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Abstract

Discovery in developmental biology is often driven by intuition that relies on the integration of multiple types of data such
as fluorescent images, phenotypes, and the outcomes of biochemical assays. Mathematical modeling helps elucidate the
biological mechanisms at play as the networks become increasingly large and complex. However, the available data is
frequently under-utilized due to incompatibility with quantitative model tuning techniques. This is the case for stem cell
regulation mechanisms explored in the Drosophila germarium through fluorescent immunohistochemistry. To enable better
integration of biological data with modeling in this and similar situations, we have developed a general parameter
estimation process to quantitatively optimize models with qualitative data. The process employs a modified version of the
Optimal Scaling method from social and behavioral sciences, and multi-objective optimization to evaluate the trade-off
between fitting different datasets (e.g. wild type vs. mutant). Using only published imaging data in the germarium, we first
evaluated support for a published intracellular regulatory network by considering alternative connections of the same
regulatory players. Simply screening networks against wild type data identified hundreds of feasible alternatives. Of these,
five parsimonious variants were found and compared by multi-objective analysis including mutant data and dynamic
constraints. With these data, the current model is supported over the alternatives, but support for a biochemically observed
feedback element is weak (i.e. these data do not measure the feedback effect well). When also comparing new hypothetical
models, the available data do not discriminate. To begin addressing the limitations in data, we performed a model-based
experiment design and provide recommendations for experiments to refine model parameters and discriminate
increasingly complex hypotheses.
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Introduction

Biological systems are often characterized using qualitative data,

such as stained images, immunoblots, microarrays, or observations

of cell morphology, rather than absolute values (e.g. molecular

concentration). Such qualitative data typically show relative rela-

tionships in how a system characteristic (e.g. expression of proteins

or mRNA, morphology, phenotype) is distributed spatially, and/or

changes with time or with genetic perturbations. These data are

prevalent due to the complexity of biological systems and measure-

ments, from spatial organization and dynamic behavior, to the

need for multi-step reactions to generate a measurable signal,

along with the wide variability of experimental factors (e.g. reagent

concentrations, background interference, antibody quality and

specificity) [1,2]. In many cases, more time-consuming quantifi-

able measurements are sacrificed for improved throughput and

spatial resolution [3], though the resulting uncertainty in absolute

value, range and resolution is limiting, particularly as applied in

mathematical models. In this study, we address these limitations in

model-data integration in the context of a stem cell niche in the

Drosophila germarium, as the available data are largely qualitative

and it has become a model system from which we hope to gain

insight into stem cell regulation.

Illustrated in Figure 1A, each oblong germarium houses 2–3

germline stem cells (GSC) associated with the cap cells (CC) at the

anterior end. In the course of differentiating, GSC progeny tran-

sition through a cystoblast phase (CB, single cells beginning to

express differentiation factors), then divide repeatedly forming

cysts interconnected by a fusome. In undifferentiated cells, the

fusome structure is isolated and spherical, referred to as a spec-

trosome (fusome/spectrosome morphology is a common observa-

tion). The regulation of stem cell self-renewal vs. differentiation

depends on signaling by Decapentaplegic (Dpp), a bone morpho-

genic protein (BMP) ligand homologue, which is expressed by the

cap cells. As illustrated in Figure 1B, the GSC is maintained by

Dpp signaling, mediated through surface receptors that promote

phosphorylation of Mad to pMad. pMad acts as an input to a

regulatory network, including (at least) Bam, Nos and Brat. For

more complete coverage of germarium structure and function, we

recommend recent reviews [4–6].

Multiple types of data inform GSC regulation in the germar-

ium. Most prominently, spatial distribution data are published in

the form of fluorescent intensity for several proteins (in some cases

mRNA) in wild type and in different mutant backgrounds

(examples shown in Figure 1C). Were all of these data collected

via fully quantitative techniques, they would be approachable with
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common model fitting techniques (e.g. least squared error regres-

sion). However, measuring precise quantitative levels of protein or

mRNA in vivo continues to be very technically challenging, and the

existing qualitative data are not directly comparable for optimizing

models by typical regression. The scaling of fluorescent intensity

differs for each molecular species, relying on different antibodies

and the reaction conditions for each sample, and in some instances

data are aggregated from different publications. Individually, these

qualitative data provide loose constraints and to be effective they

must be considered simultaneously, for which new methods are

needed. Furthermore, the data are provided by three principle types

of observations: wild type protein distributions at a single time point,

distributions for different subsets of the components in mutant and/

or ectopic expression experiments, and estimates of the time

between cell cycles that provide a dynamic constraint. Lacking

further information, it is unclear if one of these disparate

observation types is better for a model to satisfy than another,

which leaves only limited meaning to a single best parameter set.

To assess feasible mechanisms in this system (and others with qua-

litative constraints), we developed an integrated strategy comprising

Author Summary

We developed a process to quantitatively fit mathematical
models using qualitative data, and applied it in the study
of how stem cells are regulated in the fruit fly ovary. The
available published data we collected are fluorescent
images of protein and mRNA expression from genetic
experiments. Despite lacking quantitative data, the new
process makes available quantitative model analysis tech-
niques to reliably compare different models and guide
future experiments. We found that the current consensus
regulatory model is supported, but that the data are
indeed insufficient to address more complex hypotheses.
With the quantitatively fit models, we evaluated hypo-
thetical experiments and estimated which future measure-
ments should best refine or test models. The model fitting
process we have developed is applicable to many
biological studies where qualitative data are common,
and can accelerate progress through more efficient
experimentation.

Figure 1. Drosophila germarium system and data. A) Diagram of Wild Type germarium structure with anterior to the left, showing cap cells (CC),
germline stem cells (GSC), cystoblasts (CB), and cysts. Below, a color-matched schematic of the 1 dimensional model used in this study. B) Diagram of
signaling in the anterior germarium, showing the internal regulatory state of the GSC (left), and CB (right). Yellow and blue boxes refer to
differentiation- and self-renewal-promoting elements, respectively. C) Examples of typical images (upper) and qualitative interpretations (lower)
comprising available data. Qualitative interpretations are mappings of relative intensity (fluorescent, colorimetric, etc.) and original author
interpretations to the 1-D model, indicated at bottom. Relevant color channels per image are (from left to right): pMad in red, Nos in red, Bam in
green, Phenotype showing spectrosomes in red. Images reproduced/adapted from [57] (1st from left), [58] (2nd and 3rd from left), and [59] (right).
doi:10.1371/journal.pcbi.1003498.g001
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two applications seldom used with biological models: Optimal

Scaling to quantitatively estimate model fitness, and Pareto multi-

objective optimization to simultaneously consider multiple dispa-

rate types of data. Though we apply it here in a study of stem cell

regulation in the Drosophila germarium, the procedure is applicable

to any quantitative model.

This study integrates research in three primary areas: (1)

optimization with qualitative data and the Optimal Scaling pro-

cedure, (2) the problem of using multiple disparate datasets, and

multi-objective optimization as a robust solution, and (3) modeling

of stem cell regulation in the Drosophila germarium. The remainder

of this introduction is dedicated to informing these three areas.

Optimization and qualitative data: Optimal Scaling
Optimization algorithms attempt to find a parameter set (or

point, i.e. a value for each uncertain parameter) that gives the best

value for some objective defining model fitness, typically the error

between model predictions and data; they are commonly identified

as either local or global methods (Figure 2B illustrates these as

applied in this study). Local optimization starts at a specific

parameter set and selects a search direction and step based on the

gradient, i.e. how much the error changes with small parameter

changes. Global methods use the fitness evaluated for a sampling

of parameter sets to then select new samples expected to improve

(algorithmic details vary). Qualitative data, such as the fluorescent

images of the germarium, define predominantly binary fitness

criteria; either the model outputs satisfy the observation or not.

They provide no gradient information and discontinuous changes

in fitness that may be difficult to identify. Optimization procedures

are likely to fail to see where a better solution might lie if a sample

did not happen to be placed there. As a result, biological model

parameters have typically been estimated either using only data

that is quantitative, or by the modeler manually adjusting

parameters based on intuition, a very time-consuming process.

To design a general procedure for optimization to qualitative

data, we considered past efforts in several fields that have addressed

aspects of the problem. We predominantly build on the Optimal

Scaling method, reviewed below, but it is informative to comment

on alternative techniques available. In statistics, regression to

qualitative data has a long history [7], but in contrast with the

mechanistic biological context, only minimal models are used.

These statistical models are typically linear with some assumed

structure on the data (i.e. a function such as logit or probit is applied

to the model values). Thresholds are defined to subdivide the

continuous model output into intervals, and map each interval to a

discrete qualitative output (e.g. high and low, or a phenotype name).

The reliance on model linearity limits the immediate utility of past

statistical approaches for the non-linear models at hand. In complex

model analysis, behavior discrimination [8] has recently been

described to define thresholds among different model behaviors, but

could be applied to model tuning with qualitative data. It relies on

mathematical descriptions of each qualitative behavior to create

quantitative metrics to evaluate how near a model is to satisfying

each behavior. Defined behaviors can range from simple thresholds

to complex time-dependent relationships. A conceptual compro-

mise, Optimal Scaling [9] is an older approach that originated in the

social sciences. Similar to behavior discrimination, it evaluates a

distance from the point of satisfaction, but is more directly oriented

toward model tuning. It also resembles statistical regression

problems, but while its past use has been with simple models, it is

more generally applicable to complex cases (i.e. non-linear models).

For a particular model output, Optimal Scaling uses regression to

estimate the optimal quantitative values likely to have generated the

qualitative data, i.e. the best-case fit to that model output. While

each of these approaches estimates a quantitative fitness, Optimal

Scaling offers particularly broad applicability and a focus on the

feasible values of the real system.

The Optimal Scaling process is illustrated in Figure 2A, and

details are provided in Methods. Each time a model output is

considered, Optimal Scaling defines quantitative values to replace

the qualitative observations; we refer to these as surrogate data

(illustrated as blue circles in Figure 2A, right). The surrogate data

are intended to represent what could have existed in the true

system. To evaluate the best-case fitness to the given model output,

the surrogate data values are optimized within the constraint that

they still satisfy the qualitative observations (constraints shown as

shaded boxes in Figure 2A). The quantitative error between these

optimal values and the model output then defines the model

fitness, and may be used as the objective for existing optimization

techniques. As originally presented for regression of simple models

in the social sciences, Optimal Scaling is alternated with a least

squares optimization of parameter values [9,10]. However, for more

complex models, the necessary convexity of that optimization

scheme can not be guaranteed. Instead, to apply global and multi-

objective optimization techniques, we nest the optimal scaling step

fully within the parameter estimation problem [1] (i.e. optimal

scaling is performed explicitly for every parameter set evaluated).

For details on the optimization process, see Methods.

Using disparate datasets: Multi-objective optimization
The Optimal Scaling procedure addresses model fitness to the

qualitative distributions from germarium images (examples in

Figure 1C), but the uncertainty among the different observation

types remains. For quantitative data, the trade-off between satis-

fying each type would be informed by measured experimental

variance. For these qualitative data, we suggest that the problem

can be viewed as having multiple objectives, i.e. fitting each type of

data as a separate objective (as described in general in [1]). In this

way, the risk of bias in estimating a single best parameter set is

mitigated and a more complete perspective on model performance

constructed by evaluating the continuous trade-off among fitting

the different data types. An approach that originated in economics

and is commonly applied in design optimization, the multi-

objective Pareto optimality concept focuses on determining a well-

spaced set of points describing this trade-off, each of which

corresponds to an optimal point for a different weighting among

objectives [11]. Therein, a point is considered Pareto optimal if no

other points improve one objective without compromising another.

Evaluating a set of Pareto optimal points (termed the Pareto front,

demonstrated in Figure 2C) comes at a significant computational

cost. It is useful to minimize the dimension of the multiobjective

problem and group the most similar data together. While we

consider the germarium data grouped by the type of observation,

data can be grouped in a variety of other ways as suits the problem

at hand, including the quality of data (e.g. nominal, ordinal,

ratiometric, etc.), or the measurement technique used. The Pareto

front is described by plotting the Pareto optimal points on the

objective space (e.g. fitness to wild type data vs. to mutant data).

Reflected in its placement and curvature, the Pareto front shows the

trade-off between objectives, such as how much wild type fitness

must be sacrificed to better fit mutants. Accordingly, we can then

use the Pareto front to compare the performance of different models.

In this study we analyze simplified spatio-temporal models of

the germarium subject to a compiled group of available qualitative

data by estimating quantitative fitness through Optimal Scaling.

To robustly capture data-consistent model behavior, we use multi-

objective optimization to estimate a group of representative model

parameter sets (Representatives). With this approach, we are able

Model-Based Analysis for Qualitative Data
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Figure 2. Estimation of representative parameters. A) Diagram of fitness quantification by Optimal Scaling. Images are mapped to qualitative
data (left, image reproduced/adapted from [58]). Surrogate data (blue 0) are chosen to best fit model outputs (green line) within intervals that match
data (shaded boxes). Intervals are additionally constrained by minimum gaps and sizes. B) Diagram of the global optimization procedure. (Left)
Parameter space is screened by sparse grid (z) and pseudo-random sampling (x)A. Color indicates cost (blue: low, red: high). (Right) Multiple
gradient-based searches are started from the best samples (blue 0), and find local minima (blue �). Finding all minima is not guaranteed (no solution
in upper right quadrant). C) Diagram of the multiobjective optimization procedure. (Left and center) Example Pareto fronts (solid line) for objectives
FA(x) and FB(x), showing Anchor points (PA and PB), and Utopian points (Fu). (Right) Example solution via the modified NNC method, showing:
Anchor points (.), Utopian (8), gradient search starts (0), normal constraints (dashed line), gradient solutions (�).
doi:10.1371/journal.pcbi.1003498.g002
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to refine predictive estimates of system behavior, discriminate

among multiple models, and estimate the merit of future

experiments. To develop and demonstrate the approach in the

germarium, we compare alternative regulatory networks generated

by a naive screen, as well as mechanistic hypotheses informed by

current evidence, including a model based on previous work [12].

We then estimate Representative parameter sets (Pareto points, in

this study) for each model and discriminate among models based

on their simultaneous fitness to published qualitative protein and

mRNA distribution data from wild type and mutant organisms.

Using the Representatives for each model, we assess which data

and parameters should be considered in expanding on the current

models, and estimate which future experiments will be most

informative by model-based experiment design.

Results/Discussion

Stem cell regulation in the germarium has been represented by

a variety of conceptual models [4–6] along with a spatio-temporal

mathematical model [12]. Among these, the consensus regulatory

network most widely supported is as shown in Figure 1B, referred

to herein as the Core network. pMad, Bam, Nos, and Brat form a

chain of repressors that results in bistable behavior with either

pMad and Nos present (the self-renewing state, Figure 1B, left) or

Bam and Brat present (the differentiating state, Figure 1B, right).

This network is well supported through genetic and protein

interaction studies, as well as modeling analysis [12,13] and serves

as the starting point for the mathematical modeling further devel-

oped herein. As indicated by question marks in Figure 1B, addi-

tional components and interactions are unknown, but expected.

Examples include miRNA mediated repression [14], ligand endo-

cytosis [15,16], modification of the extracellular environment [17–

20], and a variety of cell contact mediated mechanisms [21,22].

Compiled protein expression data
Data were compiled from published images of protein expres-

sion across wild type and mutant germaria. All of the data used

(Table 1) are qualitative, giving relative expression of proteins, as

shown in Figure 1. Phenotype data are common and indicate

fusome morphology (e.g. Figure 1C, image on right, showing in red

the spectrosomes as round and fusomes as branched). We correlate

the fusome development to Brat expression as an indicator of

differentiation. We consider the germarium divided into 4 regions:

GSC, CB, Cyst and Posterior. The mapping of these regions onto

our 1 dimensional models is shown in Figure 1A lower, indicated by

color (See also Figure S1 in Supporting Information, Text S1, and

refer to Methods for modeling). We provide this color map as a

reference for model outputs throughout the analysis.

Example qualitative interpretations of data are provided below

each image in Figure 1C, with a reference to the 1-D model. We

note that Bam is known to be repressed by RBP9, which is present

in the posterior region of the germarium [23]. However, the

regulation of RBP9 remains unknown. We neglect this posterior

repression on Bam in the data, as it is outside the scope of the

models we test. Examining the qualitative interpretations, it is

apparent that each observation provides only loose constraints,

emphasizing the importance of considering many such observa-

tions simultaneously.

To separate the different types of observations used, we divide

data among three categories and independently evaluate model

satisfaction of (1) Wild Type observations, (2) Mutant observations,

and (3) Behavioral observations. The Behavioral category includes

both dynamic constraints, specifying how quickly the cells must

respond, and negative phenotypes observed in mutants, which

reflect robustness to some perturbations (indicated in Table 1).

These categories were chosen both for biological interest and to

aggregate data expected to be similar. For example, Mutants

commonly exhibit an all or nothing response over the entire

germarium, while Wild Type responses are more graded.

Representative parameter estimation procedure
We developed a new approach to search for Representatives

that best satisfy qualitative data, which incorporates three

elements: (1) the novel application of Optimal Scaling to

quantitatively estimate model fitness, (2) global optimization to

select a single best solution for each objective, and (3) multi-

objective optimization to find a set of Representatives irrespective

of weighting among objectives. Our implementation of these

techniques is illustrated in Figure 2. For details on each of these

processes, consult Methods.

The quantification of model fitness by Optimal Scaling in this

study is represented in Figure 2A. The procedure generates

surrogate data (blue circles) that are required to lie within intervals

that ensure consistency with qualitative data (shaded boxes).

Model error is then calculated as a relative sum of squared error

between surrogates and the model output (green line). Note that

Table 1. Table of data employed to fit models.

Index Experiment Measurement Reference

1 Wild Type Nos Casanueva, 2004 [25]

2 Wild Type pMad

3 Wild Type Bam

4 Wild Type Phenotype

5 Bam 2/2 Phenotype

6 Bam 2/2 pMad

7 Bam 2/2 Nos Li, 2009 [60]

8 dMyc OE pMad Rhiner, 2009 [16]

9 dMyc 2/2 pMad

10 dMyc +/2B Phenotype

11 dMyc 2/2, dMyc OE pMad

12 Wild Type Brat Harris, 2011 [12]

13 Bam 2/2 Brat

14 Nos 2/2 Brat

15 Brat 2/2 pMad

16 Brat 2/2 Bam

17 Dpp 2/2 Phenotype Xie, 1998 [61]

18 Dpp +/2B Phenotype

19 Bam +/2B Phenotype Shen, 2009 [62]

20 Nos +/2B Phenotype Maines, 2007 [63]

21 Wild Type, DynamicB pMad Morris, 2011 [51]

22 Wild Type, DynamicB Bam

23 Wild Type, DynamicB Nos

24 Wild Type, DynamicB Brat

25 Wild Type, DynamicB Phenotype

BAssigned to Behavioral data category.
doi:10.1371/journal.pcbi.1003498.t001
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error is only non-zero when surrogates cannot be perfectly aligned

with the model output, as in cell positions 3 and 4 in Figure 2 A.

The optimization problem in Optimal Scaling is to select the

intervals and surrogates that minimize the model error for a given

model output.

The global parameter estimation process is depicted in Figure 2B.

In this study, we address non-linear spatio-temporal systems with a

minimum of 10 states and 18 uncertain parameters. When

estimating parameters, dense parameter screening is infeasible

and gradient-based searches are not expected to reliably arrive at a

global solution, but identify local optima instead. To proceed, we

employ a hybrid semi-deterministic approach comprising a sparse

global screen followed by a multi-start gradient search. It is

important to keep in mind that for these models, available opti-

mization techniques do not guarantee globally optimal or unique

solutions (note the unidentified local minimum in Figure 2B right).

Finally, to generate the set of representative model parameters,

we use multi-objective optimization to find points on the Pareto

front, as illustrated in Figure 2C. Here, we determine the Pareto

points (the Representatives) using the Normalized Normal

Constraint (NNC) method [24] (Figure 2C, right), with modifica-

tions to suit the problem at hand and take advantage of global

screening (see Methods for more details). This method performs

multiple single-objective gradient searches, with each restricted to

lie on a different line so that resulting points are well spaced

(dashed lines in Figure 2C, right).

Germarium Core network performance
The multi-objective approach reliably determines a set of Rep-

resentatives for the germarium models. The Pareto front identified

for the Core regulatory network (as depicted in Figure 1B) is

shown in Figure 3.

The front is quite convex (toward the Utopian point), but with a

significant trade-off between Wild Type and Mutant fitness (2nd

from left). Behavioral fitness closely matches Wild Type (3rd from

left, note the very small scale) and exhibits a similar trade-off with

Mutant fitness (right). To illustrate fitness, Figure 3B presents

examples of both well and poorly fit observations, for the Pareto

point nearest the Utopian (arrows in Figure 3A), chosen by

Euclidean distance to estimate a midpoint in the trade-off (fitness

at nearby Pareto points was similar, data not shown). Most of the

observations are satisfied, or nearly satisfied, at this point. The two

largest misfits are pMad in a dMyc mutant with ectopic dMyc

expression, and pMad in a Brat mutant (arrows in Figure 3B).

Examining the data and results for the Brat mutant leads to two

important comments. First, we note that the interpretation of the

Brat mutant phenotype may be overly aggressive (i.e. too many

cells designated with high pMad), due to the discretization of the

germarium into the 4 regions considered in this study. The Cyst

region extends throughout the 2–8 cell cysts (cell 3–9 in the 1D

model), but the indications from data of high pMad expression

past the CB do not clearly extend throughout 8 cell cysts [12].

Second, while pMad signaling in the Brat mutant extends beyond

Figure 3. Parameter estimation in the Core network. A) Solved Pareto front for the Core network, showing the 3-D front (left) and projections
(right 3 plots). Plotted in log space to accentuate small errors, showing: Pareto front (blue line), local solutions (red x), Pareto optimal solutions (�),
Anchor points (.), and Utopian point (8). Projection views are bounded by the relevant Anchor points, so many solved points may not be visible and
scales vary (e.g. Wild Type and Behavioral values are very similar and produce a negligible front with no Pareto points other than the Anchors, 3rd
from left). B) Sample of model outputs and optimally scaled surrogate data for the Pareto point closest to the Utopian, indicated by black arrows in A.
Plot titles indicate measurement: experiment; relative error (W). Notation as in Figure 2A.
doi:10.1371/journal.pcbi.1003498.g003
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the CB, that in Bam mutants does not [25], suggesting either

an unknown regulatory interaction or inconsistency among

experiments.

Network inference supports the core structure
To evaluate the Core model in our framework, we compare

alternative connections of its regulatory elements, pMad, Bam,

Nos, and Brat (different model structures, i.e. rewiring of network

edges). Through a simple network inference problem focused on

Wild Type data only, we performed a broad screen of alternative

networks and identified a set of feasible networks to more

thoroughly evaluate, shown in Figure 4. Considering only Wild

Type fitness, we tested the ,65 k alternatives with only

inhibitory connections and additionally performed searches for

alternatives that include activation, beginning with 250 k

samples. Refer to Methods and Supporting Information (Text

S1) for details. Due to the sparse qualitative data, many networks

(hundreds) were identified as capable of fitting Wild Type data.

To refine this large group, we relied on the principle of

parsimony, preferring simple networks (i.e. those with fewer

connections). Most of the acceptable networks were nested

(i.e. contained simpler acceptable networks plus additional

connections). From these, we identified five parsimonious

variants containing no simpler acceptable networks. We addi-

tionally included two networks with extra connections, chosen

arbitrarily, to provide a comparison for trade-offs in more

complex, but uninformed, models. (‘Alt6’, ‘Alt7’). We compared

these networks against the Core, using all available data to

generate a Pareto front for each.

Pareto fronts determined for each of the alternative networks

are shown superimposed in Figure 5A (between 11 and 46

Representatives per network). All networks fail to fully satisfy the

data. Examining the Wild Type vs. Mutant projection to compare

performance among networks, the Core network dominates most

alternatives (Figure 5A, left). However, networks Alt1 and Alt4

perform very similarly to the Core, dominating it at some points.

To more closely compare these three models, we examine fitness

to individual data (Figure 5B, plots from the Representatives

nearest the Utopian, arrows in Figure 5A). For reference, we also

present results from Alt3, which performs poorly (e.g. compare top

plots, where Nos is observed uniformly high in Bam mutants). In

the Nos mutant where Brat data are uniformly high, Alt3 fails

while Alt4 performs quantitatively better (Figure 5B 2nd row).

However, the qualitative decrease in the anterior region for Alt4

Figure 4. Naive regulatory networks. Yellow and blue boxes refer to differentiation- and self-renewal-promoting elements, respectively.
doi:10.1371/journal.pcbi.1003498.g004

Model-Based Analysis for Qualitative Data
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indicates that its structure is less consistent with the mutant

phenotype than the Core or Alt1 (compare 2nd plots for each

network, decrease in Alt4 indicated by arrow).

The Core and Alt1 networks perform quite similarly, with only

minor differences among the unfit data (Figure 5B, compare 3rd

and bottom plots). All of the networks compared failed to fit these

data. The similar performance of these two networks is explained

by similarity in structure. The only difference between the two is

that Alt1 lacks feedback of Brat upon Mad (Figure 4A). The basic

structure of the Core network is thus well supported, but the data

provide poor support for the feedback component.

These comparisons and the relative lack of support for feedback

exemplify how sparse and qualitative data can be limiting, even

when evaluated quantitatively. Rather than suggesting that the

well observed feedback element is not involved, this study indicates

that the readily available data from genetic experiments are not

sensitive to feedback on Mad. Instead, biochemical evidence

indicates the repression of Mad in the presence of Brat (with

Figure 5. Naive network comparison. A) Solved Pareto fronts for naively generated networks, superimposed for comparison. Insets enlarge view
near Utopian point. B) Examples of model fitness, comparing the Core network with the two closest alternatives (based on Pareto front placement)
and a poor alternative. Only Alt1 remains similar to the Core on examination. Simulated from Pareto points closest to the Utopian, black arrows in A.
Notation as in Figures 3 and 2A.
doi:10.1371/journal.pcbi.1003498.g005
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Pumilio as a cofactor) in a Drosophila S2 cell line [12]. While such

data can be applied directly to define a model, it is not an explicit

observation of the germarium that can be compared to

simulations. Furthermore, to better understand the system and

build parsimonious models, we encourage considering feasible

alternatives to the observed interactions, and asking what is

necessary for the system to function, i.e. if elements are

indispensable, redundant or unimportant. The example experi-

ment design provided below suggests other genetic experiments in

the germarium that may be more sensitive to the feedback on

Mad.

Data do not discriminate more complex hypothesized
networks

We constructed four hypothetical networks that include addi-

tional regulatory mechanisms, as discussed in recent literature.

Each contains the Core network along with additional components

and interactions (Figure 6A). For simplicity with the current model

Figure 6. Informed network comparison. A) Informed hypothetical networks, each adding elements to the Core network. * indicates an indirect
interaction, potentially involving many intermediaries. Coloring as previously, with white boxes where effects are not conceptually clear. B) Solved
Pareto fronts for informed hypothetical networks, including Alt1 which performs similarly to the Core. Arrows indicate the only distinguishable
feature among them, where Ago1 improves over other networks, though only at one point.
doi:10.1371/journal.pcbi.1003498.g006
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structure, we do not consider mechanisms based on cell-cell

contact and adhesion.

1. The endocytosis mediated network Endo introduces feedback on

the cellular endocytosis rate, via Brat inhibiting dMyc production,

as previously observed [12]. dMyc promotes endocytosis [15,16],

which hypothetically causes a stem cell to internalize ligand-

receptor complexes more quickly, creating competition for ligand.

2. The Piwi mediated network Piwi includes feedback via Piwi

and the associated piRNAs, hypothesized to repress Smurf

[26], a ubiquitin protein ligase, which promotes the degrada-

tion of both pMad [25,27,28] and cell-surface receptors for

Dpp [29,30] (in conjunction with an unmodeled cofactor,

Fused). Piwi is repressed in Bam expressing cells [31], though

direct interaction with Bam has not been investigated. Because

Piwi is in the Argonaute family [32], whose members in several

organisms associate with proteins bearing TRIM-NHL motifs

(e.g. Brat, Mei-P26 in Drosophila and TRIM32 in mice) [14,33],

this model places Piwi as a hypothetical target of Brat.

3. In the Argonaute mediated network Ago, feedback is

hypothetically mediated by the observed Mei-P26 repression

of miRNA levels (interacting with Argonaute-1) [14], taking

effect through miR-184, which represses a Dpp receptor as

well as pMad signaling [34]. Not all TRIM-NHL protein

interactions involve degradation activity [35], so Argonaute-1

itself may not be directly regulated by Mei-P26. However, for

simplicity in this network, Ago represents the overall function

of Argonaute-1 and miR-184 and is regulated by Mei-P26.

4. The diffusion mediated network Diff regards extracellular

modification of effective Dpp diffusivity through its association

with both collagen and the proteoglycan Dally [17–19].

Germline cells are hypothesized to regulate the expression of

Dally in nearby somatic cells through endothelial growth factor

(EGF) ligands [20]; herein, the regulation of EGF is placed

downstream of Brat, as the hypothetical regulator of differen-

tiation processes. Dpp association with either collagen or Dally

limits its diffusivity, with Dally expression modifying the pool of

binding sites to retain Dpp nearby a given germline cell.

We include both the Core and Alt1 networks in the analysis, as

they perform nearly indistinguishably. Pareto fronts are presented

superimposed in Figure 6B. As indicated by the overlap of all

fronts, no clear improvements are made by the hypothetical

networks, based on the data at hand. The only indication of

improved fitness is a lower error achieved by the Ago model for

Wild Type and Behavioral data, while relatively well fit to Mutant

data (examine left and right plots, respectively, at the Mutant

anchor point indicated by arrows). However, no clear improve-

ments are apparent in individual outputs for the Ago model (data

not shown). The lack of clear discrimination among models indi-

cates that the currently available data is inadequate to distinguish

the expanded mechanisms tested.

Analysis of hypothetical networks for future
development

Beyond model performance, we use the identified Representa-

tives (Pareto points) to assess the relative influence of each obser-

vation and parameter as we consider future model development.

We examine the distribution of model error to identify which

observations are not yet consistently satisfied, and the distribution

of parameter sensitivity to identify influential parameters.
Few data remain poorly fit. Data that are consistently well

fit across all models need no further attention (unless quantitative

measurements become feasible). A useful alternative perspective is

that these data are not capable of distinguishing between current

and more complex models. Consistently well fit data include

indices 5, 7, 8, 13, 14, and 17 from Table 1: the phenotype, Nos

or Brat in Bam 2/2, pMad in dMyc overexpression, Brat in Nos

2/2, and the phenotype for Dpp 2/2. The few data consistently

unfit, which may prove useful in considering future model addi-

tions include 11, 15 and 18 in Table 1: pMad in dMyc 2/2 with

dMyc overexpression, pMad in Brat 2/2, and the phenotype in

Dpp +/2. The remaining data were involved in the tradeoff

between Wild Type and Mutant objectives, and will remain useful

when evaluated simultaneously. The error distributions examined

are available in Supporting Information (Figures S2–S8 in Text S1).

Regulatory parameters exert the greatest effect. We use

local sensitivity analysis to measure the impact of individual model

parameters, though it is specific to each Representative. As expected,

the half-maximal concentrations characterizing regulatory interac-

tions produce the most significant effects and are heavily involved

in the trade-off among data objectives. Also indicated as important

are phosphorylation kinetics for Mad, and the diffusion, binding

and degradation of Dpp. Degradation of regulators and dissocia-

tion of Dpp from receptors rarely have a significant effect. Dis-

tributions of parameter sensitivity are available in Supporting

Information (Figures S9–S14 in Text S1).

Experiment design
Using the Representatives, we are able to perform a simple

model based experiment design, aiming to estimate the most

informative experiments from a set of hypothetical perturbations

and measurements. Each Representative of each model produces

an individual estimate of the system response in a novel experi-

ment. Potential experiments can then be selected to reduce uncer-

tainty in model parameters, in model outputs or to discriminate

among competing model structures.

To consider different expectations from data as well as different

modeling goals, we present a small variety of approaches to the

experiment design problem. First, we focus on a realistic case,

expecting qualitative protein distributions, as with current data.

Second, we consider a more ideal scenario expecting quantitative

distributions of protein concentration. In each, we rank experi-

ments by their utility in discriminating among models and contrast

with a ranking focused on refining parameter estimates. In all

cases, we correlate utility with variance of the predicted obser-

vations, either among models or Representatives, as greater differ-

ences are more likely to be discernible. This is an approach

implemented previously [36,37], also known as a Maximally

Informative Next Experiment [38] and satisfying G-optimality

[39]. To illustrate the rankings, the top experiments in each design

are presented by heatmaps in Figure 7, color intensity indicating

the relative information gain expected, based on the objective (e.g.

variance with parameters, for reducing uncertainty). Refer to

Methods for details on the experiment design procedure and

calculation of objectives. For each design, the landscape of

objective values over all of the experiments considered exhibits a

sharp peak, indicating the importance of carefully selecting the

experiment (Supporting Information, Figures S15–S17 in Text S1).

Selected experiments from the designs for qualitative data are

shown in Figure 8, where upper panels display expected quali-

tative predictions and lower plots provide predictions from all

Representatives for each model, normalized for visibility. Note

that these experiment designs represent a limited range of feasible

experiments in this system. More exhaustive model based experi-

ment design carries the promise of more finely resolving system

function (e.g. by considering experiments beyond basic genetic

perturbations), but is beyond the scope of the current work.
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Figure 7. Experiment design. A) Heatmaps showing relative information gain expected from qualitative data, with experiments on the ordinate
and species to measure on the abscissa. Darker boxes indicate greater information (i.e. a more preferable experiment), via expected prediction
variance among models (upper), dissimilarity of Representative prediction distributions (center), or variance among Representatives (lower). B)
Heatmaps showing experiment design for quantitative data. Based on local sensitivity to a parameter affecting the indicated system feature
(ordinate), and ranked by variance among models of mean sensitivity (upper) or variance among Representatives (lower).
doi:10.1371/journal.pcbi.1003498.g007
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Experiment design for qualitative data emphasizes

regulators in double mutants. To compare experiments for

qualitative data, we simulated each experiment and translated

outputs into an expected qualitative observation of high or low

concentration. We included single and pairwise combinations of

mutation, heterozygous mutation, and doubled genomic content

(indicated by 26) for each of the proteins common to all networks:

Dpp, Receptors (Rec), Mad, Bam, Nos, Brat, and dMyc, a total of

210 experiments.

To evaluate model discrimination power, we first ranked experi-

ments based on their expected qualitative prediction (Figure 7A,

upper heatmap). The expected prediction is the most likely observation

predicted by a model, with Representatives weighted equally. For

these binary predictions, this corresponds to the median value.

Figure 8A left shows the predictions for an experiment measuring

pMad in Nos 2/2 Rec +/2 (3rd in upper design of Figure 7A).

While the expected predictions (upper panel) and the mean

predictions (lower plots, black lines) vary somewhat among models,

much more variance is evident among the Representatives (gray

lines) for each model. We expect the experiment to refine parameter

estimates, but not clearly discriminate among models. The two best

valued experiments return predictions of uniform distributions of

Figure 8. Simulated experiments designed for qualitative data. Example simulated results for recommended experiments, showing for each
model: qualitative interpretations (upper) and quantitative model outputs for all Representatives, normalized by the mean value to visualize all curves
(lower). A) Simulations for experiments recommended directly for model discrimination. B) Simulations for an experiment recommended to first
refine acceptable parameter estimates in each model.
doi:10.1371/journal.pcbi.1003498.g008
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Brat and dMyc in 26Brat Bam 2/2 and dMyc +/2 Nos 2/2

respectively, varying only in the predicted level. However, the levels

predicted for the Brat experiment also vary more widely within each

model than among models, indicating that the experiment is

unlikely to discriminate clearly. Conversely, the levels for the dMyc

experiment are predicted to be consistently high in all models,

except Endo where they are variable and low. Accordingly, this

experiment is expected to distinguish the Endo model from the rest,

but provide no information on the others. Predictions for these two

experiments are available in Supporting Information (Figure S18 in

Text S1).

A drawback to considering expected predictions is that they do

not consider how individual predictions are distributed, or how

much they overlap among models. To explicitly consider the

overlap of prediction distributions, we employ the Jaccard index,

which measures the similarity in membership of two sets [1,40]. It

is defined in a pairwise fashion, so we rank experiments based on

the sum of all pairwise indices among models. A zero rank would

indicate that all models predict the same set of outcomes, while the

maximum value would mean that all model prediction sets are

mutually exclusive. This design ranks experiments differently than

by expected predictions, though some experiments appear in the

top set of both (Figure 7A, center). The top experiment, measuring

Bam in 26Dpp Nos 2/2 (appearing 6th for design by expected

prediction), is shown in Figure 8A right. Predictions still vary

widely within each model. The expected predictions are less

diverse than in the design focused on them (upper heatmaps), and

the groups of predictions appear more diverse among models

(lower plots, gray lines). Examining the prediction distributions

however, we expect little clear discrimination except between Alt1

and the rest (i.e. adding support for the Core feedback element).

As the predicted power to discriminate among models is limited

by the uncertainty within each model, better identifying param-

eters for each model should improve the ability to discriminate. To

this end, we design to reduce parameter uncertainty by evaluating

the variance among predictions from the Representatives in each

model (Figure 7A, lower). The top experiment corresponds with

that from the expected predictions (Brat in 26Brat Bam 2/2).

Predictions for the 2nd experiment, Nos in Nos +/2 Dpp +/2,

show wide variance among Representatives, with little difference

among models in either mean values or distributions (Figure 8B).

Based on these predicted simulations, we expect that a com-

bination of experiments designed to reduce parameter uncertainty

and to subsequently discriminate will be most effective. While

beyond the scope of this work, design for parallel experiments is a

promising approach to more reliably estimate the best set of

experiments without performing each sequentially [37,41]. For

initial experiments, we recommend working to refine model para-

meters. However, we caution that predictions for spatially uniform

data are subject to uncertainty in the sensitivity of the assay used.

Accordingly, we recommend experiments predicted to produce

non-uniform results, such as measuring Nos in Nos +/2 Dpp +/2.

It is also worth considering that the measurement of Bam in 26Dpp

Nos 2/2 and of dMyc in dMyc +/2 Nos 2/2, as they are

expected to test the Alt1 and Endo models, respectively (Figure 8A

right, and S18 in Text S1).

Experiment design for quantitative data emphasizes

Dpp. To evaluate experiments anticipating quantitative data,

we took a classical approach [14] and evaluated the local sen-

sitivity of model outputs to parameters, for each Representative

point. However, our approach differs from classical Fisher

Information Matrix based optimal designs in that we consider

either model discrimination or uncertainty among multiple Repre-

sentatives, rather than uncertainty around a single parameter set.

We define experiments as the choice of an output to measure and

a perturbation related to a model parameter. As with the designs

for qualitative data, we evaluate experiments both for discrimina-

tion and to refine parameters. To assess discrimination, we rank

experiments by the variance of mean sensitivity among models

(Figure 7B, upper). For parameter refinement, we calculated the

variance of sensitivity over Representatives, summing over models

(Figure 7B, lower). Recognizing that the model parameters may be

affected in multiple ways in the real system, the experiments are

listed by the general model feature that is perturbed.

Both designs emphasize measurement of Dpp concentration,

which is not expected to be informative in the design for quali-

tative data. Notably, pMad is the next most useful measurement

predicted to refine parameters, and should be considered as well.

The two designs differ only slightly in the rank of experiments,

indicating little difference between refining parameters and dis-

criminating models.

In this case, because we have employed local sensitivity analyses,

we are designing for experiments that perturb the system only

slightly. While desirable to limit side effects, this is difficult to

implement for internal components in most biological systems. To

robustly design for experiments that more significantly perturb

conditions, more explicit predictions may be simulated, as with the

qualitative design. It is also important to note that we have not

considered expected experimental error (i.e. if the predicted results

would be distinguishable from the noise). There are several

alternative approaches to model based experiment design which

may be applicable, depending on the scope and state of the model.

For more detail and instruction in experiment design for complex

systems, we recommend recent reviews and contributions [41–43].

In considering all designs, it is important to also consider the

feasibility of experiments, and any alternative means of acquiring

similar data. For these example designs, we have included per-

turbations of all major system components despite the fact that

some may be difficult to produce or to evaluate in a real organism.

If such experiments are ranked highly, alternative experiments

may be necessary to more practically deliver similar information.

For example, some genetic mutants may be lethal or may severely

disrupt organism development. However, site specific recombina-

tion methods or clonal mutation may be able to provide the rele-

vant information without affecting the entire system as drastically.

In such cases, it is also important to properly represent the

conditions of the experiment, so models may need to be adapted

accordingly.

Conclusions
In this study we have presented a quantitative model analysis

based on qualitative data, via multi-objective optimization with

Optimal Scaling fitness estimates. Through our analysis of stem

cell regulation in the Drosophila germarium, we have demonstrated

the estimation of a set of representative parameter sets, discrim-

ination among multiple models, and model-based experiment

design.

Using the newly developed process to study the germarium, we

have shown the extent to which the existing data employed can

discriminate among hypothetical regulatory mechanisms. Current

qualitative mRNA and protein image data support the serial

inhibition of the (previously presented) Core network, but not the

feedback element, which is well evidenced in biochemical data.

These data do not distinguish among the more complex mech-

anisms proposed. Toward future modeling, we indicated data that

have yet to be satisfied, model parameters that influence fitness,

and presented an example experiment design to improve model

discrimination. Based on the limited discrimination expected in
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the experiment designs performed, we recommend first aiming to

reduce parameter uncertainty, e.g. by measuring Nos in Nos +/2

Dpp +/2. We also recommend pursuing quantitative measure-

ments for Dpp or pMad, as feasible. The designs presented also

indicate a variety of other potential experiments. Beyond these

initial experiments however, we recommend a more thorough

experiment design with careful attention to the feasibility and cost

of different experiments.

The framework we have developed offers benefits in a wide

range of applications. In principle, it is appropriate for any

mathematical modeling problem where some or all data are

limited to qualitative observations. Naturally, there is particular

potential for gains in biological applications, where highly complex

systems are prevalent. With the Drosophila germarium as a prime

example, developmental biology presents many potential applica-

tions as it focuses on pattern formation and spatio-temporal

behavior, as in the organization of body axes, limbs, and organ

structures [44]. In the broader context of biology and medicine, a

variety of fields exhibit similar problems and may also benefit from

more widespread use of qualitative data in mathematical modeling

studies such as this one. General examples include mechanobiol-

ogy [45], neurobiology [46,47], and tissue engineering [48]. We

would like to emphasize that the techniques developed in this work

accommodate uncertainty in data. If all data can be taken in a

rigorously quantitative format, the Optimal Scaling procedure is

unnecessary. We anticipate that these techniques will be most

valuable when including historical data and when employing new

measurements that are not yet refined enough to ensure

quantitative reporting.

Methods

Data compilation
The aggregate dataset of observations on the anterior germar-

ium was assembled from published literature only. Sources were

identified by a primary search of combinations of the terms

Drosophila, germarium, GSC, bam, brat, nos, and mad. Searches

were performed via the search engine Google Scholar and the

databases Medline, PubMed, and Science Citation Index. A

secondary search identified additional data sources from referenc-

es within and articles citing the primary findings. Sources were

screened for experiments and relevant data.

Data are recorded under a variety of conditions, including

genetic mutation and overexpression. Some data were excluded to

limit the computational cost of simulations, especially from over-

expression studies (e.g. expression via the yeast Gal4-UAS system

[49]) where the increase of expression over wild type is highly

uncertain and requires optimization of experimental parameters.

Qualitative data were defined by subjective (visual) review of

figures and by the interpretations presented by the original authors

(e.g. pMad expression is ranked high in a region because its image

intensity there appears clearly greater than elsewhere in the same

image, with deference to any declared observations made in the

published text). Data repeated in multiple works were included

one time in the aggregate set, as the observation best representing

the consensus from the field. Many data were recorded via fluo-

rescent immunochemistry, which can be ratiometric (i.e. linearly

related to the protein concentration) and is often used quantita-

tively after normalization. However, it is important to consider

that the quality of data relies on the entire experiment, not just

the final measurement type. The linearity of the data, which is

required to reliably normalize, cannot be assured without express

guarantees both that the experimental reaction steps were

designed to preserve a linear relationship and that the images

available accurately present the original intensity values. Many of

the experiments aggregated for this study employed enzyme linked

visualization assays not originally intended for quantitative

comparison or modeling, so controls were not presented to ensure

that the reactions remained linear. In addition, the germarium

is composed of a soft tissue with a high degree of geometric

variability between images, limiting the ability to combine multiple

images by geometric registration and evaluate measurement uncer-

tainty. Accordingly, all data were treated as ordinal, which reflects

the subjective evaluations presented in the source literature.

To correlate the Phenotype data to Brat expression, we evaluate

the mean Brat concentration over the past 6 hours (expecting

unmodeled delays, and a cell cycle less than 24 hours [50,51]).

Accordingly, data observed with a fusome are assigned a higher

rank than those with a spectrosome.

Mathematical modeling
Models of the anterior germarium were designed to represent

the system as presented in Figure 1A (see Figure S1 in Supporting

Information, Text S1). The models consider secretion of Dpp into

the extracellular space, diffusion, receptor binding, and protein

levels within each cell, according to the internal regulatory net-

work. Alternative models only differ in the intracellular regulatory

network, with the exception that the Diff model includes a secreted

molecule not modeled otherwise.

Assumptions and implementation. To form the simplest

models appropriate for the system and available data, we apply a

set of general assumptions, including: (1) well-mixed conditions, (2)

simple saturating regulation, (3) cofactor sufficiency, and (4) one-

dimensional organization. 1) Solutions within and near each cell

are assumed to be homogenous, i.e. that local diffusion is suffi-

ciently fast for the apparent reaction concentration to be equi-

valent to bulk concentration. Long-range diffusion, over multiple

cell diameters, is explicitly modeled. 2) All protein production

regulatory processes, both transcriptional and translational, are

approximated by a Hill equation with a cooperativity coefficient of

two. The Hill equation provides saturating effects scalable by the

half-maximal concentration of the repressor. 3) All cofactors

required for reactions are assumed to be present and non-limiting.

4) Geometric effects in directions other than along the anterior-

posterior (long) axis of the germarium are assumed to be negli-

gible, given the quality and resolution of the available data.

Corresponding with the assumptions made, we formulate

models with ordinary differential equations (ODE), representing

a one dimensional line of cells oriented along the anterior-posterior

axis. Each modeled cell comprises an ODE compartment with state

variables for the regulatory and signaling molecules. The formula-

tion for intracellular regulators follows the example model equations

(1) and (2). Therein, w are production rates, k first order deg-

radation, r reaction rates, K half-maximal concentrations for

regulators, and n the Hill coefficient (2 throughout all models).

d½Bam�
dt

~
wBam

1z
½pMad�
KpMad

� �n {kBam½Bam� ð1Þ

The model geometry includes the CC at the anterior end to

make 18 cells. One cell each is allocated to the wild type GSC and

CB positions, the following 7 cells as Cyst, and the last 8 cells as

Posterior (as in Figure 1A, bottom). Interconnections among cyst

cells are not explicitly modeled. Long range diffusion is
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approximated by the finite difference method, as in (2).

d½Dpp�
dt

~D+2½Dpp�zwDpp{ron½Dpp�½R�zroff ½BR�{kDpp½Dpp�

+2½Dpp�i&
½Dpp�i{1{2½Dpp�iz½Dpp�iz1

Dx2
ð2Þ

We apply no-flux boundaries (i.e. ½Dpp�0{½Dpp�1~0 and

½Dpp�19{½Dpp�18~0), define no Dpp production outside CCs

(wDpp(i)~0 Viw1), and no Dpp Receptors in the CC (wR(i)~0).

The complete set of equations, as well as model constants and

parameter ranges based on literature [12,16,22,52–55], are

available in Supporting Information (Text S1).

To implement numerically, the ODEs are coded and solved

in MATLAB, using the built-in stiff solver ‘ode15s’. For steady

state solutions, ODEs are solved from null (zero value) starting

conditions over a simulation period of 24 hours. For dynami-

cally constrained solutions, ODEs are first solved for steady

state; then a cell cycle and displacement event is approximated

and the results used as initial conditions for a 12 hour

simulation. Cell cycle and displacement are approximated by

setting each zone (GSC, CB, Cyst, Posterior) to the average

solved conditions of its anterior neighbor (i.e. shifting values

posteriorly by one zone).

Alternative network identification. To naively choose

networks, we performed two parameter screens for networks that

satisfy the available Wild Type data. As all Core regulation is

inhibitory, the first screen considered only inhibitory interac-

tions, and was performed by exhaustively sampling combinations

of strong and weak regulatory parameters for all possible

interactions, excluding self-regulation. Second, to address posi-

tive feedback, we performed global optimization over a full

range of negative and positive feedback interactions. Both

screens were filtered by a fitness threshold and the remaining

networks were filtered for parsimony. Further parameter

screening details are available in Supporting Information (Text

S1).

Optimal scaling fitness estimation
Optimal Scaling constructs a set of surrogate data, which may

take any value within the qualitative constraints observed. The

Optimal Scaling problem selects surrogate data that minimize

error from the model. Because absolute error values may vary with

the scale of the model output, we use squared relative errors

SRE~
~yy{ŷy

1

2
~yyzŷyð ÞzVnetze

0
B@

1
CA

2

, where ŷy are model outputs, ~yy are

surrogate data, e is a small constant to enforce finite values, and

Vnet is the net variation across the model geometry,
P

i Dŷyiz1{ŷyi D
where i indexes cell position. The inclusion of Vnet penalizes error

in flat model outputs, i.e. common trivial fitness compromises.

The final error is the square root of the sum of average error

over all cells in each observation domain,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
z SREz

q
, for

z[f0GSC0, 0CB0, 0Cyst0, 0Posterior0g.
Constraints and implementation. Constraints on surro-

gate values depend on the data type. For ordinal data and con-

tinuous models, the constraints translate to intervals in which each

surrogate value must lie (as shown by shaded boxes in Figure 2A),

specifically

Oi&Oj ? ~yyi[ ~yy{
j ~yyz

j

h i

Oi]Oj ? ~yyiw~yyz
j ð3Þ

where Oi is the ith observation, and ~yy{
i and ~yyz

i are lower and

upper bounds on the interval containing ~yyi. An important

implementation note is that surrogate data optimization can be

reduced to the selection of interval bounds ~yy{,~yyz. For qualitative

data and any given intervals, optimal surrogate values will equal

the model output if within the interval, and lie on the nearest

boundary if not.

In this application of Optimal Scaling, we estimate constraints

on surrogate data interval sizes and spacing based on model values

and the resolution of data (i.e. the number of ordinal ranks

observed). These constraints reflect that quantitative differences

can only be detected over a finite threshold. However, little quan-

titative information is available on the sensitivity of the experi-

ments considered, so the threshold is unknown for the data at

hand. To estimate a generalized constraint, we apply a heuristic

based on the scale of model outputs and the number of categories

observed in data, Nc. The minimum range of an interval is

estimated by
max(ŷy)

2Ncz1
; the minimum gap between intervals is

limited to
max(ŷy)

4(Nc{1)z1
. So defined, intervals are prevented from

becoming impractically small, while retaining some flexibility by

ensuring that a maximum of 75% of the model scale is accounted

for by minimum ranges (in the limit as Nc??, expecting Nc

intervals and Nc{1 interval gaps).

Numerical procedures
Single objective, global optimization. To screen for the

semi-deterministic global optimization, we allocate samples in a

deterministic sparse grid (Chebyshev-Gauss-Lobatto node distri-

bution) [56], and pseudo-randomly through a latin hypercube

design. The sparse grid provides some sampling uniformity and is

also used to define a rough polynomial interpolant, which we use

to estimate search start points for multiobjective optimization.

Bounded by the computational cost of simulating the model, 500 k

samples were evaluated for each screen. Sparse grid density was

dependent on the size of the parameter space and was chosen to

allocate no more than 75% of the samples deterministically.

Gradient searches used the MATLAB built-in constrained

optimization routine fmincon, via the interior point method,

chosen for strict respect of parameter boundaries. 64 gradient

searches were run for each single objective optimization.

Multi-objective optimization. We determine the Pareto

front using a slightly modified version of normalized normal

constraint (NNC) method [24], as depicted in 2C right. Anchor

points are determined by the global search, though a single global

screen is used for all anchor points. In the normalized space

bounded by the Anchor points, valued within ½0, 1� in each

objective, the plane including all Anchor points is defined as the

Utopian plane. Multiple gradient-based searches are performed,

ideally starting from points evenly distributed on the Utopian

plane (0 in Figure 2C, right). In order to be more robust to

gradient searches settling in local minima, additional search start

points on each normal constraint were sought at +
1

2
the length of

the constraint vector (from zero crossing to the Utopian plane).

Initial parameter values corresponding to each desired search start
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point are estimated by polynomial interpolation on the previously

sampled sparse grid [56], rather than by linear interpolation. A

gradient search is started from each of these initial parameter

estimates (using MATLABs fmincon and the interior point

method), requiring that each solution lie on its constraint vector,

normal to the Utopian plane. The resulting solutions are filtered

for Pareto optimality, returning the final set of Representatives

describing the Pareto front.
Local sensitivity analysis. We perform local sensitivity

analysis by the finite difference method, approximating
dŷy(p)

dp
as

ŷy(pzDp){ŷy(p)

Dp
. All sensitivities calculated are relative, i.e. scaled

by the nominal value of the output and parameter
dŷy

ŷy

p

dp

� �
.

Experiment design
Our experiment designs for qualitative data are performed by

exhaustively evaluating all of the experiments we consider. To

estimate the qualitative observation for each simulation, we apply

the surrogate data interval boundary constraints from our Optimal

Scaling formulation. These designs then differ only in the objective

by which we rank experiments. In all cases, the goal is to maximize

the objective value. For each objective, the color intensity plotted

in Figure 7 is determined by mapping between RGB colors ½1,1,1�
(low) and ½0,0,0:5� (high), relative to the other values in the same

heatmap. Toward discrimination, we rank by the variance over

models (M ) of expected predictions (4) or the overlap in prediction

distributions, using the Jaccard index (5). R(M) refers to the set of

Representatives for model M. The number of Representatives

identified per model varied from 11 to 46. The objective is defined

over the 1-D space of the model (17 cells after removing the CC),

and we aggregate to a scalar by evaluating the mean of each

model region and taking the sum. We define the index

z~f0GSC0, 0CB0, 0Cyst0, 0Posterior0g for xz, which indicates the

cell positions for these regions of the model (as in Figure 1A), as

well as Nz the number of cells in each (i.e. ½1,1,7,8�).

WExpectedPrediction~
X

z

varM (ER(M)½ŷy(xz)�)
Nz

ð4Þ

WPredictionDistribution~
X
j,k

(1{J(j,k)), where J(j,k)~
njkznkj

njznk

ð5Þ

To calculate the Jaccard index, nj is the number of Represen-

tatives in model j, while njk is the number of Representatives of

model j that predict an output also predicted for model k, and vice

versa for nkj . To refine parameters, we rank experiments by the

sum over models of the variance of predictions among Representatives

(6).

WPredictionVariance~
X
M

X
z

varR(M)(ŷy(xz))

Nz

ð6Þ

In the experiment design for quantitative data, we use the

local sensitivity results previously discussed, which approximate

Sij~
dŷyi

dpj

pj

ŷyi

. In the objective for discrimination, we aggregate by

taking the mean sensitivity across Representatives (sensitivities with

inconsistent sign will cancel), and rank by variance among models

(7). To refine parameters, we evaluate the sensitivity variance over

Representatives and rank by the sum of this variance over models

(8).

WMeanSensitivity~varM (�SS) ð7Þ

WSensitivityVariance~
X
M

varR(M)(S) ð8Þ

Supporting Information

Dataset S1 Core model representative parameters.
Representative parameter values determined for the Core model,

corresponding with Pareto points plotted in Figure 3A, 5A and 6B.

(CSV)

Dataset S2 Alt1 model representative parameters. Rep-

resentative parameter values determined for the Alt1 model,

corresponding with Pareto points plotted in Figure 5A and 6B.

(CSV)

Dataset S3 Endo model representative parameters.
Representative parameter values determined for the Endo model,

corresponding with Pareto points plotted in Figure 6B.

(CSV)

Dataset S4 Piwi model representative parameters.
Representative parameter values determined for the Piwi model,

corresponding with Pareto points plotted in Figure 6B.

(CSV)

Dataset S5 Ago model representative parameters. Rep-

resentative parameter values determined for the Ago model,

corresponding with Pareto points plotted in Figure 6B.

(CSV)

Dataset S6 Diff model representative parameters. Rep-

resentative parameter values determined for the Diff model,

corresponding with Pareto points plotted in Figure 6B.

(CSV)

Text S1 Supporting Information. Supporting information

regarding model development and analysis.

(PDF)
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