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Abstract 

Reticuloendotheliosis is an important immunosuppressive disease, associated with avian reticuloendotheliosis virus 
(REV) infection, and causes notable economic losses worldwide. Glycoprotein gp90 is an important structural protein 
of REV, and considered to be the most important immunogenic antigen, which can induce neutralizing antibodies 
against REV. In this study, an optimized suspension culture system was developed and applied to secretory express 
the immunogenic surface antigen gp90. To achieve an optimal glycosylation, the gp90 was designed to secretory 
expressed into the supernatant of the cell culture, which also occurs in the natural protein maturation procedure of 
REV. Serum-free culture medium was introduced to simplify the purification process and reduce the production costs. 
Based on the purified glycosylated gp90, an oil-emulsion subunit REV vaccine candidate was developed and evalu-
ated in chickens. The subunit gp90-based vaccine induced fast immune responses, high levels of antibodies (REV-
specific antibody, gp90-specific antibody, and neutralizing antibody against REV), and preferential T helper 2 (Th2) 
(interleukin-4 secretion) not Th1 (interferon-γ secretion) response. Furthermore, the viremia induced by REV infection 
was significantly reduced in chickens immunized with the glycosylated gp90. Overall, an optimized secretory expres-
sion system for glycosylated gp90 was developed, and the glycosylated gp90 obtained in this study retained good 
immunogenicity and could be an attractive vaccine candidate to protect chickens against REV horizonal infection.
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Introduction
Reticuloendotheliosis virus (REV) is a type-C avian ret-
rovirus [1] that causes tumors, immunosuppression, 
growth retardation, persistent viremia, or even deaths 
[2–5] in variable susceptible hosts, including chicken [6], 
pigeons [7], ducks [8], geese [9], quails [10], and peafowl 

[11]. The immunosuppression induced by REV infection 
can reduce the efficiency of vaccines and increase the 
probability of co-infection with other bacteria or viruses, 
such as avian influenza virus (AIV) [12], Newcastle dis-
ease virus (NDV) [13], fowl adenoviruses (FAdVs) [14], 
chicken anemia virus (CAV) [15], avian leucosis virus 
(ALV) [16], Marek’s disease virus (MDV) [17], fowlpox 
virus (FWPV) [18], or infectious bursa disease virus 
(IBDV) [19]. Additionally, various vaccines contaminated 
with REV have been reported. Although notable eco-
nomic losses worldwide have been induced, there is no 
efficient commercial vaccine available until now.

As reported, interaction between the env derivative 
of REV and the cellular component that functions as a 
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receptor for the virus can occur in the endoplasmic retic-
ulum and renders the cell immune to superinfection [20]. 
Furthermore, in light of reports indicating that the abro-
gation of interference shown by using the N-glycosyla-
tion inhibitors [21] and the inability of unglycosylated E. 
coli-synthesized HIV env to bind the CD4 receptor [22] 
suggested that cotranslational glycosylation is required 
for the proper conformation to be adopted by these ret-
rovirus proteins for receptor binding. Glycoprotein gp90 
[23], a cleavage product of env precursor protein, is an 
important structural protein of REV which forms the 
protrusions on the viral surface. gp90 is considered the 
most important immunogenic antigen, which can induce 
neutralizing antibodies against REV [24–26]. Several 
subunit vaccines based on gp90 have been developed and 
evaluated in previous studies. Non-glycosylated gp90 was 
expressed in E. coli, and the immunogenicity of gp90 cou-
pled with adjuvant CpG-ODN or Poly (I:C) was evaluated 
[27, 28]. In our previous studies, various DNA vaccines 
have been developed and provided variable protection 
to chickens against REV infection, demonstrating that 
the DNA prime-protein boost vaccination strategy could 
enhance both humoral and cellular immune responses 
in chickens [29, 30]. To further improve the immuno-
genicity, glycosylated gp90 was expressed in Pichia pas-
toris. Glycosylated gp90 showed better immunogenicity 
than DNA vaccine or prokaryotic non-glycosylated gp90 
expressed in E. coli, which could fully protect the animals 
from viremia after REV infection [25], highlighting the 
importance of the glycosylation for gp90 immunogenic-
ity. Although gp90 expressed from Pichia pastoris is gly-
cosylated, the degree of gp90 glycosylation is not enough.

In this study, an optimized serum-free suspension 
culture system was developed to obtain glycosylated 
surface antigen gp90 of REV. The recombinant gp90 
was expressed and secreted into the supernatant of the 
serum-free culture, which simplified the purification 
process. Furthermore, the viremia induced by REV infec-
tion was significantly reduced in chickens immunized 
with glycosylated gp90. Overall, the glycosylated gp90 
obtained in this study retained good immunogenicity and 
could be an attractive vaccine candidate to protect chick-
ens against REV horizonal infection.

Materials and methods
Viruses, cells, antibodies, and plasmids
REV strain HLJR0901 [6] (GenBank No: GQ415646) was 
isolated and stored at the Harbin Veterinary Research 
Institute (HVRI) of the Chinese Academy of Agricul-
tural Science (CAAS) at -70 °C. Primary chicken embryo 
fibroblasts (CEFs) were prepared from 10-day-old spe-
cific-pathogen-free chicken embryos provided by HVRI 
[29, 30]. 293F cells were purchased from American Type 

Culture Collection (ATCC). Gp90-specific monoclonal 
antibody [31] and p19-2 expression vector [32] were gen-
erously provided by Prof. Yunfeng Wang (HVRI, CAAS, 
China) and Prof. Baoshan Zhang (Vaccine Research Can-
ter, NIH, USA).

Cell culture
The CEF cells were prepared according to the protocol 
described before and used for the isolation and propa-
gation of REV. Dulbecco’s modified Eagle’s medium 
(DMEM, Invitrogen, CA, USA) supplemented with 5% 
fetal calf serum (FCS), 100 IU/mL penicillin, and 100 μg/
mL streptomycin was used for CEF culture. The 293F 
cells were cultured within 293Pro CD 293  M serum-
free culture medium (Peiyuan, Shanghai, China) sup-
plemented with 100  IU/mL penicillin and 100  μg/mL 
streptomycin in a 125-ml Erlenmeyer flask (Corning, 
Oneonta, USA) on a shaker (120 rpm) to keep cells float-
ing. Both the cells were incubated at 37 °C / 5% CO2.

Construction of REV gp90 secretory eukaryotic expression 
plasmid
The full-length gp90 gene was amplified with primers 
gp90F (5′-CCT​CAG​GGC​GTC​GTG​GGC​TAC​CCC​TTG​
CAG​CAA​CTT​TGG-3′) and gp90R (5′-CTG​GAA​CAG​
AAC​TTC​CAG​CTT​ATG​ACG​CCC​AGC​GGT​-3′) from 
the proviral cDNA extracted from CEF cells infected with 
REV HLJR0901. The PCR product was purified using 
QIAquick PCR Purification Kit (Qiagen, Hilden, Ger-
many) and cloned into the p19-2 vector by homologous 
recombination. The constructed plasmid, designated 
p192-gp90 and containing the open reading frame (ORF) 
of gp90, signal sequence (SP) and his-tag, was identified 
by sequencing and purified by the QIAfilter Plasmid Midi 
Kit (Qiagen, Hilden, Germany). The concentration of 
plasmid was determined by spectrophotometry (Implen 
Version 1.3, Munchen, Germany) at 260 nm.

Optimization of the secretory expression system 
for REV‑gp90
When the concentration of 293F cells reached 2 × 106 
cells/mL, difference concentrations of p192-gp90-His 
was transfected with X-tremeGENE HP DNA Transfec-
tion Reagent (Roche, Mannheim, Germany) into the sus-
pended 293F cells. The cell supernatant was harvested at 
each 24 h post transfection by centrifugation until 120 h. 
The gp90 in the supernatant was harvested by centri-
fuged at 10,000 × g for 30 min to remove cell debris and 
subsequently purified by Ni Sepharose Excel resin (GE 
Healthcare, Pittsburgh, USA), following the manufac-
turer’s recommended protocol. The expression of recom-
binant proteins was detected by SDS-PAGE and western 
blot analysis, using mouse anti-gp90-specific monoclonal 
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antibody with a concentration of 1:1000 for 1 h at room 
temperature. Furthermore, 2  μL (1  mU) glycopeptidase 
F (Takara Bio, Otsu, Japan) was incubated with 25  μg 
purified gp90 protein for 20 h at 37  °C according to the 
manufacturer’s introduction. The cleavage product of the 
purified gp90 protein was identified by SDS-PAGE.

Immunization, challenge, and samples collection
The purified gp-90 was emulsified with white oil (Weike, 
Harbin, China) as a sustained releasing adjuvant to a final 
concentration of 80 μg/mL. Thirty 3-week-old SPF chick-
ens were randomly divided into three groups, including 
10 birds in each group. Chickens were immunized twice 
at 2-week intervals intramuscularly with 0.5  mL vac-
cine containing 40 μg purified gp90 per chicken. Birds in 
the negative control group and challenge control group 
were administered with 0.5  mL phosphate buffer saline 
(PBS) at the same time points. Two weeks after the sec-
ond immunization (IM), animals were challenged with 
104 TCID50 of HLJR0901 in 0.5 mL PBS intraperitoneally. 
Serum samples were collected weekly after vaccination 
for antibody and cytokine assays. Anticoagulated blood 
was collected 7  days post infection (dpi) for viremia 
detection and virus quantification.

REV‑specific antibody and cytokine release assay
Serum samples were collected weekly for antibody and 
cytokine assay. The REV-specific antibodies in the serum 
were detected using a commercial enzyme-linked immu-
nosorbent assay (ELISA) kit (IDEXX, Westbrook, USA) 
according to the manufacturer’s instructions. The relative 
level of antibody titer in the unknown was determined by 
calculating the sample to positive (S/P) ratio as [(mean of 
sample optical density)-(mean of negative control opti-
cal density)]/[( mean of positive control optical density)-( 
mean of negative control optical density)]. End-point 
titers were calculated with the equation: log10 titer = 1.09 
(log10 S/P) + 3.36 [25]. The cytokines (IL-4 and IFN-γ) 
were also analyzed using commercial cytokine ELISA 
kits according to the manufacturer’s instructions (Cloud-
Clone, Houston, TX, USA).

Detection of gp90 antigen‑specific antibody assay
Microtiter plates (Costar, Kennebunk, USA) were 
coated with purified recombinant gp90 protein (2  μg/
mL, 100 μL/well) at 4 °C overnight and incubated with 
test sera diluted within 1:500 at 37  °C for 1  h. For the 
secondary antibody, an HRP-conjugated goat anti 
chicken IgG antibody (Southern Biotech., Birmingham, 
USA) was used at 37  °C for 1  h. Following incubation 
with tetramethylbenzidine substrate (TMB, Tiangen, 
Beijing, China) at room temperature (RT) for 15  min, 
the reaction was stopped with 0.5 M sulphuric acid and 

the optical density of wells in the plates was measured 
at a wavelength of 450 nm (OD450nm).

Neutralizing antibody assay
The LMH cells were plated in 96-well plates (Costar, 
Kennebunk, USA) with a density of 1 × 106 cells/mL 
and 100  μL/well. Then, the collected serum, inacti-
vated at 56  °C for 30 min, was submitted to neutralize 
100 TCID50/100 μL of strain HLJR0901 within constant 
serum dilutions. The plates were incubated at 37  °C in 
5% CO2 for another 7 days and investigated by indirect 
immunofluorescence assay (IFA).

Protection efficacy against challenge with REV
At 7 dpi with REV, the anticoagulated blood was col-
lected in heparinized tubes. Then the samples were 
submitted for viremia detection and virus quantifica-
tion according to the methods described previously 
[33] with several optimizations. Genomic DNA was 
extracted using the Kit (Corning, USA) and detected by 
a real-time PCR. Briefly, Real-time PCR was performed 
with a LightCycler 480 real-time thermocycler (Roche, 
Rotkreuz, Switzerland). The primers were designed at 
gp90 as follows: forward primer 5′-AAG​AAT​CTG​TGC​
GTG​AAA​G-3′, and reverse primer 5′-TAA​GGA​CCT​
GGT​GAG​TAG​C-3. The primers were designed at ovo 
as follows: orward primer 5′-CAC​TGC​CAC​TGG​GCT​
CTG​T-3′, and reverse primer 5′-GCA​ATG​GCA​ATA​
AAC​CTC​CAA-3′. The samples were analyzed by qPCR 
performed using SYBR Green Relative PCR master mix 
(Toyobo, Osaka, Japan). Quantitative PCR was per-
formed under the following conditions: 95  °C for 30  s 
for initial denaturation, followed by 40 cycles for 5 s at 
95 °C, 10 s at 60 °C, 15 s at 72 °C and collection of the 
PCR product. All controls and infected samples were 
examined in triplicate on the same plate. The relative 
REV loading was calculated according to the method of 
2−△△Ct. Furthermore, the plasma samples were inoc-
ulated on CEF cells following incubation for another 
7 days, and the cultures were checked for the evidence 
of virus by IFA with anti-gp90 monoclonal antibody.

Statistical analysis
Statistical analyses were performed using the Graph-
Pad Prism package (GraphPad Software, La Jolla, 
CA, USA). The statistical significance of the differ-
ence between two groups was evaluated by Student’s 
t-test and between more than two groups by one-way 
ANOVA. Differences were considered to be significant 
at *p < 0.05 or **p < 0.01.
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Results
Development and application of the optimized secretory 
expression system for recombinant REV‑gp90
The gp90 gene of REV was successfully amplified 
from the cells infected with HLJR0901 strain, and 
then cloned into the p19-2 vector for constructing the 
recombinant gp90 protein. The recombinant gp90 con-
tained the whole ORF of gp90 (1083 bp), the signaling 
peptide (87 bp) at the N-terminus, and a his-tag at the 
C-terminus (Figure 1A). The cell supernatant was har-
vested at 0, 24, 48, 72, 96 and 120 h post transfection, 
and submitted to western blot assay using mAb against 
the gp90 protein (Figure 1B). The results showed a high-
est productivity appeared at 120 h by a gray value assay 
(Figure  1C). Furthermore, different concentrations of 
plasmid (p192-gp90) was transfected into 293F cells to 
select an optimal factor. The separately expressed prod-
ucts were harvested at 120 h post transfection and puri-
fied using Ni Sepharose Excel resin, and subsequently 
submitted to SDS-PAGE. The purified gp90 from 
serum-free culture supernatant showed high purity and 
glycosylation (Figure  2A). The expression efficacy of 
gp90 showed a concentration-dependent manner with 
the transfected p192-gp90, and the highest concentra-
tion of gp90 was 120 mg/l (Figure 2C). Furthermore, a 
glycosylation assay was conducted and the gp90 protein 
became significantly smaller (Figure 2B) after incubated 

with a glycopeptidase F, which specifically cleaving the 
N-linked glycosylation.

REV‑specific and gp90‑specific antibody responses 
of vaccinated chickens
REV-specific antibody responses elicited after IMs were 
measured by titrating the serum of the control and vac-
cinated chickens against REV by ELISA. Chickens in 
the negative control group were negative for REV anti-
bodies throughout the experiment. The recombinant 
gp90 protein induced detectable antibodies in chickens 
at two weeks post first inoculation (Figure 3A), and the 
mean REV-specific antibody titer in the sera of chickens 
immunized with the recombinant gp90 protein was 4470, 
which was significantly higher than that in the negative 
control group (77, **p < 0.01). The magnitude of antibody 
response was time dependent, and the antibody titers 
were significantly higher (**p < 0.01) at 14 dpi than 7 dpi 
both for single and double IM. The double IM group had 
significantly higher antibody responses than the single 
IM group at 7 dpi (**p < 0.01) and 14 dpi (**p < 0.01). The 
gp90 antigen-specific antibody was detected by the gp90 
protein-based indirect ELISA simultaneously, showing 
that the vaccine could also cause high levels of gp90-
specific antibody at two weeks post first inoculation 
(Figure  3B), and the tendency was consistent with the 
REV-specific antibody test results.

Figure 1  Construction and expression of recombinant gp90 of REV. A The ORF of recombinant gp90 contained the whole length gp90 
(1083 bp), the signaling peptide (87 bp) at the N-terminus, and a his-tag at the C-terminus. B Western blot identification of recombinant gp90 with 
anti-gp90 mAb at different expression time points. C The gray value assay for expressed gp90 at variable time points.
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Neutralizing antibody against REV
The serum from the negative control group and the vac-
cinated group neutralized with 100 TCID50 of strain 
HLJR0901 was detected using IFA mediated by the MAb 
of REV at 7 dpi. The results showed that the recombinant 
gp90 protein induced detectable neutralizing antibodies 
in chickens at the second week post first inoculation, and 
the mean neutralizing antibody titer in the sera of chick-
ens was 25, whereas that in the negative control group 

was negative. The neutralizing antibodies of chickens 
in the single IM (**p < 0.01) and double IM (**p < 0.01) 
groups were significantly higher than those in the nega-
tive control group at 7 dpi and 14 dpi (Figure 4).

Cytokine production of SPF chickens
The cellular immune responses were evaluated by analyz-
ing cytokine production (Figure  5). IL-4 (Th2 response) 
and IFN-γ (Th1 response) in the serum of chickens 

Figure 2  Concentration-dependent manner between the recombinant gp90 productivity and transfected p192-gp90. A SDS-PAGE for the 
purified gp90 from serum-free culture supernatant. The purified gp90 showed high purity and glycosylation. B Glycosylation analysis of purified 
recombinant gp90 protein. Lane 1, purified gp90 protein from serum-free culture supernatant; lane 2, glycopeptidase F treated recombinant gp90 
protein; lane 3, prestained protein standards. C The expression efficacy of gp90 showed a concentration-dependent manner with the transfected 
p192-gp90, and the highest concentration of gp90 was 120 μg/mL.

Figure 3  REV-specific antibody titers-specific antibody responses detected by indirect ELISA induced from 1 to 4 weeks post the first 
inoculation, and the booster inoculations were conducted at the second week post first inoculation. A REV-specific antibody titers detected 
by a commercial REV antibody test kit (IDEXX, Westbrook, USA), serum with titer of higher than 1076 was considered positive for REV antibody. B 
Gp90-specific antibody responses detected by the gp90 protein-based indirect ELISA, OD450nm values higher than 0.19 were considered positive for 
gp90 antibody. Serum samples were collected weekly, and REV-specific and gp90-specific antibodies were detected. The recombinant gp90 protein 
induced detectable REV-specific and gp90-specific antibodies in chickens at the second week post first inoculation, which was significantly higher 
(**p < 0.01) than negative control group. And the magnitude of antibody response was time dependent.
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were detected 7 and 14  days after the single and dou-
ble IM by ELISA, which showed that the IL-4 concen-
trations of chickens in the single IM (**p < 0.01) and 
double IM (**p < 0.01) groups were significantly higher 
than those in the negative control group at 14 dpi. The 
IL-4 concentrations of chickens in the double IM group 
were significantly higher (**p < 0.01) than those in the 

negative control group at 7 dpi, but there was no differ-
ence (p > 0.05) between the IL-4 concentrations in the 
negative control group and single IM group at 7 dpi. The 
IL-4 levels in the double IM groups were significantly 
higher (0.01 < *p < 0.05) than those in the single IM group 
at 14 dpi, whereas those in the double IM groups were 
significantly higher (**p < 0.01) than those in the single 
IM group at 7 dpi. For the IFN-γ assay, there was no dif-
ference (p > 0.05) between the two immunized groups 
and the control group at any detected time points.

Protective efficacy against viremia induced by REV
To evaluate the protective efficacy according to the 
viremia of the inactivated vaccine, the chickens were 
infected with 104 TCID50 of REV HLJR0901 in 0.5  ml 
PBS via intraperitoneal administration and observed for 
7 days. The results showed that the vaccine induced pro-
tection (Figure 6A) against viremia caused by REV infec-
tion. Firstly, REV viremia was not detected in any of the 
samples taken from the negative control animals. At 7 
dpi with REV, viremia was observed in tested chickens 
challenged with REV, with no evident difference in viral 
load between the recombinant gp90 protein vaccinated 
and negative control birds. The viral load of the group 
challenged with REV was significantly higher (**p < 0.01) 
than the recombinant gp90 protein vaccinated and the 
infection control groups. The protective efficacy of the 
vaccines was confirmed by IFA with CEF cells that were 
treated with the plasma samples from the REV-infected 
chickens. Intensive fluorescence was observed in the REV 
challenge group, whereas no fluorescence was found in 
the recombinant gp90 protein vaccinated and negative 
control groups (Figure 6B), which corresponded with the 
real-time PCR assay results.

Discussion
REV causes immunosuppression in infected chickens, 
resulting in poor immune responses to other vaccines 
and increased susceptibility to concurrent or second-
ary bacterial or viral infections, leading to serious eco-
nomic losses to the poultry industry [34, 35]. However, 
there is currently no efficient commercial vaccine avail-
able. The gp90 protein of REV is a major component of 
the viral envelope and is responsible for eliciting virus-
neutralizing and protective antibodies. As reported, gp90 
is a major candidate antigen for vaccines and serological 
diagnosis [24, 26]. As reported, several studies have been 
conducted on REV vaccines based on gp90. DNA vac-
cines and prokaryotic expressed gp90 subunit vaccine in 
E. coli have been developed and provided partial protec-
tion [25, 27, 28]. To further improve the immunogenicity, 
glycosylated gp90 expressed in Pichia pastoris showed 

Figure 4  Neutralizing antibody titers detected by IFA. The 
recombinant gp90 protein induced detectable neutralizing 
antibodies in chickens at the second week post first inoculation. 
The neutralizing antibody titers are presented as mean ± standard 
deviation. Significant differences between experimental group and 
negative control group were evaluated at (**p < 0.01) of immunized 
animals. And the magnitude of neutralizing antibody response was 
time dependent.

Figure 5  REV specific T helper 1 (Th1)/Th2 cytokine 
responses induced 7 days and 14 days post single and double 
immunization (IM). Th1 (interferon (IFN)-γ) and Th2 (interleukin 
(IL)-4) cytokines in serum of chickens were detected by ELISA. 
A strong Th2 response was induced in the vaccinated chickens. 
Significant differences between Th1 and Th2 cytokines (IFN-γ and 
IL-4) were evaluated at (*p < 0.05) or (**p < 0.01).
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better immunogenicity than non-glycosylated gp90 [25, 
29] in our previous studies.

However, the degree of gp90 glycosylation expressed 
from Pichia pastoris is not enough. Thus, an optimized 
serum-free suspension culture system for the secretory 
glycosylated gp90 of REV was developed in this study. 
The gp90 was highly glycosylated within the secreting 
process, maintained essential modifications of eukary-
otic proteins, which is present in the natural state, and 
retained good immunogenicity. Glycosylation assay 
showed that the gp90 protein expressed in our study 
was heavily glycosylated and the type of glycosyla-
tion was mainly N-linked glycosylation. Meanwhile, the 
recombinant gp90 was expressed and secreted into the 
suspension of the serum-free cell culture supernatant, 
significantly simplifying the purification process and 
reducing the cost of the vaccine candidate. Furthermore, 
this secretory system was able to get an ideal yield of 
120  mg of purified gp90 in one liter of cell supernatant 
of serum-free culture. The system developed in this study 
provided a powerful tool to express proteins with modi-
fications (not only glycosylation) for the functional and 
structural studies.

As reported by Yuan et al. [28], the mean titers of the 
REV-antibody were positive at the third week post first 
inoculation, and the antibody positive ratio was 23% 
(3/13) at the second week post first inoculation in the 
gp90 group. However, the mean antibody titers of the 

REV-antibody reached 4470, and 100% (8/8) positive 
results were obtained at the second week post first inoc-
ulation following gp90 immunization. Our results show 
that the recombinant gp90 protein further improved the 
titers of the REV-specific antibody and the antibody posi-
tive ratio, which is conducive for use as a vaccine. Moreo-
ver, gp90 antigen-specific antibodies were detected by 
the gp90 protein-based indirect ELISA, which showed 
that the vaccine could induce high levels of gp90-spe-
cific antibody against REV at the second week post first 
inoculation. The results of the neutralization test in vitro 
confirmed that the vaccine could induce high levels of 
neutralizing antibody against REV, and the neutralization 
depends on the titers of REV-specific and gp90-specific 
antibody.

The recombinant gp90 protein vaccine developed 
in this study can induce high levels of IL-4 not IFN-γ, 
suggesting that a strong Th2 differentiation and in cell 
expansion occurred. Consistent with previous reports, 
protein vaccination can induce an immune response 
that has a Th2 type bias [36–38]. High levels of IL-4 
secretion further stimulate B cells to differentiate into 
plasma cells, thus participating in protective humoral 
immune response. Furthermore, the viremia of REV 
infection was also monitored after the challenge, and 
our results showed that viremia induced by REV infec-
tion was significantly reduced in chickens immunized 
with glycosylated gp90 and full protection against 

Figure 6  Protection efficacy according to the viremia against challenge with REV and IFA of viremia in CEF cells for the chickens in 
different groups at the second week after being challenged. A Chickens were challenged with 104 TCID50 of REV HLJR0901 at 4 weeks post 
immunization and viremia was detected at 7 days post challenge. The viral load of REV challenge group was significantly higher (**p < 0.01) than the 
recombinant gp90 protein vaccinated and the infection control group. B Mock: negative control; REV: positive control (cell supernatant containing 
REV); IM-REV+ : plasma samples from the challenged chickens in the control group; IM+ REV+ : plasma samples from the challenged chickens in 
the recombinant gp90 group; IM-REV−: plasma samples from SPF chickens.
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viremia was achieved. Taken together, the present 
findings warrant further investigation in the research 
and development our proposed vaccine against REV 
infection.

In this study, an optimized serum-free suspension 
culture system was developed to obtain glycosylated 
surface antigen gp90 of REV. The recombinant gp90 
was expressed and secreted into the supernatant of the 
serum-free culture with high yield and heavy glycosyla-
tion. The type of glycosylation was further identified as 
mainly N-linked glycosylation. The glycosylated gp90 
was submitted to formulat an oil-emulsion vaccine, 
which induced fast Th2 immune responses and high 
levels of antibodies against REV infection. Moreover, 
the vaccine significantly reduced the viremia induced 
by REV infection. For the first time, a novel secretory 
glycosylated gp90 subunit vaccine has been developed 
and is proposed as an attractive candidate to pro-
tect chickens against REV horizonal transmission and 
reduce the economic losses to the poultry industry.
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