 ◦C and then stirred at 750 rpm until a stable air saturation signal was
reached. All experiments were performed using a final concentration of 0.2–0.3 mg/mL
fresh protein of isolated mitochondria in respiratory buffer. The isolated mitochondria
were suspended in respiration buffer supplemented with 5 mM glutamate and 2.5 mM
malate or with 5 mM succinate in the presence of rotenone as an energizing substrate. This
was followed by measurement and recording of oxygen flux (JO2) at 30 ◦C in a constantly
stirred oxygraph vessel after the successive addition of 1 mM ADP (state 3ADP or OXPHOS
capacity) with 0.75 mM oligomycin, which acted as an ATPase inhibitor (state 4 or leak
respiration). Expression of results was as pmol of oxygen consumed/min mg protein per
respiratory state. Measurements were taken at 0.2 s intervals for 15–20 min, and a computer-
driven data acquisition system (DatLab, Innsbruck, Austria) was used for recording these
measurements. The respiratory control ratio (RCR), determined as the ratio of state 3 to
state 4, was used as a general measure of mitochondrial function [5]. Determination of the
phosphorylation coefficient (ADP/O ratio) was also performed and defined as the amount
of ADP added to the respiratory medium divided by nanograms of oxygen consumed
during state 3.
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2.3.3. ATP Concentration

Quantification of the concentration of the ATP in mitochondrial aliquots was per-
formed by bioluminescence [37] using a commercial kit (Molecular Probes, A22066; Invit-
rogen, Madrid, Spain) following the manufacturer’s instructions. The minimum detectable
amount of ATP was 0.1 pM/mg protein. The results of ATP were quantified as micrograms
of ATP per milligram of depot wet weight and expressed as nmol/mg protein. Protein
concentration in aliquots was adjusted to 0.5 mg/mL protein concentration.

2.3.4. Determination of Mitochondrial Nitrites

Mitochondrial nitrites were detected spectrophotometrically by a Griess diazotization
reaction [46] using a Griess Reagent Kit (G-7921; Molecular Probes, Life Technologies,
Madrid, Spain), according to the instructions of the manufacturer. The optimum wave-
length for measurement was 548 nm.

2.3.5. Measurement of Superoxide Dismutase (SOD) Mitochondrial Activity

SOD (Mn and Cu/Zn) activity of isolated mitochondria was measured using an SOD
Assay Kit (19160; Sigma-Aldrich, Buchs, Switzerland), following the kit’s instructions. The
results (SOD activity) were then expressed as a percentage of the inhibition rate (%), and
its minimum detectable amount was 0.001 U/mL.

2.3.6. Measurement of Calcium Retention Capacity and mPTP Activity

The sensitivity of mPTP opening to calcium ions and the calcium retention capacity
of isolated mitochondria were assessed in the presence of 0.25 µM Oregon green using a
fluorometric assay. Each well of a 96-well plate was filled with 0.5 mg/mL of mitochondrial
solution, 10 µL of a respiratory substrate, and 0.25 µM of the fluorochrome Oregon green
(Invitrogen, Madrid, Spain) in a final volume of 100 µL. The baseline fluorescence was
then measured firstly without addition of calcium. An average of four pulses of 0.50 µM

CaCl2 were then added, which produced fluorescence in the presence of Oregon green.
Briefly, calcium was then retained and accumulated in mitochondria in the presence of
ATP. The retained mitochondrial calcium resulted in an overload and induced opening of
mPTP, resulting in the release of a large quantity of calcium that could be then quantitated
using a fluorometer. Likewise, 1 µM cyclosporine A (CsA) (Sigma-Aldrich, Madrid, Spain)
was used as the standard mPTP inhibitor [47]. The experimental groups were as follows:
(1) control (mitochondria from BAT of white and beige fat depots of untreated C-ZL and
C-ZDF rats) challenged with 250 µM Ca2+ overload alone; (2) melatonin (mitochondria
isolated from BAT of white and beige fat depots of M-ZL and M-ZDF rats); (3) CsA
(mitochondria from BAT of white and beige fat depots of C-ZL and C-ZDF rats) was
challenged with calcium in the presence of CsA; and (4) melatonin + CsA (mitochondria
isolated from white and beige fat depots of melatonin-treated ZL and ZDF rats) challenged
with calcium in the presence of CsA. mPTP opening was measured from signals over
time and expressed as the area under the curve (AUC), and four replicates were made for
each sample.

2.4. Statistical Analysis

Data were expressed as mean ± SD and compared among groups using two-way
analysis of variance (ANOVA) followed by the Tukey post hoc test. SPSS for Windows
version 15.0 (SPSS Inc., Michigan, IL, USA) was performed for analyses of the data. p < 0.05
was considered statistically significant.

3. Results
3.1. The Effect of Melatonin Treatment on Mitochondrial Respiratory (States) in
BAT-Isolated Mitochondria

Figure 1 depicts the rate of oxygen uptake proportional to oxygen flux (expressed
as pmol/min mg protein), which rose sharply after ADP addition, followed by a rapid
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reduction due to ADP depletion, as it was phosphorylated to ATP (state 3). Accordingly,
state 3 represented the oxygen flux while producing ATP in response to ADP pulses in
the presence of substrates and BAT-isolated mitochondria. As shown in Figure 1A, BAT
mitochondria isolated from both melatonin-treated ZL and ZDF animals had significantly
reduced oxygen flux in state 3 compared with untreated controls in both brown fat depots
of ZL and ZDF phenotypes (15.02 ± 0. 46 versus 12.74 ± 0.22 pmol/min mg protein in
C-ZL and M-ZL rats, respectively, p < 0.05; and 14.30 ± 0.37 versus 10.81 ± 0.34 pmol/min
mg protein in C-ZDF and M-ZDF rats, respectively, p < 0.05). In contrast, a small but
significant decrease in the value of state 3 of obese–diabetic compared to lean animals
(controls) was observed. In accordance with state 4, which represented the oxygen flux in
the absence of ATP synthesis in mitochondria isolated from brown fat of both ZL and ZDF
melatonin-treated animals, it was reduced in this work (Figure 1B). The leak respiration
was 28% lower in ZL (oxygen flux of 4.70 ± 0.16 versus 3.38 ± 0.20 pmol/min mg protein
in C-ZL and M-ZL, respectively, p < 0.05) and 36% lower in ZDF (oxygen flux of 5.00 ± 0.20
versus 3.22 ± 0.23 pmol/min mg protein in C-ZDF and M-ZDF, respectively, p < 0.05) rats.
However, no statistical differences were found in the values of state 4 for the two controls
and obese–diabetics compared with lean animals (C-ZDF versus C-ZL and M-ZDF versus
M-ZL, respectively).
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C, control; M, melatonin; ZL, Zücker lean rats; ZDF, Zücker diabetic fatty rats. Values are shown as 
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Figure 1. The effect of melatonin treatment on respiratory states in isolated mitochondria from
brown fat depots of control (untreated) and melatonin-treated ZDF and ZL rats. (A) The upper panel
shows state 3, representing oxygen flux, while producing ATP in response to ADP pulses in the
presence of substrates. (B) The lower panel illustrates state 4, or leak respiration, which shows oxygen
flux in the absence of ATP synthesis. Glutamate/malate was used as the respiratory substrates. C,
control; M, melatonin; ZL, Zücker lean rats; ZDF, Zücker diabetic fatty rats. Values are shown as
mean ± SD. Superscript characters show significant differences determined by two-way analysis of
variance (ANOVA) followed by the Tukey post hoc test (** p < 0.01, M-ZDF compared with C-ZDF
rats; # p < 0.05, C-ZDF compared with C-ZL rats).
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3.2. The Effect of Melatonin Treatment on RCR of Mitochondria from BAT

Next, we found that the RCR increased in BAT-isolated mitochondria of melatonin-
treated ZL (from 3.19 ± 0.06 to 3.78 ± 0.17 µmol/mg protein, p < 0.01) and ZDF (from
2.86 ± 0.06 to 3.36 ± 0.17 µmol/mg protein, p < 0.01) rats compared to the respective
controls (Figure 2). In contrast, the BAT RCR decreased in diabetic obese (C-ZDF) rats from
3.19 ± 0.03 µmol/mg protein in C-ZL to 2.86 ± 0.03 µmol/mg protein in C-ZDF animals
(p < 0.05).
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control (untreated) and melatonin-treated ZDF and ZL rats. RCR was defined as the ratio of state
3 to state 4. Data are shown as mean ± SD. ZL, Zücker lean rats; ZDF, Zücker diabetic fatty rats.
Superscript characters indicate significant differences determined by two-way ANOVA followed by
the Tukey post hoc test (** p < 0.01, M-ZDF compared with C-ZDF and M-ZL compared with C-ZL
animals; ## p < 0.01, C-ZDF and M-ZDF compared with C-ZL rats).

3.3. Melatonin Increased the Respiratory Phosphorylation Coefficient (ADP/O Ratio) of
BAT-Isolated Mitochondria

As depicted in Figure 3, mitochondrial BAT of M-ZDF rats showed a significant
increase in phosphorylation efficiency (ADP/O ratio) compared with the C-ZDF group
(p < 0.01). Furthermore, the positive effects of melatonin on diabetic fatty rats not only
resulted in the complete restoration of phosphorylation efficiency, but also raised its values
above normal mitochondrial respiration parameters versus the C-ZL group. However, the
phosphorylation efficiency of melatonin-treated lean rats was not statistically different
compared to their controls.

3.4. Melatonin Nonsignificantly Increased ATP Levels of Mitochondria from BAT

We found no significant differences in the ATP content in response to melatonin
treatment in obese rats; however, ZL rats experienced a small but significant elevation in
their ATP levels after treatment with melatonin (Figure 4). As depicted in Figure 4, the
ATP levels in brown fat depots were higher in C-ZL rats (39.42 ± 0.78 nM) versus those of
diabetic obese (C-ZDF) rats (38.14 ± 1.20 nM). On the other hand, animals treated with
melatonin had a small but significantly higher level of ATP (42.54 ± 1.82 nM p in M-ZL
versus 39.42 nµ in C-ZL, p < 0.05).
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Figure 4. ATP levels of BAT-isolated mitochondria of different treated groups. Data were normalized
for variations in mitochondrial content in an equivalent amount of tissue (micrograms of ATP/mg of
tissue wet weight), adjusted to 0.5 mg/mL protein concentration, and expressed as nmol/mg protein.
Data are shown as mean ± SD. Superscript characters show significant differences determined by
two-way ANOVA followed by the Tukey post hoc test (* p < 0.01, M-ZL compared with C-ZL rats;
# p < 0.05, C-ZDF compared with C-ZL rats).

3.5. Melatonin Reduced Levels of Mitochondrial Nitrites from Brown Fat Depots

Next, we evaluated the effect of melatonin treatment on BAT mitochondrial nitrite
levels and found that the levels of mitochondrial nitrites in brown fat depots were higher
in diabetic obese (C-ZDF) rats (28.18 ± 2.47 µmol/mg protein) versus those of C-ZL
(17.67 ± 2.28 µmol/mg protein; p < 0.05) rats (Figure 5). However, animals treated with mela-
tonin had lower but nonsignificant nitrite levels (20.7 ± 0.7 versus 28.18 ± 4.47 µmol/mg
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protein in C-ZL and C-ZDF, respectively). Notably, treatment with melatonin significantly
reduced the levels of nitrites in BAT-isolated mitochondria of ZL (from 17.67 ± 2.28 to
12.20 ± 1.92 µmol/mg protein, p < 0.05) and ZDF (from 28.18 ± 2.47 to 12.51 ± 3.35 µmol/mg
protein, p < 0.05) rats.
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Figure 5. The effect of melatonin on nitrite levels in mitochondria isolated from BAT fat depots
of control (untreated) and melatonin-treated ZDF and ZL rats. Values are shown as mean ± SD.
Superscript letters express significant difference measured using two-way ANOVA followed by the
Tukey post hoc test. * p < 0.05 (M-ZL compared with C-ZL rats), ** p < 0.01 (M-ZDF compared with
C-ZDF rats), and # p < 0.05 (C-ZDF and M-ZDF compared with C-ZL rats).

3.6. Melatonin Increased SOD Activity of BAT-Derived Mitochondria

It should be stressed that melatonin-treated lean animals had higher SOD activity in
mitochondria isolated from brown fat depots compared to untreated controls, increasing
from 42.51% ± 1.54% to 67.72% ± 5.38% (p < 0.05). Similarly, SOD activity increased in
melatonin-treated ZDF animals from 38.94% ± 5.34% to 51.70% ± 1.28% (p < 0.05), as
shown in Figure 6. In contrast, no statistically significant changes in SOD activity were
observed in BAT-isolated mitochondria of either obese or lean control animals.
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Figure 6. The effect of melatonin treatment on superoxide dismutase (SOD) activity in mitochondria
isolated from BAT of control (untreated) and melatonin-treated ZDF and ZL rats. Values are expressed
as mean ± SD. Superscript letters identify significant difference measured using two-way ANOVA
followed by the Tukey post hoc test. ZL, Zücker lean rats; ZDF, Zücker diabetic fatty rats. ** p < 0.01,
M-ZDF compared with C-ZDF rats and M-ZL compared with C-ZL animals.
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3.7. Melatonin Treatment Altered Calcium Retention Capacity and Sensitivity of mPTP Opening

As depicted in Figure 7, pretreatment with melatonin during the in vivo stage of
experiments resulted in notorious inhibition of calcium (Ca2+)-induced mPTP opening
in isolated mitochondria “in vitro” from brown fat in both lean (by 67%, p < 0.001) and
obese (by 60%, p < 0.01) rats. However, CsA inhibited the activity of mPTP by 87% and
76% in BAT-isolated mitochondria of ZL and ZDF rats, respectively. Furthermore, CsA
provoked significantly greater inhibition (97% and 94%) of mPTP in mitochondria from
melatonin-treated ZL and ZDF animals, respectively. The addition of Ca2+ or melatonin
in mitochondrial suspensions inhibited the release of accumulated Ca2+ in all isolated
mitochondrial fractions, and this inhibition was potentiated by CsA. We found that the
AUC was significantly lower for groups treated with melatonin than controls, indicating
that the mPTP opens later with higher Ca2+.
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Figure 7. The effect of melatonin treatment on calcium-induced permeability transition pore (PTP)
in mitochondria isolated from BAT of control (untreated) and melatonin-treated ZDF and ZL rats.
The effect of cyclosporine A (CsA) was included as a classical inhibitor of mitochondrial PTP. Data
are shown as mean ± SD of the area under the curve (AUC). Superscript letters identify significant
difference measured using two-way ANOVA followed by the Tukey post hoc test. ZL, Zücker lean
rats; ZDF, Zücker diabetic fatty rats. *** p < 0.001 and # p < 0.05.

4. Discussion

This study reported novel data on the potential benefits of oral melatonin supplemen-
tation in improved functionality of mitochondria isolated from BAT of obese–diabetic ZDF
rats. The work also explored the possible underlying mechanistic pathways involved in
improved mitochondrial respiration, decreased nitrite production, improved antioxidative
capacity, and inhibition of mPTP. Previously, we showed that melatonin induced BAT mass
and thermogenic activity in diabetic Zücker rats [28], and the observed increase in BAT
mass and functionally after melatonin treatment was accompanied by increases in mito-
chondrial mass, citrate synthase activity, and complex I and IV. Furthermore, obese–diabetic
ZDF rats treated with melatonin displayed marked thermogenic effects, characterized by a
remarkable increase in protein expression of isolated BAT mitochondrial UCP1 and GPD
binding and sensitized thermogenic response to cold exposure in vivo [28]. However, no
information was available regarding the mechanistic pathways of this conversion or the
potential influence of melatonin on BAT-derived mitochondrial functions.

Metabolic disorders of obesity and diabetes may be caused or exacerbated by adipocyte
mitochondrial dysfunction, resulting in a series of events including less-effective substrate
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oxidation, increased oxido-nitrosative stress and calcium permeability, and apoptosis, all of
which contribute to insulin resistance [48]. Clearly, the investigation of novel drug targets
that counteract these actions may be helpful in combating diabesity and its metabolic
complications, which are found worldwide.

Several previous reports have shown the promising effects of melatonin in improving
mitochondrial efficiency in various pathological conditions resulting from a wide range of
free scavenger, antioxidative, anti-inflammatory, and metabolic effects, such as improve-
ment in BW gain and glucose hemostasis [21,26,49]. When taken into account, the RCR is
considered the best measure of mitochondrial function because it encapsulates the princi-
pal function of ATP generation [5]. Our results showed that the mitochondria of brown
adipocytes of obese–diabetic animals exhibited significantly lower ATP production versus
that of lean littermates. Furthermore, treatment with melatonin significantly increased ATP
production in BAT of lean (ZL) animals. As expected, BAT-derived mitochondria exhibited
increased uncoupled respiration, which may be attributed to their thermogenic properties.
The chronic administration of melatonin also significantly increased OXPHOS capacity of
mitochondria isolated from brown adipocytes in obese–diabetic (and not in lean) animals,
a finding that contributes to the thermogenic properties of melatonin in brown fat [4,28],
and was in full agreement with our previous data showing that melatonin treatment of
obese rats restored the amount UCP1 protein in the BAT depots of obese–diabetic and not
lean rats [28]. Additionally, these findings aligned with those of previous reports on the
same strain of rats [26,49], showing that melatonin treatment improved both the excess
weight loss and long-term hyperglycemic glycated hemoglobin (HbA1c) concentrations in
obese–diabetic animals (with damaged mitochondria), and was not able to reduce normal
weight and HbA1C levels in lean rats (with healthy mitochondria). Thus, diabesity-related
conditions may contribute to increased oxidative stress but decreased OXPHOS efficiency
in BAT mitochondria of obese–diabetic rats through marked proton reduction. In this
regard, a significant deterioration of brown mitochondrial respiration was observed in
obese–diabetic C-ZDF rats compared with lean rats; a difference that was observed as a
slight but significant reduction in state 3 and a decline in both ATP production and RCR
with a reduction in oxidative phosphorylation efficiency (ADP/O), which was in line with
our previous results in liver tissue of obese–diabetic fatty rats [36]. The decrease in phos-
phorylative system efficiency may be caused by a lack of adenine nucleotide translocator,
an inner membrane protein that catalyzes the conversion of ADP to ATP. Furthermore,
melatonin treatment increased the RCR of brown adipocyte mitochondria in both obese
and lean rats, indicating that melatonin increased mitochondrial integrity by robustly in-
creasing OXPHOS capacity, a point that was evidenced by a significant decrease in oxygen
flux in state 3 of respiration and leak respiration in state 4 in both obese and lean phenotype
animals. In addition, our results on mitochondrial bioenergetics agreed with those of
other studies in the literature obtained on mitochondria from other tissues in different
pathological conditions [50–54].

To date, few studies have described the effect of melatonin on mitochondrial function
in obesity and diabetes. Zavodnik et al. [32] revealed that administration of melatonin in
streptozotocin-diabetic rats rescued the RCE diminution in liver mitochondria isolated
from these animals. Additionally, Cheshchevik et al. [50] reported that administration of
melatonin corrected liver mitochondrial dysfunction in streptozotocin-induced diabetes.

RNS production increases in various pathological conditions such as diabetes and
obesity, resulting in exacerbation of the mitochondrial damage manifested by increased
nitroxidative lesion [55], as demonstrated in mitochondrial kidney cells in the same strain
of ZDF animal model versus lean animals [20]. As expected, melatonin supplementa-
tion reduced the generation of nitrites and increased SOD activity in BAT-isolated mito-
chondria of the two rat phenotypes in the present work. The capacity of melatonin to
reduce the oxidative and nitrosative status in BAT-derived mitochondria was in concor-
dance with previous reports in several organs and tissues, including the brain, liver, and
kidney [13,29–36]. Thus, we concluded that the beneficial effects of melatonin were re-
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lated to improved mitochondrial function by counteracting mitochondrial oxidative and
nitrosative stress, which also identified mitochondria as a therapeutic target for the antioxi-
dant actions of melatonin.

Remarkably, one of the most striking effects of melatonin treatment in our study
was the alteration of Ca2+-induced mPTP. The mPTP is the most prominent of all inner
membrane channels and the gatekeeper of apoptotic and necrotic cell death [42,56–58].
Furthermore, mPTP is linked to various diseases [42,59,60]. The possible inhibitory effect
of melatonin treatment on Ca2+-induced mPTP was studied and compared with that of
the classical mPTP inhibitor CsA in several previous studies [47,61]. The activity of mPTP
in our present work was induced by raising the Ca2+ concentration in the incubation
media. Our study showed for the first time that the mPTP was altered in BAT-isolated
mitochondria of obese–diabetic animals compared with lean ones. This finding was
supported by increased opening of mPTP, whereas melatonin treatment caused a profound
inhibition of Ca2+-induced opening of mPTP in BAT-isolated mitochondria in both lean
and obese rats.

Similarly, an earlier report by our group concluded that melatonin treatment also
markedly inhibited Ca2+-induced mPTP opening in mitochondria isolated from inguinal
white fat in both lean and obese rats [28,43]. Importantly, melatonin has a notorious
inhibitory action on mPTP that is comparable to the effect of CsA [47], and impedes the
opening of mPTP by binding and inactivating cyclophilin D. In line with other studies,
melatonin may protect mitochondria from mitochondria-induced cell death, which has
been attributed to the higher affinity of melatonin to directly inhibit mPTP [41,62]. However,
CsA exerted a greater inhibitory effect of mPTP in mitochondria from animals treated with
melatonin versus untreated, suggesting a different mechanism of action for both inhibitors.
It is worth pointing out that melatonin may also contribute to mPTP inhibition through its
role in reducing mitochondrial oxido-nitrosative stress, which is considered an inducer of
mPTP opening.

5. Conclusions

Taken together, our results demonstrated for the first time that melatonin treatment
enhanced several mitochondrial functions of interscapular brown fat cells in obese–diabetic
(ZDF) rats. The present findings, in relation to oxidative and nitrosative stress, calcium
retention capacity, and oxygen consumption, contribute to a better understanding of the
benefits of melatonin on diabesity. Further research is recommended to elucidate other
potential mechanisms of melatonin in diabetes and examine the possible involvement of
melatonin receptors in these actions.
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