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ABSTRACT

Unoxidized crystalline silicon, characterized by high
purity, high homogeneity, sturdiness and an atomic-
ally flat surface, offers many advantages for the con-
struction of electronic miniaturized biosensor arrays
upon attachment of biomolecules (DNA, proteins
or small organic compounds). This allows to study
the incidence of molecular interactions through the
simultaneous analysis, within a single experiment, of
a number of samples containing small quantities
of potential targets, in the presence of thousands of
variables. A simple, accurate and robust methodo-
logy was established and is here presented, for the
assembling of DNA sensors on the unoxidized, crys-
talline Si(100) surface, by loading controlled amounts
of a monolayer DNA-probe through a two-step pro-
cedure. At first a monolayer of a spacer molecule,
such as 10-undecynoic acid, was deposited, under
optimized conditions, via controlled cathodic elect-
rografting, then a synthetic DNA-probe was anchored
to it, through amidation in aqueous solution. The sur-
face coverage of several DNA-probes and the control
of their efficiency in recognizing a complementary
target-DNA upon hybridization were evaluated by
fluorescence measurements. The whole process

was also monitored in parallel by Atomic Force
Microscopy (AFM).

INTRODUCTION

Unoxidized crystalline silicon is considered the support of
choice in nanobiotechnology (1), due to the uniformity and
homogeneity of its surface at the nanometer scale (2,3) (http://
public.itrs.net). However, numerous other materials, such as
gold (4-22), glass (23-32), quartz (33-36), metal oxides (37),
oxidized silicon (38—44), organic polymers (45-50), harbour-
ing oligodeoxyribonucleotides (ODNs) as probes, have been
much more considered for the preparation of biosensors.
Related publications are, in fact, relatively few (3,51-
56) and do not adequately address the following fundamental
issues. First, the formation of the layer was performed through
several steps in most reported cases (51-54,56), one step being
an alkaline hydrolysis (52,54), which inevitably damages the
silicon surface (51). Second, the quality of the cross-linking
layer, spacing out the silicon surface and supporting the ODN,
was controlled and optimized only in a few cases (53,56),
although this feature critically influences reproducibility in
using the resulting materials (3,24,28,35,41,50). Third, the
probe concentration on the surface was usually not quantified,
even though it is well-known that this concentration should
be kept below a limiting value: 2 x 10'? strands/cm® accord-
ing to some reports (5,16,17,22), or 4-6 X 10'? strands/cm?
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according to other reports (4,10,11), for attaining the
maximum hybridization efficiency and thus for attaining the
maximum sensitivity and selectivity; in fact only the hybrid-
ized target-ODN concentration was commonly reported
(51-53). Fourth, the accuracy of this latter determination,
achieved by solid-state fluorescence microscopy (51,52) and
by electrochemistry with an external probe (53), was rather
low so that the authors themselves write of ‘approximate,
rough values’.

In this work we present our contribution, outlined in
Scheme 1, addressing the four points cited above: as reported
previously (57), we have functionalized unoxidized crystalline
silicon with 10-undecynoic acid (SiFCOOH) in a single step
procedure, obtaining a controlled monolayer of the acid. On
this surface we have anchored a fluorescent-ssODN, verifying
the loading upon digestion with a DNase. Alternatively, this
anchored ODN was considered as a probe and hybridized with
a complementary, fluorescent-ssODN, which, after repeated
washing, was subsequently freed through denaturation and
measured. The ODN linked on the surface was then, digested
and evaluated as before, to estimate the hybridization effici-
ency. The whole process was monitored in parallel by Atomic
Force Microscopy (AFM).

MATERIALS AND METHODS

1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochlor-
ide (EDAC) and N-hydroxy succinimide (NHS) were from
Fluka and used as received. All reagents used for preparing
buffer solutions and Phosphodiesterase I from Crotalus
adamanteus were from Sigma. Standard commercial reagents
required for ODNs synthesis, including 3’-Amino-ON CPG
columns and 5’-(6-FAM)-Fluorescein phosphoramidite were
from Proligo Biochemie and Link Technologies. All ODNs
were prepared on a Perseptive Biosystems Expedite 8909
automatic DNA synthesizer, using standard phosphoramidite
chemistry. High-performance liquid chromatography (HPLC)
was performed using a Perkin-Elmer Series 410 Bio LC pump
system equipped with a Perkin-Elmer 235C Diode Array.
The absorption spectra of ODNs were recorded with a
Perkin-Elmer Lambda Bio 40 spectrophotometer. The
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concentration of the ODNs is expressed in 107¢ mol/l U
(uM). Fluorescence measurements in solution were carried
out on a Perkin-Elmer MPF-44B spectrometer. For AFM
investigations, a homemade apparatus was used, as described
elsewhere (58).

Silicon surface activation and functionalization with
10-undecynoic acid

Single-side polished n-Si wafers (from Siltronix, phosphorus-
doped, 0.1-0.01 Q cm resistivity, (100) orientation, 1 inch
diameter, 500 wm thickness) were first washed in boiling
1,1,2-trichloroethene for 10 min and subsequently in methanol
at room temperature, with sonication for 5 min. They were
then oxidized in H,O, (30%)/HCI (37%)/H,0 (2:1:8) at 80°C
for 15 min, repeatedly rinsed with water, etched with 10%
aqueous HF for 10 min, rinsed with water again, dried
through a stream of N, and immediately closed in a dry-
box to undergo the functionalization process. The functional-
ization with 10-undecynoic acid was performed via cathodic
electrografting (CEG), according to the procedure reported
previously (57). In details, this CEG process was carried
out at constant intensity current (0.6 mA) in a two compart-
ment polyethylene cell. The working electrode was the silicon
wafer with 1.5 cm? exposed area, in a CH5CN solution (3.5 ml)
of 10-undecynoic acid 0.1 M and tetraethylammonium per-
chlorate (TEAP) 0.1 M as the supporting electrolyte. An ohmic
contact on the rear side of the silicon was established after
scratching the surface, rubbing it with Ga-In eutectic and
attaching a copper contact to it. The electrode set-up was
obtained by pressing the silicon wafer against an O-ring seal-
ing a calibrated hole in the bottom of the cell. The counter
electrode was a Pt-coil in a 3 ml solution of TEAP 0.1 M in
CH;CN, filling a glass tube separated from the working com-
partment by a glass sintered disc (porosity 3). Several samples
were prepared varying the total amount of faradaic charge (Q),
passed during CEG.

Preparation of ODNs

The ODNSs (Table 1, 1-8) were prepared at the 1 umol scale
and, having used Tac-protected dC (Proligo), were cleaved
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from the solid support by a mixture of ammonia and methyl-
amine (AMA, Beckmann) in 10 min at room temperature,
then the solution was heated for 10 min at 55°C. After remov-
ing AMA by rotating evaporation under vacuum (Speed Vac,
Savant), the samples were dissolved in triethylammonium
acetate 0.1 M (pH 7.0) buffer (TEAA) and purified on an
HPLC column Vydac C18, 300 A, 5u, 50 x 22 mm, eluted
at a flow-rate of 6 ml/min with a linear gradient 3-45% MeCN
in TEAA 0.1 M (pH 7.0), in 20 min. The ODNs were further
purified by HPLC on a SAX Dionex Nucleopackl00,
250 x 22 mm column, with a slightly concave gradient
10-30% of NaClO4 0.5 M in Tris—HCI 25 mM buffer
(pH 8), in 15 min, at a flow-rate 9.0 ml/min, then lyophilized
and desalted on the Vydac column as above, but replacing
TEAA with water. The ODNs were analysed on a SAX Dionex
Nucleopack100, 250 x 4 mm column, with the same gradient
as above, at a flow-rate 1.5 ml/min. The ssODNs were also
analysed by PAGE on 15% polyacrylamide, 7 M urea gels
(1 mm), containing 50 mM Tris-borate (pH 8.0), 0.1 mM
EDTA buffer (Sigma), staining with ethidium bromide.
The dsODNs were analysed both by HPLC and PAGE
under analogous conditions as above, but omitting urea
in PAGE.

Immobilization of ODNs

Unoxidized, crystalline silicon samples, pre-functionalized
with undecynoic acid, were immersed in 4 ml phosphate buffer
[Na,HPO,/NaH,PO, (pH 6.84)] containing variable concen-
tration of ODN (ca. 30-0.5 uM), EDAC 0.026 M and NHS
0.0017 M and let react overnight at room temperature.
Afterwards, the solution was removed and silicon was cleaned
by sonicating two times for 20 min with phosphate buffer and
two times for 20 min with NaH,PO, 20 mM, NaCl 300 mM,
EDTA 2 mM, SDS 7 mM (SPPE) and then rinsed thoroughly
with SPPE at 60°C until the discarded solution was no longer
fluorescent. The incubation time proved suitable to attain
the thermodynamic equilibrium of the loading on to the Si
FCOOH substrate. ODN 2 was chosen as test-probe; different
surface loading values were obtained depending on the ODN
concentration in solution (Table 2). The other ODNs used as
probes (1,5,7) were anchored after selecting the appropriate
conditions, based on the results for ODN 2 (see below).

Fluorescence measurement calibration

The concentration of the ODNs in solution was calculated
using the extinction coefficient derived from the Oligonuc-
letide Properties Calculator (www.basic.northwestern.edu/
biotools/oligocalc.html), assuming that the presence of the
linker arm does not influence the ODNs optical properties.

Table 1. List of oligodeoxynucleotides

1 Fluorescein-5'-dA,-3'-Hexyl-NH,

2 Fluorescein-5'-dT,y-3'-Hexyl-NH,

3 Fluorescein-5'-dA,y-3'

4 Fluorescein-5'-dTy-3'

5 Fluorescein-5'-d(GCCTGGCTAGGTGACGAGCT)-3'-Hexyl-NH,

6 Fluorescein-5'-d(AGCTCGTCACCTAGCCAGGC)-3'

7 Fluorescein-5'-d(GCATCATACGATATCCATG
ACGAGTGACCGTCGAGAGGTCACACGAGTCTG)-3'-Hexyl-NH,

8 Fluorescein-5'-d(GTCATGGATATCGTATGATGC)-3’
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Given the fact that the fluorescence quantum yield of fluor-
escein is dependent on the substrate to which it is bound (59),
then the corresponding fluorescence calibration plot was
determined for each fluorescein-labelled ODN used in this
study (Table 1, 1-8). Fluorescence intensity (A.x = 492 nm,
Aem = 520 nm) was measured twice on five samples at con-
centrations in the range 0.5-6.0 x 10~° M, prepared from
10~* M stock solutions of each ODN, either in the digestion
buffer (Tris—HCI), after digestion of the ODN with Phosphodi-
esterase I (1,2,5,7), or in 7 M urea (3,4,6,8), i.e. the expected
solution composition and range of measurement. Two typical,
slightly different trends, namely of ODN 2 and 3, in Tris—HCI
buffer after enzymatic digestion and 7 M urea, respectively,
are reported here (Figure 1). They are both linear, expressed
by the equations 1.10 + 7.34(x) and 2.96 + 6.55(x), with asso-
ciated correlation indexes 0.9744 and 0.9933, resulted by
application of least-squares fitting, including the origin as
an experimental point. Using these calibration plots, the appro-
ximation on fluorescein determination is ca. 0.10 x 10~° M,
and thus the limit of detection (LOD) of fluorescein in

Table 2. Density of the ODN-probe 2 immobilized on the silicon surface
(1.5 cm? exposed area) as function of its concentration in solution®

ODN concentration
in solution (UM)

ODN density on
silicon surface
(10]2 strands/cmz)

Hybridization
efficiency %"

27.135 8.10 40
13.567 9.44 73
2.714 6.54 92
0.543 5.64 100
0.135 2.09 100

“Reaction conditions: 4 ml phosphate buffer plus EDAC 0.026 M and NHS
0.0017 M; overnight; room temperature.

°After hybridization, denaturation and fluorescence measurements in solution
(see text).
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Figure 1. Dependence of the maximum intensity emission (A.,, = 520 nm,
Aex = 492 nm) of ODN 2 Fluorescein-5'-dT,y-3'-Hexyl-NH, on its concentra-
tion in Tris—HCI buffer after digestion with Phosphodiesterase I (straight line,
closed circle) and of 1 ODN Fluorescein-5'-dA,o-3’ in urea 7 M (dashed line,
closed inverted triangle).
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solution is ca. 0.30 x 10~° M, equivalent to 1.2 X 107" mol,
for a measurement volume of 4 ml. By considering that such
two-dimensional ODN-monolayers, fully coverin§ the planar
support, have a density of 6 x 10~'" mol/cm” (60), this
method allows to detect a submonolayer lower than 2.0%,
provided that the area of the functionalized silicon surface
is = 1.0 cm? and the volume of the solution is <4 ml. The
calibration plot equations for the other cases are the following:
0.87 + 9.82(x), 3.28 + 7.59(x), —0.60 + 1.77(x)  and
—2.72 + 7.20(x) for ODN 1, 2, 5 and 7 in Tris—=HCL buffer;
2.53 + 9.95(x), 0.32 + 2.64(x) and —2.34 + 10.13(x) for ODN
1, 5 and 7 in the same buffer but after the enzymatic digestion;
—0.422 +1.01(x), 2.10 + 4.34(x) and 1.37 + 5.32(x) for ODN
4, 6 and 8 in urea 7 M.

Evaluation of the anchored ODNs

The enzymatic degradation of the probe-ODNs present on the
silicon surface was accomplished by immersing the sample
in 4 ml of KH,PO, 10 mM, 10 mM MgCl,-6H,O (pH 7.0),
adding 4 mU of Phosphodiesterase I, leaving for 6-24 h at
40°C, following digestion kinetics up to apparent completion
through fluorescence measurements. The results for ODN 2
are reported in Figure 2.

T, measurements

The ability to hybridize of the free, modified complementary
sSODNs (1+4, 2+ 3,5+ 6 and 7 + 8) was monitored by
heating the appropriate equimolar mixtures (2.7-0.9 uM) in
NaH,PO4 10 mM, NaCl 100 mM, EDTA 0.1 mM (pH 7.2), at
95°C for 2 min and allowing them to reach slowly r.t. Thermal
denaturation curves were then obtained by monitoring the
absorbance of the pre-hybridized ODNs at 260 nm as a func-
tion of temperature with a Perkin-Elmer 330 spectrometer,
equipped with a Peltier temperature control accessory, in a
stoppered 1 cm path length couvette. A ramp rate of 1°C/min
with a hold time of 1 min was used over the range 25-85°C. T},
values of 44.6°C for both 1 + 4 and 2 + 3, and 66.9°C for
5 + 6 were estimated from the inflection points of the curves
obtained by plotting the collected data of absorbance versus

Fluotrescence intensity (arbitrary units)
~

0 1 2 3 4 5 6
Time (h)

Figure 2. Solution fluorescence intensity versus time, during the enzymatic
digestion of an amino-terminated oligonucleotide (2) immobilized on the
silicon surface.
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temperature. The hybrid 7 + 8 did not show any definite
inflection point, although producing a continuous increase
of absorbance upon heating.

Evaluation of on-surface hybridization

The surface, derivatized with either 1, 2, 5 or 7 ODN, was
immersed into 4 ml of ca. 10 uM hybridization solution of 4,
3, 6 or 8, respectively. The system was then heated at 90°C
for 5 min, slowly let cool down to room temperature, and left
for 1 h at 5°C. Afterwards the solution was removed, the
surface was repeatedly soaked into a solution of hybridization
buffer and then two times for 5 min in SPPE at room temper-
ature, until the discarded solution was no longer fluorescent, in
order to remove all unbound ODN. Afterwards, denaturation
of the hybrid was accomplished by immersing the sample in
4 ml of urea 7 M at 90°C, for 5 min. The solution was removed
while still hot, cooled down to room temperature and ana-
lysed through fluorescence measurements. The repetition of
the procedure produced no additional fluorescence. The sam-
ple was then addressed to the evaluation of ODN loading.
Furthermore, the minimal amount of ODN-target in solution,
which can be detected within the dynamic range accessible
with this method, was determined. To this end, seven samples
with immobilized ODN-probe 2 at almost the same surface
density (5.64-5.87 x 10'* strands/cm?) were prepared and
hybridized with the ODN-target 3 at a variable solution con-
centration (10.615-0.312 uM). The obtained results are repor-
ted in Table 3.

AFM imaging

AFM images, were taken in different areas of every sample in
order to characterize the quality of each step of the procedure,
either in the contact or in the tapping mode and all samples
resulted homogenous. The measurements were performed in
air, at room temperature and constant 30% relative humidity.
No noise filter was applied to the raw data which were treated
by only a background subtraction and, when necessary, a plane
alignment. In the contact mode, the microscope works in the
weak repulsive regime, with interactions between tip and
sample <1 nN, allowing high resolution imaging. The images
of the 10-undecynoic acid layers were taken in this way.
Moreover, the lateral scanning motion of the tip in
the contact mode can be recorded through a lateral force

Table 3. Density of the ODN-target 3 hybridized” with the ODN-probe
2 immobilized on the silicon surface of 1.5 cm? exposed areab, as function
of its concentration in solution

ODN concentration in
solution (UM)

ODN density on silicon
surface (10'? strands/cm?)

10.615 5.60
9.369 5.63
3.123 2.39
1.874 2.82
1.615 2.17
0.625 2.39
0.312 1.95

“Reaction conditions: 4 ml hybridization buffer, at 90°C for 5 min and then at
5°C for 1 h (see Materials and Method).
PODN-probe 2 density on silicon surface for the various samples is nearly
constant: 5.64-5.87 x 10'? strands/cm?.
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(or friction force) modality that can give useful information
regarding the chemical properties of the sample: different
chemical properties usually imply different frictions between
the sample and the scanning tip. In this case, the acquired
information are qualitative and the corresponding cross section
profile of the lateral force is expressed in arbitrary units (a.u.).
On the other hand the contact mode operation implies forces
that can produce a deformation of soft samples like ODNs on
the surface. In extreme cases, the molecules could even be
swept away from the surface and the particles could stick to the
tip, thus damaging the sample and reducing the resolution of
the measurement (61). Therefore, the ideal work regime for the
analysis of the ODN covered samples is the intermittent con-
tact mode AFM [Tapping mode AFM (62)]. In this modality,
the tip oscillates on the sample with a mean interaction during
a complete oscillation in the order of tens of pN, while the
maximum interaction (still below 1 nN) is present only for a
very small fraction of the time per oscillation and the lateral
forces are strongly decreased. This allows a weak interaction
with the sample, while maintaining a good lateral resolution,
that depends on the choice of the tip in use.

In this work we have selected two kind of tips: standard
tips with a nominal apical radius of ca. 20 nm, which have been
used for most AFM contact and tapping mode images, and
‘super-tips’ with a nominal apical radius of 1-2 nm, which
were used to determine the influence of the tip apical radius
in the determination of the lateral dimensions of the imaged
ODN molecules. These ultra-sharp tips have the advantage
of delivering a high resolution imaging, but are expected to
introduce a larger deformation on the sample, since the same
force applied on a smaller area produces a higher pressure.

RESULTS AND DISCUSSION

To produce a good DNA sensor, the device should display
two specific relevant properties: (i) the cross-linking layer
between the surface and the ODN (the undecynoic acid
layer on silicon in our case) should be deposited as a uniform
monolayer and (ii) the surface density of the immobilized
ODN should be high enough to ensure the highest sensitivity
in the molecular recognition event, but must not exceed a
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value above which steric hindrance in the formation of double
strands on the surface becomes relevant (63).

With regard to the first point, taking advantage of our pre-
vious studies (57), we attained a uniform monolayer modu-
lating the faradaic charge during the CEG of the acid and
controlling with AFM the resulting surfaces. Several samples
were prepared varying the charge density from 1200 to
12 mC/cm® With 1200 mC/cm”® the acid has deposited as
multilayer, characterized by the presence of protrusions as
high as 8-15 nm (Figure 3). With a 10-fold lower charge
density, 120 mC/cm®, a uniform homogeneous monolayer
was formed, with typical corrugation falling between 1 and
2 nm, distinctly above the value (0.3—0.4 nm) characteristic of
the clean Si(100) surface, as we reported previously (57).
Then, lower charge densities of 36 and 12 mC/cm? were tested,
in order to check whether the exposure of the silicon surface
to the passage of a large charge, which can damage the surface,
could be avoided. With 36 mC/cm? a homogeneous mono-
layer was obtained, practically undistinguishable from that
obtained with 120 mC/cm”. An AFM topographic image of
a similar sample is presented and commented below. With
12 mC/cm? the silicon surface resulted characterized by a
lower typical corrugation (0.9 nm) and probably only partially
and non uniformly functionalized, as shown in the topographic
image (Figure 4A). In order to make this point clearer, the
same area was also analysed in the friction force modality,
showing the formation of round patches on the surface, that
appear in correspondence (see the cross section profile) to
properly functionalized zones (Figure 4B).

It should be noted that, in all cases, the charge used in the
CEG is in large excess with respect to the theoretical catalytic
amount needed. In fact, the overall process is a redox reaction
(=Si-H + HC=CR — =Si-C=CR + H,), catalysed by the
application of just a cathodic bias to the silicon surface,
then a surface silyl anion is generated, which initiates a chain
reaction (64). Evidently, in the chosen reaction conditions, the
current efficiency of this electrocatalysed process is very low.

Valuable information regarding the characterization of the
10-undecynoic acid monolayer, came from the analysis of
a tapping mode AFM image of a sample prepared by CEG
of 10-undecynoic acid at 36 mC/cm?, with the further depos-
ition of ODN-probe 2 as explained below, which, however,

e 16
lizm]

Figure 3. AFM contact mode topographic images (5 X 5 um) of 10-undecynoic acid CEG deposited on Si(100) surface at high cathodic charge density
(1200 mC/em?), showing non-homogeneity and aggregation (A). The white bar indicates the analysed zone. The cross section profile (B) is measured along

the bar.
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Figure 4. (A) AFM contact mode and (B) friction force topographic images (2 x 2 tm) of 10-undecynoic acid CEG deposited on Si(100) surface with at 12 mC/cm?
cathodic charge density. The surface appears less homogeneous than as in well-covered monolayers. Round, so called ‘friction holes’ appear in the friction image,
matching the higher areas in the contact mode topographic image. The white bar indicates the analysed zone. The corresponding cross section profiles, measured

along the bar, are reported below, in (C and D), respectively.

resulted loaded in a very low amount (below the detection
level by our methodology, i.e. <5 x 10" strands/cm?). The
analysis of the area reported in Figure 5 allowed to better
evaluate the actual thickness of the acid monolayer, eviden-
cing well distinguished functionalized and non-functionalized
areas. The ODN molecules appear as rare, sparse, round struc-
tures present on the surface, uniformly functionalized with
10-undecynoic acid and non-modified by the ODN immobil-
ization process. The non-functionalized scratch-like area is
most probably originated by the presence of some debris on
the silicon surface during the functionalization, that were then
removed by the cleaning procedure performed after the CEG,
leaving a clean non-functionalized area. In fact, a thorough
analysis of the image shows that the surface has a corruga-
tion of 1 nm outside the scratch and only 0.3 nm inside the
scratch, thus confirming the different nature of the two areas:
a functionalized crystalline silicon surface with a cleft-like
non-functionalized scratch. The depth of the scratch is ca.
1.5 nm, compatible with the dimension of a single layer of
10-undecynoic acid molecules, as found by other authors,
who, from an analogous AFM experiment concerning
the grafting of methyl 10-undecenoate on Si(100) surface,

reported a depth of a scratch, done on purpose in this case,
of 1.1 nm (65).

Subsequently, all other ODN-probes were immobilized on
substrates all prepared by CEG of 10-undecynoic acid at
Q = 36 mC/cm?, starting with ODN 2. They were anchored
on to the Si FCOOH surface under near equilibrium condi-
tions, using carbodiimide EDAC, R{N = C = NR, mediated
amidation in the presence of NHS as described in the
literature (3,54,55). More precisely, this reaction involves
several steps (http://chem.ch.huji.ac.il/~eugeniik/edc.htm),
as outlined in Scheme 2. The carbodiimide is the promoter,
which converts the acid into the O-acyl-urea intermediate (I);
NHS is a catalyst that readily reacts with (I) affording the
succinimidyl ester in situ (II); (II) is a well-known species,
which has been detected on silicon surface with ATR-FTIR
(55) and it has been also prepared and used ex sifu in this
process (3). The concentration of the immobilized ODN was
then evaluated through enzymatic digestion with a DNase.
To the best of our knowledge, this procedure was never
applied before for a similar purpose. The only related
reports (7,8) deal with the enzymatic removal of fluorescent
ODNS, deposited as millimetre sized spots on gold surfaces,
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and detected by fluorescence microscopy. It was claimed
that, the digestion is complete in 3 h, at room temperature,
with 20 U of enzyme. We used a lower enzyme amount
and verified the completeness of the digestion by measuring
the fluorescence of the solution over time. Fluorescence
increased asymptotically towards a limiting value (Figure 2)
and the digestion was apparently almost complete in 6 h.
Then, other experiments were performed varying the concen-
tration of the ODN-probe in the solution in contact with
the layer of 10-undecynoic acid, in order to assess the minimal
concentration necessary for attaining an optimal surface
functionalization, and the concentration of the ODN-target
in the solution in contact with the anchored ODN in the hybrid-
ization process, in order to assess the lowest ODN-target
concentration giving maximal response (100% hybridization)
through this procedure. As shown in Table 2, an ODN-probe
density of 5.64 x 10'? strands/cm® can be considered
optimal, and it resulted by reaction with probe-ODN at a
concentration in solution 0.543 uM. The minimal

0.0 pm 5.0

0nm
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ODN-target 3 concentration in solution, required for a
100% hybridization efficiency with ODN 2, was 9.369 uM
(Table 3). The LOD, (assumed as three times the noise level)
was determined by further lowering the ODN-target 3 con-
centration, and resulted 0.312 uM. Other experiments were
carried out with ODN (1,5,7), bearing the aminohexyl group,
as probes. The overall results are reported in Table 4. After
immobilization on identical supports (type A in Scheme 1), the
surface concentrations of the 20mers ODN 1 and 5, employing
a solution concentration equal to the optimal value already
established for 2 (0.54 uM), resulted (tESD from three
determinations) similar to each other and close to the optimal
value found for ODN 2: 5.63 + 0.15 and 5.93 = 0.34 x 10"*
strands/cm?, respectively. The 51mer 7 was used at concen-
trations in the solution in contact with the bound
10-undecynoic acid, up to 5.0 UM, but a surface concentration
of only 1.97 + 0.34 x 10'* strands/cm” resulted attainable,
which however is still in the optimal loading range, as

s ) f{/"‘ \f/

10 20

Figure 5. AFM tapping mode topographic image (A) (6 X 6 tm) of 10-undecynoic acid CEG deposited on Si(100) surface at 36 mC/cm? cathodic charge density and
covered with a very low concentration of ssODN 2. The non-functionalized area allows to define as ca. 1.5 nm the height of the 10-undecynoic acid layer on the
surface. The ODN molecules are represented as small round structures. The white bar indicates the analysed zone. The cross section profile (B) is measured along the
bar. It should be noted that the scratch profile line is fairly smooth, and the local corrugation of the monolayer is consistent with the uniform monolayer.
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Table 4. Experimental data obtained with ODNs immobilized and hybridized on the silicon surface

Support ODN (probe) Concentration (UM)* Reactant Surface ODN ODN (target) Surface hybridized
concentration ODN concentration
(10'? strands/cm?)° (10'? strands/cm?)®

Si FCOOH 1 0.54 EDAC/NHS 5.63 £0.15 2 7.56 £ 0.28

Si FCOOH 2 0.54 EDAC/NHS 5.64 £0.15 1 5.64 £0.18

Si FCOOH 5 0.54 EDAC/NHS 593 £ 0.34 6 7.43 = 0.80

Si FCOOH 7 5.0 EDAC/NHS 1.97 £ 0.16 8 2.78 £ 0.15

Si/Si0, FOH 2 0.54 EDAC/NHS 0

Si FCOOH 1 0.54 EDAC/NHS 0

Si FCOOH 1 0.54 - 0

Si FCOOH 3 0.54 EDAC/NHS 1.19 £ 0.15 2 0

Si FCOOH 1,2 0.54 EDAC/NHS 5.60 + 0.20 0

Si FCOOH 2 0.54 EDAC/NHS 5.60 6 0

“ODN concentration in the loading solution.

PAfter enzymatic digestion and fluorescence measurement in solution.

“After denaturation and fluorescence measurement in solution.

discussed above, and proved able to hybridize efficiently However, there are areas on the surface, where the

(Table 4).

Furthermore, we performed several control experiments to
confirm that the overall procedure is robust and takes place
mainly in the specific way outlined in Scheme 1. To this end,
in order to check whether immobilization can occur through
simple adsorption, or through reaction with internal moieties
of ODNSs possibly involved in carbodiimide chemistry, e.g. the
exocyclic amino or terminal hydroxyl groups, as found by
other authors on glass supports (66), we tested ODN with
either the linker arm (1 and 2) or without it (3), under different
conditions, on different supports: (i) HO-terminated oxidized
silicon (Si/SiO, FOH) and 2 in the presence of EDAC/NHS;
(ii) hydrogenated silicon (Si FH) and 1 in the presence of
EDAC/NHS; (iii) Si FCOOH and 1 without EDAC/NHS;
(iv) Si FCOOH and 3 according to the standard, complete
procedures. In experiment (iv), a small amount of ODN 3
proved to anchor on the surface, likely through the formation
of amido bonds with its exocyclic amino groups, however it
proved totally unable to hybridize. No control experiments
other than (iv) with ODN 3 gave any detectable fluorescence
signal, by operating with the ODNs at the optimal concentra-
tions indicated above.

In order to verify the stability of the anchored ODNs to such
hybridization procedure, the same was applied to two samples
loaded with either ODN 1 or 2, but without adding the respect-
ive complementary ODN, and no fluorescence was detected
in any washing solution until Phosphodiesterase I was added.
One further experiment was run in order to better evaluate the
process of hybridization on the surface derivatized with probe-
ODN 2, performing the whole hybridization procedure and
using as target the non-complementary fluorescein-labelled
ODN 6. No measurable fluorescence resulted other than in
the washing solutions containing 6.

To characterize the above preparations we report the tap-
ping mode AFM imaging of a silicon sample covered first
with 10-undecynoic acid (57) and then with ODN 1, prepared
according to the optimized procedure, at a nominal density of
5.63 x 10'? strands/cm?, which displayed a homogeneous
distribution of round structures (Figure 6; panels 1 and 2).
A complication in determining the dimensions of these struc-
tures comes from the high packing of the layer, which results
in a mean distance between adjacent ODNs around 5 nm.

intermolecular distance is statistically larger than the mean
value allowing a simpler and reliable analysis. Following
this strategy, we have focussed our efforts on these regions
and measured a lateral dimension of ca. 18 nm and vertical
height of ca. 3 nm.

Since the expected height of a 20mer ODN is slightly <7 nm
(67), to understand the observed vertical dimensions of
these structures one must take into account the mechanism
of AFM imaging. The tip-sample interaction always produces
a deformation of the sample. Ultra-soft molecules like ssODN
can be considered as elastic rods (68), thus due to the probe-
induced compression, their measured heights are lower than
the expected molecule vertical dimensions. This effect is prob-
ably coupled with a non-vertical protrusion of the molecules
over the surface, as predicted, for instance, for a 15mer ODN
anchored on a flat gold surface, whose vertical height may
change from 6.5 to 2.0 nm depending on the tilt angle formed
between the normal to the surface and the vertical axis of the
ODN (69). Indeed, the angular tilting of ODNs immobilized
on gold, was recently investigated and it was supposed to be
responsible of an apparent reduction of the observed ODN
height: i.e. 3 nm instead of the predicted 16 nm for a com-
pletely elongated 25mer ODN (4). This could explain the low
height values that we have measured.

Regarding the lateral dimensions, the structures appear
wider than the width of a sSODN, ca. 2 nm as theoretically
calculated (70). However, the measured widths are closer to
the theoretical value than most of those recently reported,
regarding similar specimens analysed in analogous conditions
(71-73). In fact, the AFM technique intrinsically produces
images in which the structures are the convolution of the
imaged object with the tip shape and this effect is particularly
evident when the probe has an apical radius larger than
the lateral dimensions of the structures under analysis.
These anomalously large dimensions can be then, attributed
to the broadening effect due to the tip-sample convolution.

Hybridization trials were, then, carried out in triple on four
different substrates (type B in Scheme 1), containing the
probe-ODNS: Fluorescein-5'-dA,y-3'-Hexyl-NH, (1) or Fluor-
escein-5'-dT,p-3'-Hexyl-NH, (2), Fluorescein-5'-dXo-3'-
Hexyl-NH,; (5) or Fluorescein-5'-dXs;-3'-Hexyl-NH, (7). In
all four cases, high hybridization efficiency was obtained upon
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Figure 6. Panel 1: AFM tapping mode topographic image (1 x 1 um) of a Si(100) surface covered with a uniform layer of 10-undecynoic acid using a CEG procedure
at 120 mC/cm? cathodic charge density. The white bar indicates the analysed zone. The cross section evidences that the mean corrugation of the sample is around 1.3
nm. Panel 2: AFM tapping mode topographic image (1 x 1 um) of a sample covered with 20mer ODN 1 (nominal density 5.63 x 10'? strands/cm?). The cross
sections A and B show structures ca. 18 nm wide and ca. 3 nm high. The white bar indicates the analysed zone. The vertical heights, as measured along the bars, are
reported in A and B. Panel 3: AFM tapping mode topographic image (1 x 1 m) of a sample covered with a dsODN 1 + 4 (nominal density 5.63 x 10'? strands/cm?).
The molecules appear as rod-like structures. Cross section A shows a structure ca. 20 nm wide and ca. 1.5 nm high. The height is lower than that of ssODN 1 (ca. 3 nm),
probably due to a different orientation of the molecules on the surface. Cross section B, taken on a large agglomerate, can be deconstructed in three smaller structures
with dimensions, shown by the fit curves, comparable with the dimensions of single molecules. The formation of large structures appears to be a side-effect of the
hybridization process, as reported in the literature for similar samples (41). The white bar indicates the analysed zones. The cross section profiles as measured along
the bar, without and with deconvolution of the profile, are reported in A and B, respectively.
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interaction with the corresponding complementary ODNS,
prepared according to the optimized procedure: Fluorescein-
5'-dT,q (4), Fluorescein-5'-dA,q (3), Fluorescein-5'-dX5 (6)
and Fluoresceine-5'-dX,, (8), respectively, as resulted by the
subsequent denaturation of the hybrids reported in Table 4.
The anchored ODNs 1, 2, 5 and 7 were then finally digested
with Phosphodiesterase I and their amounts were compared
with those of the hybridized 3, 4, 6 and 8, resulting practically
equivalent within the ESD. Nevertheless, the systematically
higher values of the hybridized ODNSs, with respect to the
bound ODNSs, may reflect a limited ability of the DNase to
completely digest the ODNs anchored on the surface.
Similarly as above, Figure 6; panel 3 shows the tapping
mode AFM image of a typical ODN sample after hybridization
(namely 1+ 4) using standard tips. The sample appears
covered with small rod-like structures and some larger struc-
tures of various dimensions. The lateral dimensions of the
smaller structures of the dsODNs on the surface result ca.
20 nm and their vertical dimensions ca. 1.5 nm (Cross section
A of Figure 6; panel 3). The increase of the size observed for
the dsODNs structures, compared to the analogous ss, can
be attributed to the effect of hybridization. A similar size
increase was already reported on similar samples, e.g.
16mer ODN-probes on oxidized silicon surface (41). The

Onm |50
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different vertical dimensions can be interpreted as con-
sequence of the different tilting of the ODN with respect to
the surface which could also justify their apparent greater
mean lateral dimension.

One of the larger structures shown in Figure 6; panel
3 displays an estimated width of ca. 80 nm and this can be
attributed to an apparent aggregation of smaller dSODNSs struc-
tures. This is shown in the cross section profile B of Figure 6;
panel 3, where the large structure has been tentatively fitted
as the aggregation of three smaller (ca. 20 nm) ones, whose
dimensions are compatible with the single rod-like structures.

With the aim to assess the convolution effect mentioned
above, and to confirm our ability to detect single ssODNs, we
also acquired some images using high resolution tips. These
‘super-tips’ have an apical radius of ca. 2 nm, thus the con-
volution has a much weaker impact on the lateral dimensions
of the ODNs (74). In Figure 7; panel 1, we show a sample
covered with a low density (nominal density ca. 10'" strands/
cm?) of ODN 1. The use of this low ODN density determines
a large (ca. 30 nm) mean space between the molecules. In this
case the ssODN molecules appear as round structures with
width of ca. 8 nm and height of ca. 1.8 nm. The different
vertical dimensions are explainable considering that the
same probe force generates an higher pressure when applied

] 15 - ¥
T L s [ : =
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Figure 7. Panel 1: AFM tapping mode topographic image (A), (250 x 250 nm) of a sample covered with a low concentration (nominal density ca. 10'! strands/cm?)
of 20mer ODN 1, acquired by the use of super-tips (apical radius ca. 2 nm). The cross section shows a structure ca. § nm wide and ca. 1.8 nm high. The different lateral
dimensions of these structures compared with the samples analysed with the standard tips (apical radius ca. 30 nm) illustrates the importance of the apical radius and
form. The different vertical dimensions are probably the effect of the greater tip pressure due to the much smaller contact area. The white bar indicates the analysed
zone. The cross section profile, as measured along the bar, is reported in (B). Panel 2: AFM tapping mode topographic image (A), (1 X 1 um) of a sample covered with
a very low concentration (nominal density around 10'° strands/cm?) of 20mer ODN 1. The low concentration allows to unequivocally analyse every single molecule.
The white bar indicates the analysed zone. The cross section (B) shows that the structures are ca. 25 nm wide and ca. 2.5 nm high.
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on a smaller interaction area, thus producing a larger deforma-
tion and possibly enhancing the angular tilt of the molecules
on the surface. In both low and high resolution images, the
surface between each structure is uniform and has a corruga-
tion comparable with a clean silicon surface functionalized
with 10-undecynoic acid.

Furthermore we performed measurements using standard
tips on another sample covered at a low nominal density,
around 10'° strands/cm? of the 20mer ODN 1. This was done
in order to show that the features observed with the super-tips
would appear with a larger lateral size if imaged using the
standard tips. The use of such a low ODN density determines
an even larger mean space between the molecules, allowing to
undoubtedly discriminate the single molecules even using the
standard tips. This is reported in Figure 7; panel 2. As a major
consequence of the analogy of the observed dimensions we
can claim that the structures are the same as observed in
Figure 6; panel 2 (standard tip/high concentration). Thus,
we demonstrated the single molecule sensitivity and obtained
a state-of-the-art lateral resolution of 8.6 nm.

CONCLUSIONS

A simple, robust, accurate and optimized two-step procedure
to functionalize unoxidized crystalline silicon, Si(100), with
controlled amounts of ODNs is hereby reported. The samples
produced through this procedure have been exploited as
probe systems for DNA recognition.

First, 10-undecynoic acid was covalently anchored on the
silicon surface, via CEG, attaining a carboxylic acid termin-
ated monolayer upon passage of 36 mC/cm” charge density.
Then, ssODNs were immobilized on this layer via amidation.
The concentration of both ssODNs and dsODNs were determ-
ined through fluorescence measurements in solution. This
procedure allowed us (i) to assess the optimal-probe density,
for 20mer ODNSs, on the surface (5-6 X 10'? strands/cm ),
i.e. the maximum loading which yields a 100% hybridization
efficiency and (ii) to determine the corresponding ODN-target
LOD (0.312 uM). One longer (50mer) ODN tested, lead to
lower loading, still maintaining however the ability to fully
hybridize. AFM has proved a useful tool to characterize the
whole procedure by parallel imaging.

Samples prepared in this way, using crystalline silicon, are
good candidates for the development of new, label-free, ultra-
sensitive biosensor devices based on a change in electrical
properties associated with biorecognition events occurring
at their surface.
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