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Abstract 
      Ubiquitination is crucial for cellular processes, such as protein degradation, apoptosis, autophagy, 
and cell cycle progression. Dysregulation of the ubiquitination network accounts for the development of 
numerous diseases, including cancer. Thus, targeting ubiquitination is a promising strategy in cancer 
therapy. Both apoptosis and autophagy are involved in tumorigenesis and response to cancer therapy. 
Although both are categorized as types of cell death, autophagy is generally considered to have protective 
functions, including protecting cells from apoptosis under certain cellular stress conditions. This review 
highlights recent advances in understanding the regulation of apoptosis and autophagy by ubiquitination.
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Failure in apoptotic cell death is one of the major causes of 
tumorigenesis. A primary strategy for cancer therapy is to specifically 
induce apoptosis in cancer cells, whereas the resistance of 
certain cancer cells to therapy can be at least partially due to the 
cytoprotective role of autophagy against apoptosis[1]. Autophagy not 
only inhibits the initiation of tumorigenesis by limiting cytoplasmic 
damage, genomic instability, and inflammation, but also promotes 
the survival of certain cancer cells by enabling adaptation to stressful 
metabolic environments. Ubiquitination is a post-translational 
modification that impacts almost all cellular activities, including protein 
degradation, cell cycle progression, apoptosis, and autophagy. This 
review highlights recent researches on the regulation of apoptosis 
and autophagy by ubiquitination, with particular emphasis on how this 
regulation affects tumorigenesis.

Targeting Ubiquitination and Related
Pathways in Cancer Therapy

Ubiquitination is a process in which one or multiple ubiquitin 
moieties are covalently attached to a substrate through an enzymatic 
cascade involving ubiquitin-activating enzyme (E1), ubiquitin-
carrier protein (E2), and ubiquitin-protein ligase (E3). Formation 
of a ubiquitin Lys48 chain on the ε-NH2 group of a substrate’s 
internal Lys residue (polyubiquitination) can target the substrate for 

degradation by the 26S proteasome. Ubiquitin can also be attached 
to the free α-NH2 group in a substrate’s N-terminus to promote 
proteasomal degradation[2]. The ubiquitin-proteasome pathway 
degrades most cellular proteins in eukaryotic cells. However, 
ubiquitination may not always target proteins for degradation. For 
example, polyubiquitination at Lys63 is involved in inhibitor of NF-
κB (IκB) kinase (IKK) activation[3]. In addition, a linear polyubiquitin 
chain can be achieved by conjugating the C-terminal glycine of 
ubiquitin and the a-NH2 group of the N-terminal methionine of its 
neighbor ubiquitin[4]. Substrates can also undergo monoubiquitination 
or multi-monoubiquitination—adding one ubiquitin to one or multiple 
Lys residues, respectively. Recent evidence suggests that ubiquitin 
can be linked to Cys, Ser, or Thr residues in a substrate through 
thio- or oxy-ester bonds (i.e., esterification), though the physiological 
relevance of these modifications remains to be defined[5-7]. Ubiquitin 
moieties can be released from a substrate by deubiquitinating 
enzymes.

For an organism to function properly, proteins must be degraded 
after they undergo specific functions. Moreover, proteins that are 
misfolded or damaged during translation, folding, or translocation 
must be degraded and eliminated in time. Many regulatory proteins 
related to tumorigenesis are proteosomal substrates. Either blocked 
degradation of oncogenic proteins/growth-enhancing factors or 
accelerated degradation of growth-suppressing proteins may disrupt 
the pathways controlling cell cycle progression, cell death, or 
survival, leading to cancer development[8,9] (Table 1). For example, 
the tumor suppressor CYLD is mutated in several cancers, including 
cylindromatosis. The deubiquitinating activity of CYLD for IKKγ is 
critical for its cylindromatosis-suppressive function[10]. The ubiquitin 
ligase Itch promotes the polyubiquitination and degradation of large 
tumor suppressor 1 (LTSA1), which is closely related to enhanced 
cell growth and epithelial-to-mesenchymal transition. 
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Due to the critical roles of ubiquitination and the ubiquitin-
mediated proteolysis in tumorigenesis and cell growth, targeting the 
components involved in these processes is a powerful approach 
for cancer therapy. Bortezomib is the first proteasome inhibitor 
for clinical use in human cancers[11]. It is a dipeptide boronate that 
specifically and reversibly blocks chymotrypsin-like activity of the 
proteasome in a variety of cancer cells[12]. Although bortezomib 
inhibits NF-κB activation and results in autophagy[13], this lethal 
effect of proteasome inhibition is probably due to loss of amino acid 
homeostasis[14]. Notably, bortezomib has been used successfully as 
an anticancer drug for multiple myeloma and mantle cell lymphoma in 
the clinic[12,15-17]. 

Because ubiquitination is generally substrate-specific, the 
components of the ubiquitination pathway might be more specific 
drug targets for cancer therapy than the proteasome. Cullin-RING 
ubiquitin ligases (CRLs) are involved in cellular processes such as 
cell cycle progression, cell death signaling, DNA damage, and stress 
responses[18]. NEDD8 is a ubiquitin-like protein that modifies Cullin 
and is required for the activity of CRLs[19]. Because NEDD8-activating 
enzyme (NAE) catalyzes the first step in the NEDD8 pathway, 
targeting CRLs via inhibition of NAE may be a promising anticancer 
strategy. Indeed, MLN4924, a selective inhibitor of NAE, has potent 
tumor-suppressing activity in a wide range of tumors, including acute 
myeloid leukemia and diffuse large B cell lymphomas[20,21].

Regulation of Apoptosis by
Ubiquitination

Apoptosis (i.e., programmed cell death) is a cellular suicide 
process that is important for embryonic development and 
maintaining the size of cell populations. There are two primary 
apoptotic pathways: extrinsic and intrinsic. The extrinsic pathway 
involves members of the tumor necrosis factor (TNF) receptor 
gene superfamily, which bind extracellular ligands and transduce 
intracellular signals during cell destruction. This pathway involves 
several caspases, cysteine proteases with specific cellular targets[22]. 
The intrinsic pathway does not involve receptor-mediated intracellular 
signaling, but induces signaling in mitochondria. In mammals, the 
intrinsic pathway is regulated by the Bcl-2 family of proteins, the 
adaptor protein apoptotic protease-activating factor-1 (Apaf-1), and 
the caspases[23]. 

Bcl-2 family members include both anti-apoptotic (Bcl-2, Bcl-xL, 
Bcl-w, and Mcl-1) and pro-apoptotic proteins (Bax, Bak, Bad, Bid, and 
Bim). Caspases are crucial intracellular executioners of apoptosis. 
The release of cytochrome C from mitochondria causes the formation 
of the apoptosome (Apaf-1/caspase-9 complex), activates the 
downstream effector caspases, and finally results in cleavage of 
crucial substrates[24]. Degradation of anti-apoptotic members is 
necessary for apoptotic progression[25-27], whereas degradation of pro-
apoptotic members is required for the suppression of apoptosis[28,29]. 

↑ stands for up-regulation, and ↓ for down-regulation. MALT, mucosa-associated lymphoid tissue; AML, acute myeloid leukemia.

Table 1. Deregulated ubiquitination of key substrates in different cancer types

Deregulated protein        Substrate              Modification Tumors Reference(s)

MDM2 (HDM2)   ↑ ↑ p53 Polyubiquitination Non-small cell lung cancer, breast cancer, 
soft tissue carcinoma, colorectal cancer 

[71,72]

HAUSP                ↓ ↓ p53, MDM2 De-ubiquitination Non-small cell lung cancer, lymphoma [73]
APC                          ↓ Cyclin B, securin Polyubiquitination Colorectal cancer [8]
FANCL                ↓  ↓ FANCD2 Monoubiquitination Fanconi anaemia related cancers [74]
CYLD                ↓    ↓ IKKγ De-ubiquitination Cylindromatosis [10]
IAP2                ↓     ↓ BCL10 Polyubiquitination MALT lymphomas [75]
CBL                ↓      ↓ RTKs Multiple monoubiquitination Lymphoma, AML, gastric carcinoma [76]
pVHL                ↓    ↓ HIF Polyubiquitination von Hippel-Lindau disease [77,78]
E6-AP     p53 Polyubiquitination Human papillomavirus-positive cancer [79]
SCFβ-TRCP    ↑           ↑ IκB Polyubiquitination Colon cancer, prostate cancer, melanoma [80]
KLHL20    ↑            ↑ PML Polyubiquitination Human prostate cancer [81]
USP9X    ↑             ↑ MCL1 De-ubiquitination Diffuse large B-cell lymphomas, 

human follicular lymphomas
[82] 

FBW7                ↓   ↓ KLF5 Polyubiquitination Breast cancer [83]
ITCH    ↑                 ↑ LATS1 Polyubiquitination Cancer cell lines (HeLa, MCF10A and MCF7) [84,85]
SIAH2    ↑               ↑ C/EBPδ Polyubiquitination Breast cancer [86]
ASB2α    ↑              ↑ Filamin Polyubiquitination Myeloid leukemia [87]
FBXO11 (mutation) BCL6 Polyubiquitination Diffuse large B-cell lymphoma [88]
Ubiquilin-1               ↑ BCL2L10/BCLb Monoubiquitination Lung adencarcinomas [32]
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The levels of anti- and pro-apoptotic molecules can be regulated by 
ubiquitination and proteasomal degradation. Bcl-2 family proteins 
can be polyubiquitinated and degraded by the 26S proteasome. 
For example, Trim17-mediated ubiquitination and subsequent 
degradation of Mcl-1, an anti-apoptotic Bcl-2 family member, triggers 
neuronal apoptosis[30]. The pro-apoptotic Bcl-2 member Bax can 
be regulated by ubiquitination indirectly; the ubiquitin ligase Trim39 
inhibits APC/C Cdh1-mediated ubiquitination and degradation of 
the Bax activator MOAP-1, thus enhancing Bax activation and 
apoptosis[31]. Moreover, the levels of Bcl2L10/Bclb, an anti-apoptotic 
Bcl2-like protein, are inversely correlated with survival in patients with 
several cancer types, including lung adenocarcinomas. Bcl2L10/Bclb 
can be specifically monoubiquitinated and stabilized by ubiquilin-1 
(UBQLN1)[32] .

The inhibitors of apoptosis proteins (IAPs) have one to three 
baculovirus IAP repeat (BIR) domains and can block apoptosis by 
directly binding and inhibiting caspases[33,34]. Furthermore, almost 
all IAPs have ubiquitin ligase activity, which is required for the 
ubiquitination of certain substrates involved in apoptosis[35]. X-linked 
inhibitor of apoptosis protein (XIAP) catalyzes the ubiquitination and 
degradation of caspase-3[36,37]. cIAP1 promotes autoubiquitination and 
self-degradation[38]. Apoptosis inducing factor (AIF) is also a substrate 
of XIAP, and ubiquitination at K255 of AIF shows a non-degradable 
role of ubiquitination in caspase-independent cell death[39]. On the 
other hand, IAPs can be regulated by deubiquitinating enzymes. For 
example, ubiquitin-specific protease 19 (USP19) is responsible for 
the inhibition of TNF-α-induced caspase activation and apoptosis in 
a cIAP-dependent manner[40].

The activity of IAPs can be suppressed by pro-apoptotic 
factors, such as second mitochondria-derived activator of caspase 
(Smac)[41]. Conversely, some IAPs promote Smac ubiquitination and 
degradation[42]. BRUCE/Apollon is a large (528 kDa), membrane-
associated, essential IAP in mammals. A decrease in BRUCE levels 
promotes apoptosis[43]. BRUCE inhibits the Smac-induced apoptosis 
by promoting Smac ubiquitination and degradation[44,45]. Furthermore, 
BRUCE/Apollon can be degraded in a ubiquitin-dependent manner 
by the ubiquitin ligase Nrdp1 during apoptosis. 

The tumor suppressor p53 maintains the integrity of the genome 
and regulates cell cycle, DNA repair, and apoptosis. p53 promotes the 
activation of the pro-apoptotic Bcl-2 family proteins and the release 
of cytochrome C. Dysregulation of p53 is reported in numerous types 
of cancer. Several ubiquitin ligases, including MDM2, have been 
reported to promote ubiquitination and degradation of p53, while 
p53 is deubiquitinated and stabilized by ubiquitin-specific proteases 
(USPs). Evasion of apoptosis is a primary cause of tumorigenesis. 
Thus, inhibiting the activity of p53 ubiquitin ligases or activating p53 
USPs can be a strategy for cancer therapy. Otub1 and nucleolin 
play direct roles in suppressing MDM2-mediated ubiquitination 
of p53[46,47]. HAUSP regulates the activities of MDM2 and p53 by 
deubiquitination, while vif1 and vif2 antagonize HAUSP and promote 
p53-dependent apoptosis[48]. Translationally controlled tumor protein 
(TCTP), which is down-regulated in tumor progression, inhibits MDM2 
autoubiquitination and promotes MDM2-mediated ubiquitination and 
degradation of p53[49]. In addition, Fanconi anemia complementation 

group F (FANCF) monoubiquitinates FANCD2, which is involved in 
the FA/BRCA DNA damage response pathway. Silencing FANCF 
elevates p53 activation in mitoxantrone-treated breast cancer cells[50].  

As a transcription factor involved in the extrinsic apoptosis 
pathway, NF-κB activates the expression of genes that contribute 
to cell proliferation, metastasis, and suppression of apoptosis. 
SHARPIN, a ubiquitin-binding and ubiquitin-like-domain-containing 
protein, promotes linear ubiquitination of NEMO/IKBKG, an adaptor 
of IKKs, and subsequent activation of NF-κB signaling[51]. IκB, which 
inactivates NF-κB under normal physiological conditions, can be 
phosphorylated by activated IKKβ, ubiquitinated by SCFβ-TRCP, and 
finally degraded by the proteasome in response to DNA damage[52,53]. 
Nrdp1 promotes ubiquitination and degradation of the epidermal 
growth factor receptor family member ErbB3, which is upstream of 
NF-κB activation[54,55]. In a word, ubiquitination plays an important role 
in the regulation of apoptosis, and the components involved in the 
ubiquitination of key substrates can be potential targets for cancer 
therapy (Figure 1). 

Regulation of Autophagy by
Ubiquitination

Autophagy, once categorized as programmed cell death 
type II, is a cellular process by which intracellular proteins, lipids, 
and organelles are degraded in the lysosomal compartment after 
delivery from other cellular compartments[56]. Autophagy can both 
suppress cancer initiation and promote the growth of established 
cancers[57]. There are three types of autophagy: macroautophagy, 
microautophagy, and chaperone-mediated autophagy. Although 
autophagy is generally thought to be non-selective, certain 
ubiquitinated proteins (e.g., catalase), organelles (e.g., peroxisomes 
and mitochondria), and invading bacteria have been shown to be 
selectively targeted for autophagic degradation[58]. 

Macroautophagy is mediated by a unique organelle—the 
autophagosome. To date, 18 autophagy-related proteins (Atgs) in 
yeast, namely Atg1–10, Atg12–14, Atg16–18, Atg29, and Atg31, have 
been found to play a role in autophagosome formation. Atg8, called 
LC3 in mammals, is a ubiquitin-like protein present on autophagic 
membranes as a phosphatidylethanolamine (PE)–conjugate. 
Ubiquitination plays important roles in selective autophagy. p62/
SQSTM1 or NBR1 binds both ubiquitin and LC3, probably providing 
a selective link between ubiquitinated substrates and autophagy[59]. 
Nuclear dot protein 52 (NDP52), an autophagy receptor, targets 
intracellular ubiquitinated bacterial proteins for autophagic 
degradation[60]. 

Misfolded polypeptides are usually recognized by molecular 
chaperones and degraded by  the pro teasome fo l lowing 
polyubiquitination by ubiquitin ligases, such as CHIP and Parkin. 
However, when misfolded proteins cannot be sufficiently removed by 
chaperone-mediated proteasomal degradation, protein aggregation 
occurs and may in turn inactivate the proteasome, resulting in 
cytotoxicity. Thus, p62/NBR1-mediated autophagic degradation may 
serve as an important compensatory mechanism for degradation of 
these ubiquitinated protein aggregates[59].
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Role of Ubiquitination in Mutual
Regulation of Apoptosis and Autophagy 

The crosstalk between autophagy and apoptosis is necessary 
for controlling the balance between cell survival and death. These 
two processes share common stimuli and signaling pathways (Figure 
2). Beclin 1, a mammalian Atg6 ortholog, is a subunit of the class 
III PI3-kinase complex. Beclin 1 interacts with Bcl-2 via the BH3 
domain in Beclin 1 but can be released in starvation conditions to 
activate autophagy. This interaction can be terminated through c-Jun 
N-terminal kinase (JNK)–mediated phosphorylation of Bcl-2 and TNF 
receptor-associated factor 6 (TRAF6)–mediated ubiquitination of 
Beclin 1[61,62]. Phosphorylated Bcl-2 binds the pro-apoptotic protein 
Bax to inhibit apoptosis. Under extreme conditions that cannot be 
rescued by autophagy, JNK promotes hyperphosphorylation of Bcl-
2, resulting in the release of Bax to execute apoptosis[63]. Caspase-
mediated cleavage of Beclin 1 inhibits Beclin 1–induced autophagy, 
and the cleavage product, the C-terminal region (CT), enhances 
apoptosis by promoting the release of pro-apoptotic factors from 
mitochondria[64]. Beclin 1 can also indirectly affect the crosstalk 

between apoptosis and autophagy by controlling the levels of 
p53, a tumor suppressor that promotes apoptosis under genotoxic 
stress[12,65]. p53 induces the synthesis of mTOR and DRAM[66]. 
Inhibition of mTOR induces autophagy, whereas knockout of DRAM 
reduces autophagy[67,68]. Furthermore, p53 can down-regulate LC3 
levels in starved cells, preventing the “autophagy burst” that may be 
dangerous for cells[69]. Under normal conditions, p53 is kept at low 
levels by the ubiquitin ligase MDM2[70]. However, p53 levels can also 
be controlled by Beclin 1 via regulating the deubiquitinating activity of 
USP10 and USP13[65].

Concluding Remarks
Dysregulation of ubiquitination can lead to the development 

of several types of cancer. Targeting ubiquitination is therefore a 
promising strategy for cancer therapy. Ubiquitination can occur on 
not only the ε-NH2 group of an internal Lys residue, but also the 
α-NH2 group of the N-terminal residue of a substrate. Moreover, 
recent evidence suggests that ubiquitin can be attached to Cys, 
Ser, or Thr residue on a substrate by esterification. These non-Lys 
ubiquitinations might provide another layer of the regulation of protein 

Figure 1. Regulation of apoptosis by ubiquitination. Apoptosis is controlled by both pro-apoptotic and anti-apoptotic factors. Ubiquitination regulates 
almost all of these factors and promotes their proteasomal degradation. IAPs, inhibitors of apoptosis proteins.
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functions, and further studies should focus on the identification of 
relevant substrates and physiological roles of these modifications. 

Future studies should also further explore how the ubiquitination 
of the critical proteins is involved in tumorigenesis and cancer 
therapy. Of course, these studies will require better understanding of 
tumorigenesis mechanisms. Recent research efforts on cancer stem 
cells and personalized cancer genome sequencing are expected 
to help in this regard. The mechanisms governing the selectivity in 
autophagy remain to be further explored. Because the cytoprotection 
of autophagy and the evasion of apoptosis contribute to resistance to 
cancer therapy, it is important to unravel how these two pathways are 
mutually regulated. The investigation on this issue has just begun and 

deserves more attention, especially with regard to how ubiquitination 
is involved in the counter-regulation of these critical processes. 

Acknowledgments 
This work was supported by grants from the Ministry of Science 

and Technology of China (No. 2012CB910300), the National Natural 
Science Foundation of China (No. 30525033), and the Fundamental 
Research Funds for the Central Universities of China to X.-B. Q. 

  Received: 2012-11-22;          revised: 2013-02-20;
  accepted: 2013-03-15.

Figure 2. Model for a role of ubiquitination in mutual regulation of apoptosis and autophagy. Autophagy can target ubiquitinated misfolded proteins, 
caspases, and other cargo (such as damaged mitochondria and invading bacteria) for degradation, probably through p62 and NBR1. Apoptosis and 
autophagy are counter-regulated in multiple steps, such as at p53, the Beclin 1/Bcl-2 interaction, the cleavage of Beclin 1 into the C-terminal region by 
caspases, and the autophagic degradation of caspases. Ubiquitination can promote degradation of both p53 and Beclin 1 and thus, controls the mutual 
regulation of apoptosis and autophagy.
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