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Mutated germline alleles in the DNA damage repair (DDR) genes “breast cancer gene 1”
(BRCA1) and BRCA2 have originally been identified as major susceptibility genes in breast
and ovarian cancers. With the establishment and approval of more cost-effective gene
sequencing methods, germline and somatic BRCA mutations have been detected in
several cancers. Since the approval of poly (ADP)-ribose polymerase inhibitors (PARPi) for
BRCA-mutated cancers, BRCA mutations gained rising therapeutic implications. The
impact and significance of BRCA mutations have been evaluated extensively in the last
decades. Moreover, other genes involved in the DDR pathway, such as ATM, ATR, or
CHK1, have emerged as potential new treatment targets, as inhibitors of these proteins
are currently under clinical investigation. This review gives a concise overview on the
emerging clinical implications of mutations in the DDR genes in gastrointestinal cancers
with a focus on BRCA mutations.

Keywords: BRCA, DNA damage repair, PARP inhibitors (PARPi), precision oncology, molecular profiling,
gastrointenstinal cancer
INTRODUCTION

The breast and ovarian cancer susceptibility genes “breast cancer gene” (BRCA)1 and BRCA2 have
been thoroughly investigated in the last decades. It is estimated, that one out of 400 to 800
individuals (0.125%–0.25%) in the USAmay harbor a germline loss-of-function mutation in BRCA1
or BRCA2 (gBRCA-mut) (1, 2). This is associated with an approximately 60% lifetime risk for breast
cancer and a 15% to 40% lifetime risk for ovarian cancer development (3–5). Of note, the rate of
gBRCA-mut is higher in the Ashkenazi Jewish population, in which 2.5% harbor a pathogenic
mutation (6). In this specific population, two founder mutations in BRCA1 and one founder
mutation in BRCA2 have been identified (7).

For BRCA-mutated breast and ovarian cancer, treatment with Poly-(ADP) ribose polymerase
inhibitors (PARPi) has been established as a standard of care (8, 9). Besides breast and ovarian
cancer, PARPi have been recently evaluated for the treatment of BRCA-mut pancreatic cancer
implicating a possible further use in other BRCA-mut gastrointestinal (GI) cancers. The frequency
of BRCA1 and BRCA2 mutations in GI cancers varies between tumor entities (see Table 1).
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However, as BRCA1 and BRCA2 play pivotal roles in the cellular
response to DNA damage, targeting DNA damage repair (DDR)
mechanisms gained focus in drug development. In addition, as
oncologists, it is paramount to be aware of the crucial
implications related to the broadening population of patients
who are going to be tested for and counseled about germline
BRCA mutations, since the recognition of hereditary syndromes
is important in order to set up dedicated follow-up to reduce the
incidence of second tumors among survivors and to reduce
mortality among their relatives (22). As treatment options in
advanced GI cancers are limited and are associated with a poor
overall survival (OS), the quest towards new therapeutics is
ongoing, and drugs targeting BRCA and other gene members
within the DDR complex are heavily investigated. In this article,
we aimed to give a concise overview on the pathophysiology of
the DDR machinery, current and upcoming treatment options
for GI cancers with BRCA1/2 mutations, and on other DDR
genes that are currently under clinical investigation.
BRCA GENES ARE KEY PLAYERS IN THE
DNA DAMAGE REPAIR COMPLEX

DDR mechanisms maintain genomic integrity and stability by
restoring DNA damage arising from intracellular and
extracellular stressors. Those stressors can lead to base
alterations or single- (SSBs) or double-strand breaks (DSBs)
(23). If left unrepaired, strand breakages can result in the
breakdown of chromosomes and, subsequently, in the loss of
genes. Mainly, DNA DSBs cannot only arise from stalled or
broken DNA replication forks but can also be caused by ionizing
radiation, reactive oxygen species (ROS), and physical or
mechanical stress (23).

Two mechanisms have been discovered which counteract
serious DNA damage. Predominantly, cells utilize a
mechanism termed “nonhomologous end joining” (NHEJ), in
which the broken DNA strands are brought into proximity and
the ends are joined by DNA ligation (24). This mechanism is
error prone, as processing of the DNA ends by NHEJ leading to
the loss of nucleotides and causing rearrangements, which might
lead to an altered DNA sequence at the site of breakage.
Frontiers in Oncology | www.frontiersin.org 2
However, if a sister chromatid is available as a template for the
repair machinery during or shortly after DNA replication in the
S- and G2-phase of the cell cycle (25), NHEJ is avoided and a
mechanism termed “homologous recombination repair” (HRR)
is preferably used. BRCA1 and BRCA2 are important players in
the molecular machinery of HRR, that accurately repair DSBs
and prevents the delay or arrest of the cell cycle, apoptosis, or the
passing on of damaged DNA (26). In brief, HRR repairs DSBs via
exchange of DNA strands between a pair of homologous duplex
DNA sequences, whereas one strand acts as a template to restore
the lost or damaged information on the other strand (Figure 1).

In the HRR pathway, BRCA1 acts upstream of BRCA2 and
has multiple distinct functions, which are mediated by its
different genetic domains (27), emphasizing the pivotal role of
BRCA1 as a caretaker of the genome, as it directly and indirectly
interacts with DNA damage sensors, DDR effectors, tumor
suppressors, and cell cycle regulators (28, 29). “partner and
localizer of BRCA2” (PALB2) binds directly to both, BRCA1
and BRCA2, and thereby provides a physical link between the
two proteins (27, 30, 31).

Lack of a functional BRCA1 or BRCA2 allele leads to a
deficiency in DNA DSB repair by HRR. In such a
constellation, the cell utilizes more error-prone mechanisms
such as NHEJ or single-strand annealing, which in turn, leads
to increased genomic instability (32). In BRCA1-deficient cells,
chromosomal aberrations, such as triradial or quadriradial
chromosomes, or rearrangements, like translocations, have
frequently been observed (33). In BRCA2-deficient cells,
aneuploidy has been observed due to deregulation of
centrosomes and the mitotic spindles (34). An important step
in carcinogenesis of BRCA-mutated cells seems to be the loss of
heterozygosity (LOH), as this can be observed in most gBRCA-
mut cancers (35). However, there are data suggesting that loss of
the wild-type allele may not be a prerequisite of BRCA-associated
tumorigenesis (27). Besides LOH, promotor methylation of the
BRCA genes seems to be an important mechanism for loss of
function (LOF) and was more frequently observed in sporadic
than in gBRCA-mut cancers (36). A BRCA1 methylation
signature has also been associated with a better response to
cytotoxic treatment in a small cohort of breast cancer
patients (37).
TABLE 1 | Mutation frequencies of BRCA1, BRCA2, and of other frequently mutated DDR genes.

Gene Esophageal (%) Gastric (%) Pancreatic (%) HCC (%) CRC (%) BTC (%)

BRCA1 0.48† 1.3–1.4†‡ s: 0.29†–0.6‡ 0† 1.06†

g: 1–7§

BRCA2 s: 2.91† s: 3.1–3.3†‡ s: 2.3†–3‡ 0† 2.2†

g: 3–12~ g: 5.7** g: 6–17$

PALB2 s: 0.81† 0.6# 1.17† 0† 0.69†

ATM 3.23† 3.6†–18†† 4.08† 0.87† 4.57†

ATR 0.32† 0† 0.29† 0† 0.73†

CHK2 0.97† 0.6† 2.33† 4.35† 1.3†

WRN 0.16† 0.12† 0.29† 0† 0.29†–1.2§§

overall HRR Mut 20.8† 15.4† 28.9† 20.3†–22.8‡‡ 15.0†
October
 2021 | Volume 11 | Ar
s, somatic; g, germline; no annotation, somatic mutation; BTC, biliary tract cancer; HCC, hepatocellular cancer; CRC, colorectal cancer; HRR, homologous recombination repair. †Heeke
et al. (10), §Ricci et al. (11), §§Zimmer et al. (12), ‡Spizzo et al. (13), $Klein et al. (14), ~Ko et al (15), Akbari et al. (16), Hu et al. (17), **Figer et al. (18), ‡‡Lin et al. (19), ††Russel et al. (20),
#Seeber et al. (21).
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PLATINUM-BASED REGIMENS ARE
CONSIDERED EFFICIENT IN DDR
ABERRANT CANCERS
Cytotoxic chemotherapeutic agents, such as platinum agents,
lead to interstrand crosslinks, resulting in distortion of the DNA
double helix, which inhibits the transcription, as RNA
polymerases stall at the platinum crosslinks. If left unresolved,
Frontiers in Oncology | www.frontiersin.org 3
the cell evokes a programmed cell death pathway (38). However,
in the situation of a hypofunctional DDR, e.g., through a LOF or
a hypermethylation of the BRCA genes, these lesions are left
unrepaired to a greater extend and the viability of cells is reduced
dramatically (39). This observation has already been transferred
to clinical settings and has been implemented in the treatment of
gynecological malignancies. As such, in BRCA-mut breast
cancer, the use of platinum-based therapeutic regimens,
FIGURE 1 | DNA damage repair pathways and drug targets. (A) Several internal and external stressors such as ionizing radiation, replication stress, ROS, or
chemical stress can lead to DNA double-strand breaks (DNA DSBs). Depending on cell cycle progression and the availability of a template strand, either the
nonhomologous end joining (NHEJ) or the homologous recombination repair (HRR) pathway are the mechanism of choice for DNA repair. In the NHEJ pathway, DNA
damage is recognized by the “DNA-dependent protein kinase” (DNA-PK), a nuclear serine/threonine protein kinase complex, composed of a large catalytic subunit
named DNA-PKcs and a heterodimer of Ku proteins (Ku70/80). Then, the nuclease Artemis is activated and cleaves 5′- and 3′-DNA overhangs. In HRR, which only
occurs in the S and the G2 phase of the cell cycle, a protein complex termed MRN (which is composed of MRE11, Rad50, and Nbs1) recognizes DNA DSBs. After
its activation by phosphorylation, the ATM kinase works as a master effector protein for HRR by activating several downstream effectors such as the CHK1 or the
CHK2 kinase or the BRCA1 protein, having effects on cell cycle progression via p53 control or CDK1 inhibition. Stalled replication forks lead to an arrest of DNA
replication and such replication stress could lead to DNA DSBs. To prevent this and to stop cell cycle progression, the ATR protein kinase is recruited and binds to
its partner protein ATRIP. Cell cycle regulation and repair mechanisms are then controlled via CHK1 activation. Repair of DNA single-strand breaks (SSBs) is initiated
by PARP enzymes. (B) In HRR, the MRE protein acts as a nuclease and resects the broken DNA ends, which results in the overhanging of single-stranded 3′-ends.
Protection from further resection or modification of ssDNA is reached by the binding of the RPA protein. RAD51 is essential for HRR, as it facilitates DNA unwinding,
stretching, and invasion into the template strand. To prevent its early polymerization on DNA, RAD51 proteins are kept inactive by binding to BRCA2, which is
recruited to the broken DNA in a complex with BRCA1 and the linker protein PALB2 after detection of DNA damage. The RAD51-DNA filament is then capable of
invading the template strand. (C) The RAD51-DNA filament invades the template strand and searches for extended homologous regions, which are then stabilized by
base pairing. RAD51 disassembles and leaves a heteroduplex of the defective DNA strand and the template strand. The invading strand is extended by a DNA
polymerase, and after elongation, the newly synthesized strand segment is displaced and finally ligated with its original strand endings. This figure was created using
the BioRender.com online tool.
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showed promising results in triple negative breast cancer (40–
44), and the first randomized phase III trial (TNT trial) led to a
longer progression-free survival (PFS) in patients with BRCA
mutations compared with BRCA-wt patients. However, no effect
on OS has been observed (45). Some studies have also reported
improved PFS, OS, and response rates (RR) in ovarian cancer
patients with BRCA mutations undergoing platinum-containing
regimens (46–54).
PARP INHIBITORS GENERATE
SYNTHETIC LETHALITY IN HRR
DEFECT CANCERS

The development of PARPi added further treatment options for
BRCA-mut cancers by making use of the concept of synthetic
lethality. Synthetic lethality between two genes occurs where
individual loss of either gene is compatible with life, but
simultaneous loss of both genes results in cell death (55).
Endogenous processes (i.e., oxidation) lead to thousands of
mutated bases every day, which are mainly repaired by a
mechanism called base excision repair (BER). BER generates
single-nucleotide gaps (i.e., SSBs), which has to be filled by a
DNA polymerase and then be sealed by a DNA ligase (56). The
PARP1 protein recruits those DNA repair enzymes to the SSB
sites, by binding to these sites of breakage and ADP-ribosylates
itself (this has been termed “PARylation”). The resulting poly-
ADP tails serves as docking sites for repair enzymes needed to fix
the SSBs (57). When PARP1 is blocked, SSBs persist, which
generates DSBs when a replication fork passes through (58). In
BRCA-deficient cells, those DBSs cannot be repaired during
replication, leading to cell death by accumulation of DSBs and
the resulting genomic catastrophe (55).

However, this classical model (“SSB replication run-off
model”) of our understanding of the mechanism of action of
PARPi is still incomplete and has been challenged by the “PARP1
trapping model” and the “replication restart model,” which are
reviewed elsewhere (55, 59).

Clinical evidence for the efficacy of PARPi in gBRCA-mut
patients has first been observed in breast and ovarian cancer and
was later also observed in metastasized castration-resistant
prostate cancer and pancreatic cancer (60). To date, the PARPi
olaparib, rucaparib, talazoparib, veliparib, and niraparib gained
FDA approval in different settings.

Although its promising activity, more than 40% of BRCA-
deficient patients fail to respond to PARPi and acquired
resistance commonly occurs (60). Four categories of resistance
mechanisms have been identified so far (61): cellular availability
of the inhibitor, activity and abundance of PAR chains,
reactivation of HRR, and replication fork protection. Of these,
especially the restoration of HRR genes through genetic
reversion mutations in BRCA1 or via synthetic viable loss of
53BP1 has been clinically proven (61–63). Also, resistance to
platinum-based chemotherapies strongly predicts PARPi
resistance (64).
Frontiers in Oncology | www.frontiersin.org 4
BRCA MUTATIONS IN
PANCREATIC CANCER

With an estimated 5-year OS below 5% in the metastasized
setting, new therapeutic approaches are urgently needed for
patients with pancreatic cancer (65).

A family history of pancreatic cancer is reported in about 5%–
10% of newly diagnosed cases (66–68) with germline mutations
in BRCA2 contributing to approximately 6%–17% of these cases
(14, 66, 69) (Table 1). Also, truncating mutations in PALB2 were
identified to occur in 1%–3% of familial pancreatic cancer cases
(70–72). In a large cohort comprising 2,818 sporadic pancreatic
cancers, our group identified gene mutations in BRCA1, BRCA2,
or PALB2 in 1.3%, 3.1%, and 0.6%, respectively. Interestingly,
none of the patients with a BRCA1 or BRCA2 mutations had a
concomitant mutation in PALB2 and vice versa. BRCA-mut and
PALB2-mut statuses were also associated with a distinct genomic
profile, potentially predictive for response to checkpoint-
inhibitor therapy (21). Other estimates of BRCA gene mutation
prevalence in sporadic PDAC ranged from 5.5% to 21.6% (73).
Before the discovery of PARPi, several case reports and small
clinical trials suggested a benefit for DNA-crosslinking
chemotherapy, e.g., with platinum, in BRCA-mut pancreatic
cancer (74–77). In 2014, Golan et al. retrospectively analyzed
clinical data of 71 patients with BRCA1/2-mut pancreatic cancer
and observed a significantly longer OS for individuals with an
advanced disease when treated with a platinum therapy
compared with nonplatinum treatment (22 vs. 9 months) (66).

In the last decade, several clinical trials investigated PARPi in
BRCA-mut pancreatic cancer. In a phase II trial including 23
patients with metastatic pancreatic cancer, the PARPi olaparib
reached a RR of 21.7%, a stable disease (SD) ≥8 weeks in 35%,
and a median PFS and OS of 4.6 and 9.8 months, respectively
(78) (Table 2). In the first randomized, placebo-controlled phase
III trial evaluating the efficacy of olaparib as a maintenance
treatment in patients with gBRCA1/2-mut and metastatic
pancreatic cancer (POLO trial), a significant prolongation of
PFS was observed. For the 92 patients treated in the
interventional arm, median PFS reached 7.4 months compared
with 3.8 months in the placebo arm (HR, 0.53). However, an
interim overall survival analysis failed to show a survival benefit
(86). Interestingly, olaparib maintenance therapy was associated
with improved quality of life in the POLO trial (90). As such,
olaparib has been approved by the FDA as a first-line
maintenance treatment in gBRCA-mut metastatic pancreatic
cancer. Promising upcoming clinical trials are currently
evaluating the efficacy of olaparib in patients with somatic
mutations in BRCA and other HRR genes (NCT02677038) and
a combinational approach with the PD-1 immune checkpoint-
inhibitor pembrolizumab (NCT04548752).

In the phase II RUCAPANC trial enrolling 19 BRCA1/2-mut
pancreatic cancer patients (with three of those harboring a
somatic BRCA mutation), rucaparib led to response in 15.8%
(n = 3, 2 PR, 1 CR) of patients (83). Therefore, rucaparib for
BRCA-mut pancreatic cancer is currently evaluated in further
ongoing clinical trials. A phase Ib/II trial evaluates a
October 2021 | Volume 11 | Article 662055
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combinational approach of rucaparib with irinotecan,
fluorouracil , and leucovorin in different GI tumors
(NCT03337087). The LODESTAR trial (NCT04171700) is a
phase II multicenter open-label study of rucaparib as treatment
for solid tumors, associated with deleterious mutations in several
HRR genes, and another trial investigates rucaparib as a
maintenance treatment for patients that have not progressed
on platinum-based therapy (NCT03140670).

In 16 patients with known germline BRCA1/2 mutation
receiving the PARPi veliparib in a phase II setting, no partial
or complete responses (PR and CR, respectively) was observed.
However, four patients had a SD ≥4 months (85).

In 58 patients within a single-arm, open-label phase I/II
study, investigating a combination of veliparib with 5-
fluorouracil and oxaliplatin, the ORR was 26% (PR: n = 11,
CR: n = 4), PFS was 4.0 months and OS was 7.8 months. One
patient showed an exceptional response, remaining in CR for
nearly four years. Interestingly, in the subgroup of patients with
prior platinum treatment, the ORR was only 7% compared with
32% in those who were platinum naive. This finding suggests that
Frontiers in Oncology | www.frontiersin.org 5
mechanisms of acquired resistance to platinum overlap the
mechanisms of resistance to PARPi (88).

In an open-label, randomized, multicenter, two-arm phase II
trial, 50 patients with a germline BRCA1/2 or PALB2 mutation
were randomized to cisplatin and gemcitabine with or without
the addition of veliparib. The addition of veliparib resulted in a
higher disease control rate (100% vs. 78%), but no prolongation
in PFS or OS was observed. The authors concluded that cisplatin
and gemcitabine may be a new standard approach in gBRCA/
PALB2-mut pancreatic cancer (89, 91).

Other promising clinical trials in BRCA-mut pancreatic
cancer include a phase II trial investigating the combination of
the PARPi iraparib and the PD-1 Inhibitor dostarolimab
(NCT04493060), a phase I trial investigating the platinum salt
BTP-114 in several BRCA-mut or other DDR genes mutated
solid tumors (NCT02950064) or a phase II trial evaluating the
wee1-inhibitor adavosertib (the MATCH Screening trial,
NCT02465060) (Supplementary Tables S1 and S2).

Besides the prominent clinical role of BRCA mutations, loss
of ATM is an even more common event in pancreatic cancer.
TABLE 2 | Published clinical trials using PARP inhibitors in pancreatic cancer.

Clinical Trial
identifier

Phase PARP
inhibitor

Other inter-
vention

RR OS/PFS (months) BRCA-mut
status

assessed

Addtional information Reference,
year

NCT00515866 I Olaparib +Gemcitabine N.A. N.A. n.r. Bendell
et al. (79)

NCT01078662 II Olaparib – ORR 21.7% SD >8 weeks 35% gBRCA1/2-
mut

Also ovarian, breast,
prostate

Kaufmann
et al. (78)

NCT00576654 I Veliparib +Irinotecan PR 19% N.A. n.r. Several other solid tumors,
also CRC

LoRusso
et al. (80)

NCT01296763 I Olaparib +Irinotecan
+Cisplatin
+Mitomycin C

ORR 23% N.A. n.r. 1 patient with gBRCA2 mut
had a durable response

Yarchoan
et al. (81)

NCT01286987 I Talazoparib – PR 15% N.A. gBRCA1/2
mut in
expansion
cohort

Several advanced solid
tumors; 1 with PR had
BRCA2-mut, 1 haad
PALB2-mut

De Bono
et al. (82)

NCT02042378 II
(RUCAPANC)

Rucaparib – ORR 15.8% N.A. gBRCA1/2
mut

Shroff et al.
(83)

NCT01233505 I Veliparib +Capecitabine
+ Oxaliplatin

1 pt with
pancreatic
Ca had SD

N.A. Known
BRCA-mut
or high
probability

Also mCRC, ovarian Turk et al.
(84)

N.A. II Veliparib – No PR SD
25%

mPFS 1.7 mOS 3.1 Known
gBRCA1/2
mut

Also PALB 2 mutations Lowery
et al. (85)

NCT02184195 rIII* Olaparib – ORR 23 vs.
12% (n.s) 2
CR in
olaparib

PFS 7.4 vs 3.8 mOS 18.9 vs
18.1

gBRCA1/2
mut

Olaparib as maintenance
therapy

Golan et al.
(86)

NCT01908478 I Veliparib +Gemcitabine
+RT

mOS 15 months n.r. Subgroup analysis for DDR-
mut suggests OS benefit

Tuli et al.
(87)

NCT01489865 I/II Veliparib +FOLFOX +5-
FU

ORR overall
26% in DDR-
mut 57%

n.r. DDR-mut data was used
for subgroup analysis

Pishvaian
et al. (88)

NCT01585805 rIb/II Veliparib +Gemcitabin
+Cisplatin

RR (A):
74.1% vs. (B)
65.2%

mPFS (A) 10.1 months vs. (B)
9.7 months, mOS (A):
15.5 months vs. (B)
16.4 months

gBRCA1/2
mut

Arm A + veliparib, B only
chemotherapy

O’Reilly
et al. (89)
O
ctober 2021 | Volume 11 | A
ORR, overall response rate; PR, partial response; SD, stable disease; N.A., not available; n.r., not required for inclusion; gBRCA1/2-mut, germline BRCA 1/2 mutations; (m)PFS, (median)
progression free survival; mOS, median overall survival. *Randomized.
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This is implicated in the early stages and the progression of
PDACs (20) and can be found in about 4% to 18% of cases. To
target this alteration, ATR inhibitors are considered effective and
are under investigation in currently recruiting clinical trials
(Supplementary Table S3) . A retrospective clinical
characterization of 22 ATM-mutated PDACs showed a
prognostic value of these alterations compared with control
patients with superior 5-year OS rates of 38.3% vs. 6.6%
suggesting a possible role as a biomarker (92).
BRCA MUTATIONS IN OTHER
GI CANCERS

Esophageal Cancer
Considering the poor prognosis of esophageal cancer patients,
there is an urgent need towards novel therapeutic agents.
However, trials evaluating novel treatment have been
disappointing so far. In an approach to define molecular
subgroups of esophageal cancer, Secrier et al. performed
whole-genome sequencing in 129 esophageal cancer samples
and established three subtypes with genetic implications for
potential stratified and targeted therapeutic approaches.
Approximately one in three tumors was classified as “C>A/T
dominant” due to a C>A/T mutational pattern. About one-fifth
was classified as “DDR impaired”, presenting with defects in
HRR and chromosome segregation pathways. Fifty percent of the
samples was classified “mutagenic,” as they presented with a
dominant T>G mutational pattern and the highest mutational
burden and the highest neoantigen load (93). However, in the
DDR-impaired subgroup, BRCA1/2mutations were rare, and the
authors speculated, that a pathway-level disruption of HRR
contributes to a BRCA-like mutational signature rather than
mutations of BRCA genes. Large epidemiological studies
investigating the incidence of BRCA mutations in esophageal
cancer and estimating the risk of esophageal cancer in gBRCA-
mut carriers are limited. However, studies from regions with very
high incidence rates in esophageal cancer, found BRCA2
mutations in about 3% to 12% in these selected populations
(15–17). The frequency of somatic mutations in BRCA1/2 has
been estimated for gastroesophageal cancers with 0.48% for
BRCA1 and 2.91% for BRCA2 (10) (Table 1).

To the best of our knowledge, no results of large clinical trials
investigating the role of HRR targeting agents, such as PARPi, in
esophageal cancer are available so far. However, patients with
esophageal cancer and with deleterious mutations in HRR genes
are eligible for the LODESTAR trial (NCT04171700) in which
treatment with rucaparib will be evaluated. Ongoing clinical
trials will also investigate niraparib (NCT03840967), a
combination of olaparib and anti-VEGFR antibody
ramucirumab (NCT03008278), olaparib alone (SOLAR trial,
NCT03829345), a combination of rucaparib and ramucirumab
with or without the anti-PD1 antibody nivolumab
(NCT03995017), or a combination of olaparib with paclitaxel
and the anti-PD1 inhibitor pembrolizumab (NCT04592211).
Frontiers in Oncology | www.frontiersin.org 6
Of note, screening for HRR prior to inclusion is not a
prerequisite for all of these trials (Supplementary Table S2).

A study performed in 144 patients with advanced or
metastatic esophageal cancer receiving cisplatin- or docetaxel-
based treatment, found, that a low BRCA1 mRNA expression
correlated with an increase in RR and median OS in patients
treated with cisplatin, but was associated with decreased RR and
OS in patients treated with docetaxel (94). This suggests a role of
BRCA1 mRNA expression levels as a predictive and prognostic
marker in esophageal cancer.

Gastric Cancer
Considering the low rate of gBRCA-mut carriers with gastric
cancer and very limited data on somatic BRCA mutations in
gastric cancer (Table 1), only small clinical trials have been
conducted. Clinical data of BRCA-mut gastric cancer patients is
therefore also limited, but it is suggested, that this trait might be
predictive for treatment with DNA damaging agents (95).

In a subgroup analysis of the MEDIOLA basket trial
evaluating the combination of olaparib and the anti-PDL1
antibody durvalumab, an ORR of 10% in gastric cancer
patients was reported (96). Of note, in this trial, patients with
metastatic gastric cancer were not selected by gBRCA-mut status,
and no subgroup analysis has been presented.

In 2013, Chen et al. analyzed BRCA1 protein expression by
immunohistochemistry (IHC) of 637 gastric cancer samples to
evaluate relationships between BRCA1 expression, already
established prognostic factors, platinum-based adjuvant
chemotherapy, and survival. Positive BRCA1 staining was
observed in 34% of patients. Interestingly, BRCA1 positivity was
associated with a significant prolongation of survival and BRCA1-
negative patients seemed to benefit from platinum-based adjuvant
chemotherapy (97). In 318 patients with stage II/III sporadic
gastric cancer cases, approximately half of the patients were
identified as BRCA1 negative by IHC. BRCA1 negativity seemed
to be associated with a reduced disease-free survival but predicted
response to adjuvant chemotherapy (98). In a large cohort of 367
patients with sporadic gastric cancer BRCA1 and BRCA2 mRNA
levels were investigated by IHC, ISH and RT-qPCR. In this study
no association with clinical-pathological biomarkers and survival
with BRCA status was observed (99).

Biliary Tract Cancer
Biliary tract cancer (BTC) comprises gallbladder cancer (GBC),
intrahepatic (IHCC), and extrahepatic cholangiocellular
carcinoma (EHC).

In a molecular profiling approach, 28.9% of BTC tumors
harbored pathogenic mutations in several HR-DDR genes (10).
Another study found germline or somatic mutations in DDR
genes in 63.5% of patients with BTC. Moreover, a significantly
prolonged PFS and OS were observed in patients harboring DDR
alterations and who received first-line platinum containing
chemotherapy (100).

Recently, our group reported results from a NGS study of
1,292 patients with BTC and found BRCA2mutations in 3% and
BRCA1 mutations in 0.6%. BRCA2 mutations were significantly
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more frequent than BRCA1 mutations in GBC and IHCC (4.0%
vs. 0.3% and 3.7% vs 0.4%). No difference was observed in EHC
(2.6% BRCA2 vs. 2.1% BRCA1). Also, a significant association of
BRCA-mut carriers with MSI-H/dMMR and higher TMB was
observed, suggesting a potential rationale for the combination of
PARPi and immune checkpoint inhibitors (13).

Clinical trials in BRCA-mut BTC are limited. A small
retrospective case series with 18 cases of BRCA associated
EHCs, of which 13 received platinum-based therapy and four
received a PARPi, the authors reported a median OS of
40.3 months for patients with stage I/II BTC, and an OS of
25 months for stage III/IV BTC (101).

To date, no clinical trial on targeting mutations in BRCA or
other DDR genes in BTC has been presented, but several
promising trials are ongoing. For example, a phase II trial
evaluates olaparib in BTC with mutations in 16 DDR genes
(NCT04042831), whereas another trial compares the
combination of olaparib and the ATR inhibitor AZD6738 with
the combination of AZD6738 and durvalumab (NCT04298021).
The PARPi rucaparib will be evaluated in a phase I/II trial in
combination with irinotecan, fluorouracil and leucovorin
(NCT03337087), and in another trial in combination with
nivolumab (NCT03639935).

Hepatocellular Carcinoma
Literature involving BRCA mutations in hepatocellular
carcinoma (HCC) is limited. The BCLC reported a fourfold
increase of RR in HCC patients with BRCA mutations compared
with BRCA wt patients (68, 102).

In a cohort of 214 patients with HCC, DDR gene alterations
were observed in 22.8%, of which 85% harbored a somatic
mutation (19). Another study analyzing data from a large
industrial molecular profiling company was unable to identify
any somatic BRCA1/2 or PALB2 mutation in HCC patients, but
the overall frequency of mutations in 25 HRR associated genes
was estimated with 20%, with ARID1A contributing to nearly
half of these cases (10).

Despite promising preclinical evidence (103), no larger
clinical trial targeting BRCA-mut in HCC is currently under way.

Colorectal Cancer
The risk for colorectal cancer (CRC) in BRCA carriers seems
elevated in women below the age of 50 and also for anal
carcinoma (104), making screening measures an important
tool in this cohort. In a small case series, BRCA-mutated CRCs
were also found to be more often of mucinous histology (105),
which is a feature also associated with other defects in DNA
repair genes such as the mismatch repair genes suggesting a
distinct tumor biology and underlining the need for
further investigation.

However, to date, no larger clinical trials targeting somatic
BRCA-mut in CRC patients have been published. In several small
clinical trials investigating PARPi in CRC, BRCA status has not
been assessed as an eligibility criterion and only one upcoming
trial (LODESTAR, NCT04171700) will select CRC patients
according to BRCA-mut status.
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In a small study in CRC patients, monotherapy with PARPi
resulted in an ORR of 0% (106). However, used in combination
with chemotherapy or radiotherapy, ORR rose up to 57% in a
study combining veliparib with FOLFIRI with or without
bevacizumab (107). No stratification according to BRCA-mut
status was performed.
BEYOND BRCA AND PARP INHIBITORS
IN GI CANCERS

In the currently largest approach to identify DDR gene
alterations in GI cancers, 17,486 patients with GI cancer were
screened and at least one alteration in a subset of 10 DDR genes
was identified in 17.1%, with gastric cancer being the most
frequently DDR mutated tumor (27.1% had at least one DDR
gene mutated), providing a rationale for clinical trials (108) in
this specific subset.

Besides PARPi, emerging DDR associated targets in GI
cancers include ATM, ATR, CHK1/2, WRN, or WEE1. ATM
plays a pivotal role as a master regulator of DNA damage
recognition and repair (Figure 1) and it is among the most
commonly aberrant genes in sporadic cancers, especially in
hematologic malignancies (109). Heterozygosity for a germline
ATM-mut can be observed with a frequency of approximately
1% in the population and increases cancer risk by two- to
threefold (110, 111). Frequency of somatic mutations in GI
cancers ranges from 0.87% in HCC to 4.5% in CRC (111),
making it a considerable druggable target. To date, the ATM
inhibitor AZD0156 is the first-in-class agent to be investigated in
a phase I clinical trial (AToM trial, NCT02588105) in patients
with advanced malignancies including gastric cancer as a
monotherapy or in combination with olaparib or with
irinotecan/FOLFIRI. Preclinical studies suggested a potentiated
effect of olaparib when used in combination with AZD0156
(112). A randomized, double-blind phase II trial investigating the
combination of olaparib and paclitaxel stratified patients by
ATM protein levels and found a longer OS for the addition of
olaparib regardless of the ATM expression levels (113)
(Supplementary Table S3). In this trial, signals for a longer
OS in the population with low ATM expression led to further
analysis in the phase III GOLD trial. Unfortunately, the GOLD
trial did not meet its primary endpoint of a significant
improvement in OS with the addition of olaparib, neither in
the overall population (8.8 vs. 6.9 months) nor in the ATM-
negative population (12.0 vs. 10.0 months) (114). Biomarker
subgroup analysis (i.e., for BRCA) of the GOLD-trial cohort, was
unable to identify any significant association with clinical
outcomes (115).

Preclinical data support the hypothesis that loss of ATM leads
to increased sensitivity to ATR inhibition (116). Also, preclinical
data suggest a dependency on ATR signaling in PARPi-resistant
BRCA-mut cells for replication fork stabilization (117–119),
providing a rationale to combine ATR inhibitors (ATRi) with
PARPi to overcome and prevent secondary resistance
mechanisms. Currently, ATRi (AZD6738, VX-970/M6620,
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M4344, BAY1895344) are investigated in several phase I and
phase II trials involving GI cancers (Supplementary Table S1).
Combinational approaches include crosslinking agents, PARPi
or PD-1/PD-L1 inhibitors. One trial investigates the
combination of AZD6738 in combination with olaparib in
patients with IDH-mutant cholangiocellular carcinoma
(NCT03878095). Another phase II trial investigates the
combination of VX-970 and irinotecan in gastric or
gastroesophageal junction cancers harboringTP53 mutations.
To the best of our knowledge, DDR mutational status (such as
ATM) is only assessed in two clinical trials investigating ATRi
(NCT04095273, NCT04266912) prior to inclusion.

The combination of AZD6738 (ceralasertib) and paclitaxelin
heavy pretreated cancer patients yielded clinical efficacy with an
ORR of 25% according to a phase I trial (120). Another phase I
trial (NCT02264678), including pancreatic and gastric cancers
patients the combination of ceralasertib with olaparib or
durvalumab, showed promising preliminary signals of
antitumor activity (121). Encouraging safety was found for
M6620 (VX-970) as monotherapy or in combination with
carboplatin in patients with advanced solid tumors. Of note,
one patient with metastatic colorectal cancer, harboring a loss in
ATM and an ARID1A mutation, achieved a CR and had an
ongoing PFS of 29 months (122). M6620 in combination with
gemcitabine showed promising results in preliminary data
coming from an phase I trial (123).

The CHK1 kinase has been recognized as one of the key
components of cell cycle checkpoint response after DNA damage
and is essential for HRR (124). Interestingly, in a study using data
from a large industrial molecular profiling provider, no somatic
CHK1 mutation was observed in GI cancers, but a prevalence of
somatic CHK2mutations between 0.6% in pancreatic cancer and
4.35% in HCC was observed (10). To date, several CHK1/2
inhibitors are under investigation for clinical use. In a phase I
trial including patients with advanced solid tumors monotherapy
with the CHK 1/2 inhibitor prexasertib (LY2606368) resulted in
a PR rate of 4.4% activity was observed (PR 4.4% comparably, the
CHK1 inhibitor GDC-0575 in combination with gemcitabine
showed only modest clinical efficacy in a phase 1 trial including
102 patients with several solid tumors with only four patients
achieving PR (3.9%) (125).

The WEE1 nuclear kinase is a key regulator of cell-cycle
progression (126) and is phosphorylated by CHK1 upon DNA
damage. Subsequently, WEE1 leads to the inactivation of the
“cyclin-dependent kinase 1” (CDK1)-cyclin B complex, resulting
in cell cycle arrest in the G2 phase (Figure 1) (126).
Overexpression of WEE1 has been reported in several cancers
(126). In pancreatic cancer, preclinical models suggest a
combinational approach of a WEE1 inhibitor with radio- and
chemotherapy, and a phase I/II trial treated 34 patients with
locally advanced PDAC with the WEE1 inhibitor adavosertib
(AZD1775) in combination with gemcitabine and radiation
therapy. The study found a median PFS of 9.4 months, a
median OS of 21.4 months and was well tolerated (127).

In the MATCH screening trial (NCT02465060), patients with
a BRCA1 or BRCA2-mut will receive adavosertib. Adavosertib
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also sensitizes TP53-deficient tumor cells to DNA damage and
has already shown antitumor activity in a phase I trial involving
202 patients with refractory solid tumors (128). In gastric (129)
and colon cancer (130), WEE1 seems to be overexpressed and is
therefore a suggested target in these entities.

Preclinical data support combinational approaches of PARPi
with ATRi or WEE1i to overcome resistance mechanisms and
sensitize tumors to radiotherapy (RT) (119, 131). A phase I
clinical trial investigates such an approach in esophageal cancer
by adding adavosertib to RT (NCT04460937). The phase I STAR
trial (NCT04197713) investigates a combination of adavosertib
with olaparib in patients with germline or somatic mutations in
several HRR genes. However, the combination of WEE1i and
PARPi is associated with high rates of toxicity, but toxicity might
be reduced by a sequential dosing approach (132). Also, the
combination of an ATRi and a WEE1i produced synthetic
lethality in a preclinical model and supports further clinical
investigation (133).

For the NHEJ machinery, DNA-PK is an important mediator
and is also investigated as a druggable target. An inhibitor of this
kinase, nedisertib, is combined with RT in localized pancreatic
cancer (NCT04172532), and in combination with the anti-PD-
L1 inhibi tor ave lumab and RT, among others , in
BTC (NCT04068194).

Emerging in the field of DDR targets is the Werner syndrome
helicase (WRN) that has been associated with a distinct
molecular landscape in CRC and was associated with higher
TMB, higher prevalence of MSI-H/dMMR and PD-L1
expression, supporting further trials investigating the use of
immune checkpoint inhibitors. Also, WRN inhibitors are
under preclinical investigation, but those results have not been
transferred to clinical trials, so far (12).

Rationales for other combinational treatments have been
reviewed extensively elsewhere (119, 134, 135).
DISCUSSION AND FUTURE
PERSPECTIVES

Here, we presented a review on the clinical perspectives of
targeting DDR pathways in GI cancers with a focus on BRCA.

While the role of gBRCA mutations for the lifetime risk of
several cancers has been evaluated extensively over the last two
decades, the understanding and epidemiology of somatic BRCA
mutations and other DDR genes in carcinogenesis, and further,
specific treatment of such cancers, is still in an early phase. The
risk of developing a specific GI tumor in individuals with a
gBRCA mutation varies between entities and between certain
BRCA mutations (i.e., BRCA1 and BRCA2). For gBRCA2-mut
carriers, the risk of developing pancreatic, esophageal, gastric,
and BTC is higher than in gBRCA1-mut carriers. For HCC, risks
seem comparable, and for CRC, evidence is unclear if gBRCA1-
mut carriers have a higher lifetime risk for CRC compared with
gBRCA2-mut carriers (68, 102). The highest estimated lifetime
risk for gBRCA2-mut carriers was reported in BTC (fivefold)
(68),. This tissue tropism raises fundamental questions on the
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biology of the respective tissues both in health and
carcinogenesis, suggesting different vulnerabilities to intra- and
extracellular stressors or environmental factors.

Intensive follow-up and screening for breast cancer has been
established in gBRCA-mut carriers, but the value of screening for
other cancers, such as GI tumors apart of CRC, is controversial. In
pancreatic cancer, for patients with an ATM, BRCA2 or PALB2
mutation, guidelines recommend, that yearly screening should
start at age 50 or 10 years younger than the youngest relative with
pancreatic cancer, preferably by MRI/MRCP and/or EUS (136).
Such imaging procedures would also allow to screen for BTCs.
However, consensus was not reached for screening in BRCA1-
mut carriers. In CRC, recommendations are not that clear, but
clinicians should offer screening at age 40 in BRCA-mut carriers
with a first-degree relative with CRC or advanced adenoma (137).
In gastric cancer, guidelines recommend a prophylactic total
gastrectomy between age 20 and 30 for individuals carrying
pathogenic variants in the E-Cadherin (CHD1) gene, which is
associated with a very high lifetime risk for gastric cancer (138).
However, no consensus recommendations on screening for
gastric cancer in gBRCA-mut carriers have been established,
which is also true for gastroesophageal cancer (139).
Nevertheless, obtaining a detailed family history should be part
of every first counseling in newly diagnosed cancers as it could
have important implications for the patient and his or
her relatives.

While clinical trials targeting the HRR system provide limited
evidence for advantage of the use of PARPi in pancreatic cancer
(86), such evidence is lacking for other GI cancers. Also, a BRCA-
mut status has not been approved as a predictive biomarker, such
as MSI for pembrolizumab, which would, i.e., allow a site-
agnostic use of PARPi. Some authors suggest that BRCA1/2
mutations are not suitable as site-agnostic biomarkers for PARPi
therapy as dependency on BRCA-mut for tumorigenesis differs
between tumor lineages, BRCA1 and BRCA2 are merely a small
part of the complex phenotype of “BRCAness,” and resistance
mechanisms, which restore BRCA function, make BRCA
mutations not an ideal site-agnostic marker. However, an
accurate estimate of HRR deficiency may be a better predictive
biomarker for upcoming clinical trials (140, 141).

In the future, an increasing number of clinical trials will not
only focus on BRCA mutations, but on a group of genes defining
BRCAness. The concept of BRCAness describes HRR defects in
the absence of gBRCA1/2 mutations, but includes somatic BRCA
mutations and mutations in several other genes such as PALB2,
ATM, ATR, CHEK1/2, ARID1A, RAD51, NBS, etc. (33).
Interestingly, a BRCAness genotype seems to predispose
cellular sensitivity to PARPi and platinum therapy (33), having
critical implication for upcoming clinical trials by providing a
rationale to screen for a BRCAness phenotype, rather than
screening solely for BRCA1 or BRCA2 mutations. However,
exact and consensual definitions of BRCAness have still to be
determined (11).

Also, other prognostic biomarkers for PARPi are heavily
investigated. HRR-deficient (HRD) tumors seem to prioritize
more error-prone DNA repair pathways, such as NHEJ, resulting
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in the accumulation of small-insertion deletions and LOH events
(142). The assessment of HRD comprises different approaches,
as a uniform definition has not been made until today. This
makes it challenging to compare different trials using different
approaches and lead the path for clinicians. In general, HRD
testing relies on either the direct detection of genomic
perturbations associated with genomic instability (such as
mutational or methylation testing of BRCA or other HRR
pathway genes), on the use of surrogates of genomic instability
by detecting a genomic scar or on functional assays. Mainly used
as indirect measures are the LOH determined by SNP-
Sequencing, telomeric allelic imbalance (TAI), and large-scale
state transitions (LST) for which each HRD score has been
developed (143–145). Currently, for clinical routine use, only
two prospectively validated and commercially available tests for
assessment of HRD status are available (146): the myChoice CDx
(Myriad Genetics) calculates a score based on all three genomic
instability features and also includes BRCA1/2 mutations. In
contrast, the FoundationOne CDx (Foundation Medicine) only
calculates the percentage of genomic LOH. However, the clinical
use of those tests is limited to ovarian cancer patients as a
companian diagnostic for treatment with PARP-inhibitors and
therefore no consensus recommendation for the use in other
settings are available at the moment. Also, the value can be
limited, as scars in the DNA (e.g., through DNA damaging
chemotherapy) might be misinterpreted as HRR deficiency (62).
To the best of our knowledge, no general consensus on the
nomenclature of the genomic phenotype of BRCAness or
“HRDness” has been established so far. Distinct definitions to
achieve coherence in publications and clinical trials are desirable.

There is a certain rationale for combined treatment with
PARPi and immune checkpoint inhibitors coming from several
preclinical studies (147). It is suggested that DDR defects lead to
a higher neoantigen load and TMB (12, 108). Moreover, PARPi
lead to a more inflamed tumor microenvironment by activating
the cGAS-STING pathway (147–149) and by increasing immune
cell infiltration. PARPi were also found to upregulate PD-L1
(147, 150), which strongly suggests the combination with anti-
PD-1/PD-L1 inhibitors. A phase 1a/b trial investigating the
PARPi pamiparib and the anti-PD1 antibody tislelizumab in
patients with advanced solid tumors, found the combination to
be well tolerated and the ORR was 20% (151). In pancreatic
cancer, combination with niraparib and dostarolimab
(NCT04493060) and olapar ib and pembrol izumab
(NCT04548752) are currently under investigation. For other
GI cancers, several PARPi/ICPi combinations (Supplementary
Table S3) are currently evaluated.

Loss of the DNA damage sensor ATM has been associated
with a survival benefit in platinum-treated CRC patients (62,
152), and preclinical studies suggest treatment of ATM-deficient
tumors with a PARPi and ATRi combination (153–156). Such an
approach could be applied to gastric cancers, in which ATM
mutations are quite common, while BRCA mutations are rare
(135, 157). Of note, the combination of a PARPi with
chemotherapy (GOLD trial) did not result in longer OS in an
ATM-low subpopulation but addition of an ATR-inhibitor-
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improved efficacy. In the setting of BTC, a phase I trial
investigates the combination of olaparib and the ATR-inhibitor
AZD6728 with or without the addition of durvalumab
(NCT04298021). However, in this trial, DDR mutational status
is not assessed before treatment.

Looking in the near future, results of several clinical trials, of
which only some are mentioned above, are awaited to clear the
view on the value of DDR targeting drugs in GI cancers. To date,
limited and early clinical data are not sufficient to make a
prognosis on the success of this approach and only an
empirical and therefore long-lasting approach to the best
combinational treatment will lead the path.
CONCLUSION

Frequency of germline and somatic BRCA-mut and other HRR
genes in GI cancers varies extensively between sites, and besides
BRCA-mut PDAC, clinical implications of such findings must be
determined. Soon, various clinical trials will add further evidence
for the use of HRR targeting agents in GI cancers. Also,
Frontiers in Oncology | www.frontiersin.org 10
investigating the BRCAness phenotype rather than BRCA1 or
BRCA2 alone, is gaining more attention and is supported by
evidence of promising combinational treatments. Oncologists
must not forget the crucial implications related to finding gBRCA
mutations both for the patients and their relatives.
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