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The trachea is a long tube that enables air passage between the larynx and the bronchi.
C-shaped cartilage rings on the ventral side stabilise the structure. On its esophagus-
facing dorsal side, deformable smooth muscle facilitates the passage of food in the
esophagus. While the symmetry break along the dorsal-ventral axis is well understood, the
molecular mechanism that results in the periodic Sox9 expression pattern that translates
into the cartilage rings has remained elusive. Here, we review the molecular regulatory
interactions that have been elucidated, and discuss possible patterning mechanisms.
Understanding the principles of self-organisation is important, both to define biomedical
interventions and to enable tissue engineering.

Keywords: trachea, cartilage rings, symmetry break, SOX9, Turing pattern, chemotaxis, differential adhesion,
differential growth

1 INTRODUCTION

The trachea is a long (6 mm in mice, 10–15 cm in human), almost cylindrical tube that serves as a
passage of air to the bronchial system Kishimoto andMorimoto (2021). Its wide diameter (1.5 mm in
mice, 2–3 cm in human) poses little resistance to air flow. C-shaped cartilage rings on its ventral side
prevent the collapse or obstruction of the tube (Figure 1A). Smooth muscle on the dorsal side allows
for the expansion of the adjacent esophagus during the consumption of food or liquid. The
separation into distinct domains that form cartilage and smooth muscles, and the subsequent
emergence of cartilage rings reflects two separate symmetry breaks. While the first one is well
understood, the molecular mechanism behind the second has remained elusive. In the following, we
will discuss the regulatory interactions that are involved in these symmetry breaks.

2 DORSAL-VENTRAL POLARITY

The separation of cartilage and smooth muscles domains follows the already established dorsal-
ventral polarity. Fibroblastic growth factor (FGF) from the cardiac mesoderm induces the Nkx2.1-
expressing lung field on the ventral side of the mouse foregut Serls et al. (2005). Bone morphogenetic
protein 4 (Bmp4) expression is restricted to the ventral foregut from early stages (E8.5) Li et al.
(2008), and the BMP antagonist NOGGIN is secreted from the dorsally located notochord Fausett
et al. (2014). BMP4 signalling surpresses SRY (sex determining region Y)-box transcription factor
(Sox)2 expression in the ventral foregut Domyan et al. (2011). Mutual repression between NKX2.1,
which is restricted to the ventral foregut endoderm, and SOX2, which is expressed in the dorsal
foregut endoderm, defines the border between the trachea, and the future esophagus Que et al.
(2007). NKX2.1 directly represses Efnb2, which establishes an EPH/EPHRIN boundary that results in
the physical separation of tracheal and esophageal cells Lewis et al. (2022). Nkx2.1 null mice, and
endodermal mutants for the BMP type I receptor genes Bmpr1a and Bmpr1b upregulate Sox2 and
form a continuous ring of smoothmuscle and no cartilage rings Que et al. (2007); Minoo et al. (1999);
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Yuan et al. (2000); Li et al. (2008); Domyan et al. (2011).
Conditional ablation of Bmp4 from the foregut endoderm
from E8.5 and from the mesenchyme by E9.5 does not
prevent the ventral expression of Nkx2.1 at E9.5, but by
E12.5 Nkx2.1 is absent, and expression of the cartilage marker
Collagen Type II Alpha 1 Chain (Col2a1) is not observed Li et al.
(2008).

Once the trachea has split from the future esophagus, it
maintains the dorsal-ventral polarity, with Nkx2.1 expression
restricted to the ventral side, and Sox2 and Sonic Hedgehog (Shh)
expression higher on the dorsal side (Figure 1B). This polarity is
observed also in mutants (Noggin null) that fail to split the tubes
Que et al. (2006). The epithelial dorsal–ventral polarity translates
into a mesenchymal polarity. Mesenchymal cells derived from the
splanchnic mesoderm, positioned ventral to the developing
tracheal tube express the transcription factor Sox9 as early as
E10.5 Hines et al. (2013). From E11.5, dorsal mesenchymal cells
express Acta2, a smooth muscle marker Hines et al. (2013).
Removal of Sox9 or a key smooth muscle gene does not alter
the expression domain of the other in the trachea Hines et al.
(2013). The spatial restriction is thus not maintained by mutual
repression between SOX9 and smooth muscle genes. Rather,
signals from the tracheal epithelium appear important for the
spatial restriction in the mesenchyme. Blockage of WNT
secretion from the tracheal epithelium in Wls conditional
mutants blocks Sox9 expression and results in smooth muscle
formation also on the ventral side Snowball et al. (2015);
Kishimoto et al. (2020). Epithelial WNT secretion thus seems
to be required in translating the epithelial polarity to the
mesenchyme. Canonical WNT signalling appears to be
important in both layers as conditional removal of β-catenin
in either the epithelium (Shh-Cre driven) or mesenchyme
(Dermo1-Cre driven) results in loss of mesenchymal
expression of the chondrogenic factor Tbx4 Kishimoto et al.
(2020). In Shh null mice, the ventral restriction of Sox9
expression is lost, and until E13.5, Sox9 is transiently weakly
expressed in a circumferential expression pattern on both the
dorsal and ventral sides Park et al. (2010). Even though Shh is
expressed more strongly dorsally, overexpression of Shh does not

affect the relative cartilage and smooth muscle domains Sala et al.
(2011). Addition of BMP4 or Noggin to lung explant cultures
induces patches of cartilage formation and Sox9 and Bmp4
expression around the entire tracheal epithelium Park et al.
(2010).

In summary, the separation of the smooth muscle and
cartilage domains along the dorsal-ventral axis is controlled by
the already existing embryonic dorsal-ventral polarity. The
dorsal-ventral polarity is first induced along the epithelial tube,
and later translated to the mesenchyme via diffusible
morphogens.

3 EMERGENCE OF PERIODIC PATTERNS
ALONG THE TRACHEA

The positions of the future cartilage rings in the ventral tracheal
mesenchyme first become apparent between embryonic day (E)
12.75 and E13 as periodic patterns in Sox9 and type II collagen
(Col2a1) expression Miller et al. (2004); Elluru et al. (2009); Park
et al. (2010); Sala et al. (2011); Hines et al. (2013); Turcatel et al.
(2013); Boucherat et al. (2014); Young et al. (2020). Lineage
tracing experiments with Col2a1-mTmGmice show that Col2a1-
expressing cells do not transdifferentiate into non-cartilage cells
Young et al. (2020). Rather, the Col2a1-expressing cells condense
in the cartilage rings, and the intervening space becomes filled by
other mesenchymal cells. The Col2a1 gene encodes the pro-
alpha1 (II) chain component of type II collagen, which is
primarily found in cartilage. At E11.5, collagen type II is
restricted to the lamina propria on the ventral side of the
trachea Sala et al. (2011). By E12.5, collagen type II has spread
into the ventral mesenchyme, but no staining is observed in the
ventral half of the ventral mesenchyme. By E13.5, collagen type
II-positive condensations are observed. At the same time,
phosphorylated extracellular signal-regulated kinase (ERK) is
found mainly on the boundary of the cartilage condensations
and at lower levels between the condensations, and is largely
absent from the condensations Yoshida et al. (2020). Expression
of the SHH receptor Ptch1 appears to be restricted to the nascent

FIGURE 1 | Tracheal cartilage ring formation. (A) Cartilage rings (red) emerge in the mesenchyme on the ventral (V) side of the trachea. (B) Cross-section of the
developing trachea. (C) Regulatory interactions that control the emergence of cartilage rings (CR) in the ventral and airway smooth muscle in the dorsal (D) tracheal
mesenchyme. Black arrows indicate positive regulation, red arrows negative regulation. For details see text.
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cartilage condensations from E13.5 Miller et al. (2004). In
parallel, the expression of Shh assumes a periodic pattern on
the ventral, but not on the dorsal side of the tracheal epithelial
tube Sala et al. (2011). Around E13.5 or slightly after, Tbx5
disappears from the cartilage condensations Tiozzo et al.
(2009); Arora et al. (2012). From E14.5, Fgf10 expression
becomes restricted in between the nascent cartilage
condensations, but its receptor Fgfr2b remains uniformly
expressed in the epithelial tube Sala et al. (2011). The cartilage
condensations secrete BMP4 by E17.5 Park et al. (2010); it is not
known at what time the spatial restriction of Bmp4 emerges.

4 MUTANTS WITHOUT CARTILAGE RINGS

Functional genetics can help to identify the components of the
core mechanism as their null mutations should result in the loss
of cartilage rings. In the following, we will focus on mutants that
do not show any periodic Sox9/Col2a1 expression patterns or
tracheal cartilage ring formation, even though the trachea forms
with correct dorsal-ventral polarity. This analysis thus necessarily
excludes potential core components that are involved also in
processes upstream of periodic pattern formation as their
contribution to periodic patterning cannot be evaluated by this
approach. The following mouse mutants have so far been
reported that lack tracheal cartilage rings, even though the
trachea forms with correct dorsal-ventral polarity: Shh null
Miller et al. (2004); Park et al. (2010), Sox9 null Hines et al.
(2013); Turcatel et al. (2013), mesenchymalMek1/Mek2 removal
Boucherat et al. (2014), and endodermal Wls removal Snowball
et al. (2015). Finally, in mouse double mutants of R-spondin2 and
lipoprotein receptor related protein 6 (Rspo2Tg/Tg;Lrp6−/−)
tracheal rings were absent on the shortened tracheal structure
Bell et al. (2008), and Dermo1-Cre-driven conditional removal of
β-catenin, a core component of canonical WNT signalling, result
in loss of mesodermal Tbx4, impaired mesenchymal growth, and
lack of cartilage rings at E16.5 Kishimoto et al. (2020). Amutation
in human FGFR2 (S351C) prevents visible tracheal ring
formation, but the cartilaginous tracheal sleeve still forms
Gonzales et al. (2005). Alternative mRNA splicing in one of
the extracellular immunoglobulin (Ig)-like domains results in
different FGF receptor isoforms, known as FGFR (IIIb), and
FGFR (IIIc) Johnson and Williams (1993). The isoforms differ in
their ligand specificity and expression pattern. FGFR2(IIIb) is
produced predominantly in epithelial cells and binds to FGF7 and
FGF10, while FGFR2(IIIc) is found in the mesenchyme. Fgfr2b
and Fgf10 null mice have a different phenotype from that
reported for human FGFR2 (S351C) in that they develop
shorter tracheas with 6–8 distorted cartilage rings Min et al.
(1998); Sekine et al. (1999); Sala et al. (2011), suggesting that the
phenotype of human FGFR2 (S351C) results from defects in the
mesenchymal isoform. Ectopic mesenchymal expression of
FgfR2b in FgfR2c heterozygous mouse mutants results in
overgrowth of the tracheal rings and absence of
noncartilaginous mesenchyme Tiozzo et al. (2009).

BMP4 and its antagonist NOGGIN can both rescue cartilage
formation as well as Sox9 and Bmp4 expression in Shh null lung

explants, but cartilage formation is then no longer restricted to
the ventral side; it has not been reported whether periodic
patterns are obtained Park et al. (2010). BMP4 and Noggin
induce additional cartilage formation also in wildtype lungs,
and cartilage then forms also on the dorsal side. In Bmp4
conditional mutants, Nkx2.1 is restricted to the ventral side at
E9.5, but is lost by E12.5, and no Col2a1 expression and cartilage
ring formation is observed Li et al. (2008). Mice with inactivated
Bmpr1b and Sox2, and a SHH-driven endodermal conditional
knockout of Bmpr1a develop a ventral NKX2.1 domain that
forms disorganized isolated cartilage pieces/nodules, but not
rings at later stages Domyan et al. (2011). Epithelial BMP
signalling thus appears not to be necessary for the emergence
of the periodic cartilage pattern. It is unclear whether
mesenchymal BMP signalling is required for periodic cartilage
formation as a combined mesenchymal knockout of Bmpr1a and
Bmpr1b has so far not been reported.

While perturbations in many other pathways affect tracheal
ring formation or tracheal growth, no other pathway has been
described that is necessary for cartilage ring formation once the
tracheal mesenchyme has emerged Iber (2021).

5 CONTROL OF CARTILAGE RING
FORMATION

SOX9 controls all steps of the cartilage differentiation process,
and is a necessary factor for cartilage ring formation such that
cartilage rings are absent in mesenchymal Sox9 knockout mice
Hines et al. (2013); Turcatel et al. (2013). If doxycycline-driven
Sox9 removal is stopped at E13.5, then some cartilage nodules are
observed by E18.5 in the most proximal part Turcatel et al.
(2013). Progressively more distal nodules are observed if
doxycycline induction is stopped already at E12.5 or
E11.5 Turcatel et al. (2013). Secretion of endodermal WNT via
WLS is required for mesenchymal Sox9 expression Snowball et al.
(2015), and Sox9 expression appears strongly reduced or absent in
Rspo2Tg/Tgmutant tracheal mesenchyme Bell et al. (2008). More
generally, epithelial WNT ligands includingWNT7b andWNT5a
activate WNT/β-catenin in the mesenchyme of the developing
trachea to influence expression of chondrogenic factors including
Tbx4, Tbx5,Msx1,Msx2, Sox9, and Col2a1 Snowball et al. (2015);
Kishimoto et al. (2020). SHH signalling induces the expression of
Wnt5a and its receptor Ror2, and ablation of Wnt5a or its
receptor Ror2 results in shorter trachea with fewer cartilage
rings Li et al. (2002); Oishi et al. (2003). Deletion of Wnt7b,
expressed by the respiratory epithelium and known to mediate
Wnt/β-catenin signaling, does not affect trachea length or width,
but results in incomplete cartilaginous rings Rajagopal et al.
(2008). Deletion of Wnt4 does not affect tracheal length, but
results in 12 distorted rather than 14 tracheal rings, and results in
reduced Sox9 and increased Fgf10 expression at 13.5 Caprioli et al.
(2015).

SOX9 is a direct regulator of Col2a1 expression (Figure 1C), a
necessary factor for cartilage formation Rockich et al. (2013);
Boucherat et al. (2014). Despite the direct regulation, the
expression of Sox9 and Col2a1 is largely independently
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regulated. Thus, Col2a1 rings emerge in Tbx4/Tbx5 conditional
mutants even though Sox9 expression is rather weak, and Sox9
rings are barely visible Arora et al. (2012). Vice versa, Col2a1 is
absent in Shh null mice, even though Sox9 is expressed until
E13.5 Park et al. (2010). While Sox9 is weakly expressed in Shh
null mice until E13.5, the ventral restriction of Sox9 expression is
lost, and Sox9 expression is completely lost by E15 Pepicelli et al.
(1998); Park et al. (2010). One group reported disorganised
cartilage ring formation in Shh null mice Pepicelli et al.
(1998), but other groups failed to observe cartilage rings Park
et al. (2010); Miller et al. (2004).

A study in chondrocytes showed that SOX9-GLI directly and
cooperatively regulate many genes such as Sox9, Col2a1, Ptch1,
Gli1,Gli2, Fgfr3, Igf1r, and Bmp6 Tan et al. (2018). SHH signalling
may thus engage in a positive feedback with SOX9. SHH
signalling represses Fgf10 expression, and Fgf10 disappears
from the mesenchymal condensations by E14.5 Bellusci et al.
(1997); Park et al. (1998); Abler et al. (2009). In the absence of
Sox9, the expression of Fgf10, Tbx4, and Tbx5 remains uniform
Turcatel et al. (2013). Conditional removal of Tbx4, and Tbx5 has
similar effects on trachea development as removal of Fgf10, but,
even though TBX4/5 promote Fgf10 expression Cebra-Thomas
et al. (2003); Sakiyama et al. (2003), they appear to act also
independently of FGF10 during trachea development Arora et al.
(2012). Bmp4,Wnt2/2b, and Sox9 are strongly reduced in Tbx4/5
conditional mutants, but Col2a1 levels appear normal.

Mesenchymal removal of Mek1/Mek2 results in a thinner
trachea with continuous, but lower Sox9 expression at E14.5
and without cartilage rings by E18.5 Boucherat et al. (2014).
Epithelial removal ofMek1/Mek2 results in a shorter trachea with
fewer cartilage rings. Culturing lung explants with PD0325901, an
inhibitor for MEK, results in increased Col2a1 expression and a
widening of the cartilage condensations, but has no impact on
Sox9 expression Yoshida et al. (2020). This is consistent with
reports in other systems that show that mesenchymal
phosphorylated ERK (a kinase downstream of MEK) opposes
cartilage formation Oh et al. (2000); Ibarra et al. (2021). The
differences between the culture experiments and the
mesenchymal knockouts likely reflect differences in dosage
and spatial restriction.

Despite its importance for cartilage ring formation, the
upstream regulators of the MEK/ERK cascasde have remained
elusive. FGFs signal via ERK, and overexpression of Fgf18 results
in abnormal tracheal cartilage formation Elluru et al. (2009), but
the knockout of Fgf18 does not result in a tracheal phenotype
Usui et al. (2004). The FGF10 receptor, FGFR2b, is restricted to
the tracheal epithelium Sala et al. (2011), and can therefore not
trigger mesenchymal ERK activation. BMP4 appears to be the
main inducer of ERK1/2 activation in the E9.25 ventral endoderm
and mesoderm Li et al. (2008), but it is not known whether it
remains so also at later stages when mesenchymal condensations
form (E12.5-E13.5). A cell culture study concluded that BMP2
induces Sox9 transcription mainly via p38 MAP Kinase (MAPK),
while regulating SOX9 transcription factor activity via pSMAD1/
5/8 and p38 Pan et al. (2008). A number of other mechanisms has
been found to activate ERK in other contexts. For one,
mesenchymal WNT signalling has recently been shown to

activate pERK in the cranial mesenchyme, which then blocks
Sox9 and Col2a expression and cartilage formation Ibarra et al.
(2021). Non-canonical SHH signaling has been suggested to
trigger calcium-induced extracellular signal-regulated kinases
(ERK) activation Robbins et al. (2012); Carballo et al. (2018).
ERK may also respond to pressure and/or curvature, as reported
for the lung epithelium Hirashima and Matsuda (2021). In
epithelial cells from the mammary gland, ERK activity has
been found sensitive to the stiffness of the surrounding matrix
Farahani et al. (2021). Whether any of this plays a role in the
tracheal mesenchyme is not known.

Interestingly, upon conditional removal of Myorcardin, the
cartilage rings fail to expand towards the dorsal side, and the
trachael lumen is reduced Young et al. (2020). Considering that
smooth muscles and peristalsis are undetectable, and the
expression of two BMP inhibitors is decreased and pSMAD
signalling is increased in the mutants, this could be the
consequence of either mechanical and/or signalling defects.

In summary, WNT signalling (WLS, R-spondin2/LRP6) is
essential for mesenchymal Sox9 expression, and SOX9 is essential
for cartilage formation. Sox9 is still expressed weakly in Shh and
mesenchymal Mek1/Mek2 mutants, but fails to organise into
rings. As such, SHH and MEK1/2 are either part of the core
mechanism that results in periodic Sox9 patterning, or periodic
patterning fails because Sox9 expression is too weak in those
mutants. Myocardin, a master regulatory of smooth muscle
differentiation, is necessary for the dorsal expansion of the
nascent cartilage rings to their characteristic C-shape. But
what leads to the periodic Sox9 pattern?

6 CANDIDATE MECHANISMS FOR
PERIODIC PATTERN FORMATION

Awide range of chemical and/or mechanical instabilities can result
in biological pattern formation. The Swift-Hohenberg equation has
been shown to recapitulate the complex tracheal cartilage pattern
also at the tracheobranchial juncture, if coupled with a gradient to
achieve the correct stripe orientation Kingsley et al. (2018). While
the Swift-Hohenberg equation can be derived from fundamental
equations for the Rayleigh-Benard convection in an heated fluid
Swift and Hohenberg (1977), it has remained difficult to find a
mechanistic explanation for the forth-order spatial derivative in
biology Oza et al. (2016). Given its patterning versatility, Turing
mechanisms Turing (1952) (Figure 2A) have been proposed for a
large number of biological patterning processes, including tracheal
cartilage ring formation Sala et al. (2011); Kingsley et al. (2018).
While the mathematical properties of Turing mechanisms are well
understood Murray (2003), and Turing patterns have been
confirmed in chemical reaction systems Horvath et al. (2009),
the molecular mechanism behind biological Turing mechanisms
remains unknown. The experimental validation of proposed
molecular implementations of Turing mechanisms remains
impossible as kinetic parameters cannot be measured reliably in
biological tissues and pattern likeness is insufficient proof. As such,
only the experimental rejection of Turing mechanisms is possible
to date. A well-known example are the stripes in the Drosophila
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blastoderm, whichwere initially accounted to a Turingmechanism,
but have since been shown to result from cross-repressive
transcription factor cascades downstream of opposing
morphogen gradients Meinhardt (1986); Lacalli et al. (1988);
Akam (1989); Jaeger (2011). In many other complex, stereotypic
patterning systems, Turing models have remained the only
candidate mechanism that is consistent with the experimental
data. In its simplest form, Turing patterns require a negative
feedback between at least two components that diffuse at
different speed. Turing patterns can be obtained also with a
single morphogen or growth factor if its binding to the cell-
bound receptor upregulates the receptor concentration
(Figure 2A), as is the case for SHH, FGF10, and BMP
Menshykau et al. (2012); Badugu et al. (2012); Celliere et al.
(2012); Kurics et al. (2014); Menshykau et al. (2014). Candidate
networks for Turing models that yield periodic cartilage patterns
have been studied extensively in limb development, where the
cartilage condensations mark future digits and phalanges Iber and
Germann (2014). The patterns in wildtype and perturbed
conditions could be explained with a variety of biological
mechanisms, including a 3-node network composed of BMP,
SOX9, and WNT Raspopovic et al. (2014), a negative feedback
between TGF-β and either the extracellular matrix (ECM) or TGF-
β antagonists Zhu et al. (2010), and the interaction between BMPs
and its receptor Badugu et al. (2012). Thesemechanisms have so far
not been explored in the trachea. Mesodermal β-catenin appears
necessary also for tracheal Sox9 expression Kishimoto et al. (2020),
but this makes it difficult to assess the role ofWNT signalling in the
subsequent periodic patterning of SOX9. In case of a ligand-
receptor-based Turing mechanism, the receptor would have to
be upregulated in the tracheal cartilage condensations. This has

indeed been reported for the SHH receptor PTCH1 Miller et al.
(2004). The expression patterns of Bmpr1a and Bmpr1b are not
known. Unlike in lung branching morphogenesis Menshykau et al.
(2014); Kurics et al. (2014), FGF10 is unlikely to be part of the core
Turing mechanism as its receptor remains uniformly expressed in
the tracheal epithelium, and periodic collagen type II patterns are
still observed in Fgf10 mice, if delayed and less uniformly shaped
compared to the wildtype Sala et al. (2011). In case of a SHH-based
ligand-receptor-based Turingmechanism, uniform SHH signalling
on the dorsal side of the trachea could be explained with the higher
Shh expression levels Que et al. (2009) that can take the regulatory
system out of Turing parameter space and thereby ensure uniform
patterns Kurics et al. (2014). The one-day patterning delay
observed in Fgf10 null mice Sala et al. (2011) may then reflect a
delay in the ventral downregulation of Shh expression. Apart from
chemical signalling, cell-cell interactions can also result in Turing
instabilities Watanabe and Kondo (2015). Given the movement
and aggregation of Col2a1-expressing cells Young et al. (2020), the
periodic pattern could, in principle, also arise from chemotaxis
Keller and Segel (1971); Hillen and Painter (2009) (Figure 2B), or
differential adhesion of cartilage progenitors in the ventral
mesenchyme, though additional mechanisms would need to be
in place to ensure reproducible stripe formation from noisy initial
conditions Armstrong et al. (2006); Canty et al. (2017); Carrillo
et al. (2019) (Figure 2C). Finally, differential growth of the ventral
epithelium and mesenchyme (Figure 2D) could result in periodic
patterning Sultan and Boudaoud (2008); Marin-Riera et al. (2018);
Carrillo et al. (2019); Tozluoglu and Mao (2020). Expansion of a
thin, incompressible layer with elastic modulus EEpi and thickness h
relative to a thick, incompressible substrate with modulus EMes

results in buckling with wavelength λ � 2πh( EEpi

3EMes
)1/3 Sultan and

FIGURE 2 | (A) Repetitive patterns can emerge via a Turing mechanism when two regulatory factors that diffuse at different speeds engage in a negative feedback
Turing (1952). In case of the ligand-receptor based Turing mechanism, the binding of the rapidly diffusing ligand (L) to the slowly diffusing receptor (R) results in up-
regulation of the receptor and removal of the ligand. This system can bemodelled with two coupled partial differential reaction diffusion equations. This system can yield a
large variety of patterns, dependent on the reaction parameters and the tissue geometry. (B) Chemotaxis can result in periodic patterning when motile cells (C)
produce and consume the diffusible chemoattractant or chemorepellent (L), as modelled for instance by the Keller-Segel model Keller and Segel (1971). (C) Differential
adhesion between the blue and the red cells can result in periodic pattern formation. The mixture of cells is dependent on their relative surface tension (CT1 for the red,
CT2 for the blue population). This results in three different relative surface tensions (T1 between red cells, T2 between blue and T12 between the two populations) Canty
et al. (2017). To achieve separation in the displayed formCT1must be larger than CT2 and T1 larger than T12 which is larger than T2. (D)Differential growth of two adjacent
tissue layers can result in buckling. The wavelength λ of the periodic pattern depends on the thickness, h, of the expanding epithelial layer (blue layer), and the relative
Young modulus EEpi/EMes of epithelium (blue) and mesenchyme (red) Sultan and Boudaoud (2008).
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Boudaoud (2008). To obtain the ratio of patterning wavelength, λ,
and epithelial thickness, h, that is observed in the trachea Yoshida
et al. (2020), the Young moduli of epithelium, EEpi, and
mesenchyme, EMes, would need to be similar. However, even if
the epithelial folds arise from epithelial buckling, theymay well be a
consequence rather than a driver of mesenchymal condensations.
After all, mesenchymal condensations reduce spatial expansion.
Given this wide range of possibilities, more quantitative
experimental studies and mathematical modelling are required
to delineate the mechanism by which the cartilage rings form.

7 CONCLUSION AND OUTLOOK

Despite the simplicity of the pattern and the importance of the
structure, tracheal cartilage ring formation remains poorly
understood. Conditional mutants in combination with explant

cultures, organoids, quantitative imaging, and mathematical
modelling may help to unravel this patterning mechanism.
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