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Abstract. GPI-anchored surface proteins mediate 
many important functions, including transport, signal 
transduction, adhesion, and protection against comple- 
ment. They cluster into glycolipid-based membrane do- 
mains and caveolae, plasmalemmal vesicles involved in 
the transcytosis and endocytosis of these surface pro- 
teins. However, in lymphocytes, neither the characteris- 
tic flask shaped caveolae nor caveolin, a transmem- 
brane protein typical of caveolae, have been observed. 
Here, we show that the GPI-anchored CD59 molecule 
on Jurkat T cells is internalized after cross-linking, a 
process inhibited by nystatin, a sterol chelating agent. 
Clustered CD59 molecules mostly accumulate in non- 
coated invaginations of the lymphocyte membrane be- 
fore endocytosis, in marked contrast with the pattern of 

CD3-TCR internalization. Cytochalasin H blocked 
CD59 internalization in lymphocytes, but neither CD3 
internalization nor transferrin uptake. Confocal micros- 
copy analysis of F-actin distribution within lymphocytes 
showed that CD59 clusters were associated with patches 
of polymerized actin. Also, we found that internaliza- 
tion of CD59 was prevented by the protein kinase C in- 
hibitor staurosporine and by the protein kinase A acti- 
vator forskolin. Thus, in lymphocytes, as in other cell 
types, glycolipid-based domains provide sites of inte- 
gration of signaling pathways involved in GPI-anchored 
protein endocytosis. This process, which is regulated by 
both protein kinase C and A activity, is tightly controlled 
by the dynamic organization of actin cytoskeleton, and 
may be critical for polarized contacts of circulating cells. 

SEr of cell surface proteins is linked to the exoplas- 
mic leaflet of the plasma membrane by a glyco- 
phosphatidyl-inositol (GPI) 1 motif. These GPI- 

anchored proteins fulfill numerous functions critical for 
cell growth and cell-cell communication (Low, 1989; Mc- 
Conville and Ferguson, 1993). Indeed, GPI-anchored pro- 
teins initiate signal transduction although the mechanism 
remains unclear (for reviews see Brown, 1993; Lisanti et 
al., 1994a). Cross-linking of GPI-anchored molecules is re- 
quired for the delivery of certain activation signals (Rob- 
inson, 1991) and has been shown to trigger their sequestra- 
tion into specialized glycolipid-based domains (Mayor et 
al., 1994) on several different cell types, including on epi- 
thelial cells, endothelial cells (Chang et al., 1994; Lisanti et 
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1. Abbreviat ions  used in this paper: Cyto H, cytochalasin H; DIG, deter- 
gent-insoluble glycosphingolipid-enriched complexes; GAM, goat anti- 
mouse; GPI, glycophosphatidylinositol; GSL, glycosphingolipid; PKA, 
protein kinase A; PKC, protein kinase C; RAM, rabbit anti-mouse; TCR, 
T cell antigen receptor. 

al., 1994b; Sargiacomo et al., 1993), and on some circulat- 
ing cells (Bohuslav et al., 1995; Cinek and Horejsi, 1992). 

In epithelial and endothelial ceils, these glycolipid-based 
domains include plasmalemmal vesicles with a characteris- 
tic flask-shaped morphology, also termed caveolae (Ander- 
son, 1993a). They are composed of large detergent-insolu- 
ble membrane complexes, and are rich in glycosphingolipids 
such as GM1 gangliosides, cholesterol, and GPI-anchored 
proteins (Parton, 1994a; Ying et al., 1992). Cholesterol plays 
a critical role in glycolipid-based domain organization 
since its removing leads to unclustering of GPI-anchored 
proteins (Rothberg et al., 1990a). Several molecules have 
been identified in these detergent-insoluble complexes, in- 
cluding Ca 2+ pump and channel, actin and actin-binding 
proteins, signaling molecules such as Src-related tyrosine 
kinases, protein kinase C (PKC), heterotrimeric and small 
G-proteins, and the characteristic transmembrane protein 
caveolin/VIP21 (Fujimoto, 1993; Anderson, 1993b; Chang 
et al., 1994; Lisanti et al., 1994b; Rothberg et al., 1992; Sar- 
giacomo et al., 1993). Caveolin was originally identified as 
an Src tyrosine kinase substrate in transformed fibroblasts 
(Glenney, 1989; Glenney and Soppet, 1992), and it was 
suggested that caveolin may play a role as an adaptor for 
signaling mediated by GPI-anchored proteins (Lisanti et 
al., 1994a). Caveolae are involved in transcytosis across 
endothelial cells (Milici et al., 1987), in potocytosis (Ander- 
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son et al., 1992; Ying et al., 1992), and in endocytosis. They 
are also seen as organelles able to compartmentalize signal 
transduction, providing spatial and temporal information 
as the cell responds to environmental stimuli (Anderson, 
1993a). 

However, in lymphoid cells, characteristic caveolae have 
not been observed and caveolin was not detected even at 
the mRNA level (Fra et al., 1994). Yet lymphocytes dis- 
play detergent-insoluble membrane domains of ~100 nM 
in diameter which are enriched in GSL. GPI-anchored 
proteins, including CD59 (Protectin), CD55 (DAF), and 
CD48, and two Src-related protein tyrosine kinases, p56 lck 
and p59 fyn, were also found in these domains (Bohuslav et 
al., 1993; Cinek and Horejsi, 1992; Stefanova et al., 1991; 
Brown, 1993). 

Since endocytosis of GPI-linked proteins in nonlym- 
phoid cells such as the folate receptor (Kamen, 1989), the 
urokinase-type plasminogen activator receptor (Stahl and 
Mueller, 1995), and alkaline phosphatase (Patton et al., 
1994b) follow caveolae-mediated endocytosis, it was of in- 
terest to investigate the process of GPI-anchored protein 
endocytosis within lymphocytes. We have chosen to inves- 
tigate the fate of the CD59 molecule, a GPI-linked protein 
involved in complement protection (Davis et al., 1989; 
Rollins and Sims, 1990; Rollins et al., 1991), T cell adhe- 
sion (Groux et al., 1989; Hahn et al., 1992; Deckert et al., 
1992a,b), and T cell activation (Korty et al., 1991; Deckert 
et al., 1992b, 1995). We show that CD59 internalization re- 
quires cross-linking and integrity of glycolipid-based do- 
mains, since it is inhibited by a sterol chelating agent, and 
follows endocytosis of noncoated invaginations of the lym- 
phocyte membrane. In addition, we show that the internal- 
ization process requires a dynamic reorganization of the 
actin cytoskeleton, and is regulated by protein kinase C 
and c-AMP-dependent protein kinase. Finally, we con- 
clude that, although caveolin and typical flask-shaped cav- 
eolae are not observed in lymphocytes, the features of 
GPI-anchored protein endocytosis and signaling in tym- 
phocytes follow a similar organization as in other cell types. 

Materials and Methods 

Cells and Culture 
A431 cells, HPB-All cells, and clones derived from the leukemic T cell 
line Jurkat JE6.1 (wild-type), JR3.T3 (CO3neg), and J45 (CD45neg), were 
obtained from the Amer. Type Culture Collection (Rockville, MD). Chi- 
nese hamster ovary (CHO) cells transfected with CD59 cDNA were previ- 
ously described (Deckert et al., 1992). A431 cells were cultured in DMEM 
supplemented with 50 U/rnl penicillin, 50 p~g/ml streptomycin, 2 mM 
L-glutamine, 1 mM pyruvate (Merck, Darmstadt, Germany), and 10% 
FCS. CHO cells were cultured in Ham's F12 medium supplemented with 
50 U/ml penicillin, 50 I~g/ml streptomycin, 2 mM L-glutamine, 1 mM pyru- 
vate, and 10% FCS. Adherent cells were plated 24-48 h before experi- 
ments and were used at 50-75% confluency. Jurkat cells were cultured in 
RPMI 1640 (GIBCO BRL, Gaithersburg, MD) supplemented with 50 
U/ml penicillin, 50 I,~g/ml streptomycin, 2 mM L-glutamine, 1 mM pyru- 
vate, and 10% FCS. 

Antibodies and Chemicals 
The CD3 X3 and CD59 H19 mAbs were produced in our laboratory. 
Anti-caveolin mAb was obtained from Affiniti (Lexington, KY). Irrele- 
vant mAb, goat anti-mouse (GAM), and gold-conjugated GAM Ig were 
obtained from Sigma Chem. Co. (St. Louis, MO). Rabbit anti-mouse (RAM) 
Ig was obtained from Dakopatts SA (Copenhagen, Denmark). CytochaIa- 

sin H and B, nystatin, forskolin, FITC-conjugated phalloidin, PMSF, leu- 
peptin, aprotinin, and NP-40 were obtained from Sigma Chem. Co.; stau- 
rosporine was obtained from Calbiochem (La Jolla, CA). Chemicals for 
PAGE were obtained from BioRad Labs (Richmond, CA). 

Internalization Assays Using 125I-labeled Antibodies 
Purified mAb were iodinated using the chloramine T (Sigma Chem. Co.) 
labeling procedure. Briefly, 50-200 Ixg of antibodies in 0.3 M H2PO4, pH 
7.5, were incubated with 1 mCi 125I (Amersham, UK) for 45 s at 22°C in 
the presence of chloramine T (1 mg/ml). The reaction was stopped with 
sodium metabisulfite and NaI, and labeled antibodies were then filtered 
through a PD-10 column (Pharmacia). Specific activities of labeled mAb 
were routinely about 1-4 106 cpm/fmol. For internalization assays, ceils 
were incubated with 1-10 nM of IzSI-labeled antibodies in binding medium 
(RPMI 1640, 5% SVF, 50 mM Hepes, pH 7.5) for 30 min on ice. After 
washing, cells were incubated with RAM (2 ~g/ml) for 30 min on ice, and 
then warmed for 60 min at 37°C. Cells were finally chilled on ice and 
washed two times with cold-binding medium. To distinguish between sur- 
face-bound and intracellular radiolabel, cells were treated twice with elu- 
tion medium (100 mM citrate, 140 mM NaCI, pH 2.0) for 5 min at 23°C. 
This treatment was shown to remove 95-98% of the surface-bound radio- 
label; nonspecific binding was determined in the presence of a 100-fold 
excess of unlabeled antibody. The fraction of internalized radiolabel was 
expressed as (acid-resistant fraction of radiolabel divided by total cell- 
associated radiolabel) × 100%. 

Electron Microscopy 
Cells were incubated with the indicated mAb (10-20 ixg/ml) followed by 
10-nm gold-conjugated anti-mouse IgG for 60 min on ice. The cells were 
then warmed for various time intervals at 37°C, and fixed in 2.5% glutaral- 
dehyde in PBS for 1 h at 23°C, and then postfixed in 1% osmium tetrox- 
ide. After dehydration in a series of graded ethanol baths (30, 50, 70, 95, 
and 100%) and propylene oxide, the cells were embedded in Epon. Cell 
sections (80-200 nM) were obtained using a Reichert Ultracut E micro- 
tome and stained with uranyl acetate. The grids were examined using a 
Philips CM12 electron microscope. 

Conventional and Confocal 
Immunofluorescence Microscopy 
Ceils grown on coverslips were labeled with mAb (10-20 ~g/ml) for differ- 
ent time intervals at 4°C, washed, and treated with RAM (2-3 I~g/ml) for 
30 rain on ice. The cells were then warmed for the indicated times at 37°C. 
After washes in PBSB buffer the cells were fixed in 3.7% paraformalde- 
hyde in PBS for 10 min at 23°C; and either permeabilized for 30 min at 
23°C in PBSB (PBS, 1% BSA, 0.1% NAN3), 0.05% saponin, or left unper- 
meabilized. They were then incubated with FITC-conjugated anti-rabbit 
IgG for 30 min at 23°C. After three washes, the cells were mounted in Cit- 
ifluor as an anti-bleaching agent. Immunofluorescence analysis was per- 
formed using a Leitz microscope equipped for epifluorescence. Circulat- 
ing cells were allowed to settle on poly-L-lysine-coated slides (Sigma) for 
15 rain in the dark before analysis on a Zeiss microscope equipped with a 
Sony video recorder. Confocal analysis was used for analysis performed 
on lymphoid cells. Cell suspensions treated as described above, were fi- 
nally centrifuged and the cell pellets were resuspended in Citifluor as an 
anti-bleaching agent. Cells were then allowed to settle on poly-L-lysine- 
coated slides (Sigma) for 15 rain in the dark. Fluorescence analyses were 
performed on a Leitz scanning confocal microscope. 

Internalization Assays of FITC-conjugated Ligands 
The uptake of FITC-conjugated transferrin (FITC-Tf) was performed as 
follows: cells were washed twice with HBS 1% BSA, and incubated for 45 
rain at 37°C in the same medium in order to deprive cells of free and 
bound transferrin. Cells, adjusted to 107 per ml in the above medium, were 
incubated with 1 p~M of Cyto H, and then labeled with 2 p~g/ml of FITC-Tf 
for 60 min on ice. Cells were then warmed for 30 rain at 37°C, allowing 
transferrin to internalize, or left at 4°C. After three washes, the cells were 
fixed and examined under fluorescence microscopy as described above. 

Measurement of F-Actin 
Activated Jurkat cells were washed in PBSB buffer, and then fixed for 10 
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min at 23°C in PBS, 3.7% paraformaldehyde. After two washes in PBSB, 
fixed cells were permeabilized for 30 min at 23°C in PBSB, 0.05% saponin. 
The cells were then stained with FITC-phalloidin (1 p.g/ml) in PBSB, 
0.05% saponin for 30 min at 23°C in the dark. After three extensive 
washes in PBSB, F-actin fluorescence was determined using a FACScan 
flow cytometer. The data are reported as the ratio of the mean of fluores- 
cence intensity of stimulated cell to control cells, or the relative fluores- 
cence index (RFI). In some experiments, F-actin fluorescence was exam- 
ined using confocal microscopy as described above. 

Results 

Internalization of CD59 GPI-anchored Protein Is 
Induced by Cross-linking and Blocked by Nystatin 

We have investigated internalization of the CD59 GPI- 
anchored protein. Jurkat cells were labeled with either 
[~2sI] CD59 or CD3 m A b  at 4°C, washed, incubated again 
at the same temperature with anti-mouse Ig, and then 
warmed to 37°C for various periods of time. CD59 inter- 
nalization occurred only upon cross-linking with a second 
antibody, was detectable as soon as 30 min after the begin- 
ning of the cross-linking, and reached a maximum at 2 h. 
By contrast, CD3 internalization reached its maximum at 
30 min (Fig. 1 A). 

To determine whether CD59 internalization is dependent 
on cholesterol-rich membrane  domains, we used the cho- 
lesterol binding drug, nystatin. Nystatin has been shown to 
selectively disrupt caveolae, but to have no effect on clath- 
rin-coated pits, actin cables, or  other submembraneous 
structures (Rothberg et al., 1992). For  example, nystatin 
reduced the rate of  plasmin formation by the complexes of  
urokinase plasminogen activator with their receptors, which 
localized in caveolae (Stahl and Mueller, 1995). In our pre- 
liminary experiments, nystatin proved to have minimal 
toxic effects on lymphocytes: 25 mg/ml of nystatin in se- 
rum-free culture medium for up to 24 h had no effect on 
cell morphology or  viability, nor  did it modify the binding 
of [125I] CD59 mAb  "H19" to those cells (results not shown). 
Jurkat cells were preincubated for 30 min with or without 

Figure 1. Internalization of CD59 and CD3 in Jurkat cells and the 
effects of nystatin. Jurkat cells were labeled with [125I] CD59, (A, 
open squares) or CD3 (A, full squares) mAbs, washed, and then 
rabbit anti-mouse Ab was added for different times. [12sI]-mAb 
internalization was measured as described in Materials and Meth- 
ods. Results are expressed as the percentage of CD3 or CD59 in- 
ternalization. In B, cells in serum-free medium were preincu- 
bated for 30 min at 37°C with nystatin (25 Ixg/ml) or not, and then 
were labeled with [1251] CD59 or CD3 mAb followed by second- 
ary antibody for 2 h at 37°C. Results are expressed as the percent- 
age of variation relative to control ceils (3,500 cpm and 12,500 
cpm, respectively, for CD59 and CD3). 

nystatin, and then labeled with either [125I] CD59 or  CD3 
mAbs  before cross-linking. Under  these conditions, CD59 
internalization was decreased up to 30% in the presence of 
nystatin (Fig. 1 B). In contrast, T cell antigen receptor (TCR) 
downmodulat ion was unaffected by nystatin (Fig. 1 B). 
These data suggest that in lymphoid cells, GPI-anchored 
proteins are clustered upon cross-linking in sterol-enriched 
domains of the plasma membrane,  and these domains are 
required for internalization of the receptor. 

Internalization of CD59 GPI-anchored Protein Occurs 
Preferentially in Uncoated Vesicles 

The fate of CD59 following antibody-induced cross-linking 
on the lymphocytic T cell line Jurkat was next examined 
by electron microscopy. Cells were labeled with CD59 mAb  
followed by incubation with colloidal gold-labeled anti-  
mouse IgG at 4°C or for various times at 37°C. Cells incu- 
bated at 4°C showed uniform distribution of  CD59 on the 
plasma membrane,  and only 10% of the total particles 
were clustered at the cell surface (Fig. 2 and Table I). Upon 
warming at 37°C, gold particles associated with CD59 were 
clustered (up to 45% of the particles observed on the 
plasma membrane).  After  15 rain at 37°C, they were de- 
tectable within the cells (Table I), and in large endocytic 
vesicles (1-10 particles per vesicle) associated with inter- 
nal material (Fig. 2). Quantitat ion indicated that after 60 
min of cross-linking at 37°C, 33% of the gold particles 
were internalized (Table I), and could be seen associated 
with large endocytic vesicles and multivesicular bodies 
(Fig. 2). Notably, gold particles associated with CD59 were 
seen most often in noncoated invaginations of  the plasma 
membrane.  After  15 rain of  cross-linking at 37°C, quantita- 
tive determination showed that up to 6% of particles were 
found in coated vesicles, whereas 30% were found in non- 
coated invaginations (Fig. 2 and Table I). Thus, these re- 
sults show that upon clustering, CD59 preferentially accu- 
mulates in noncoated structures. 

A Role for Protein Kinases in GPI-anchored Protein 
Internalization within Lymphoid Cells 

Since cytoplasmic kinases have been found to be involved 
in caveolae internalization (Smart et al., 1995), we exam- 
ined the effects of pharmaceutical agents on the endocytic 
pathway of GPI-anchored proteins. Confocal analysis 
showed that staurosporine, a PKC inhibitor, and forskolin, 
an activator of protein kinase A (PKA),  abrogated the in- 
ternalization of CD59 (Fig. 3). Of  note, no significant al- 
teration of  the clustering of  CD59 was observed (Fig. 3, C 
and D), indicating that kinase inhibition acts on the inter- 
nalization process of GPI-anchored proteins rather than 
on a prerequisite phase of cross-linking. Other  PKC inhib- 
itors, namely calphostine C and sphingosine, also inhibited 
CD59 internalization at concentrations consistent with 
PKC inhibition, whereas herbimycin A, a tyrosine kinase 
inhibitor, did not inhibit CD59 internalization (not shown). 
By contrast, forskolin almost completely inhibited CD59 
but not CD3 downmodulat ion (Fig. 4). This indicates that 
cAMP-dependent  serine/threonine kinases are involved in 
regulating internalization of GPI-anchored proteins within 
lymphoid cells. 
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Figure 2. Localization of CD59 in Jurkat cells by immunoelectron 
microscopy. Cells were labeled with CD59 mAb followed by sec- 
ondary antibody conjugated with 10 nm gold for 60 min at 4°C. 
The cells were then warmed to 37°C for 0-60 min before glutaral- 
dehyde fixation. A-I show semi-thick Epon sections representa- 
tive of the distribution of gold particles at 4°C (A), after 15 min at 
37°C (B-E), 30 min (F and G), or 60 min (H and/). Gold label 
has clustered on plasma membrane (B) near (C and D) or in (E) 
uncoated vesicles. Arrowheads show gold label in uncoated vesi- 
cles near the membrane (F and G) and in multivesicular bodies 
(H and/). The arrow shows an empty coated pit. Bars, 100 nm. 

Disruption of Actin Filaments Inhibits Internalization 
of GPI-anchored Proteins in Lymphocytes 

The integrity of the actin cytoskeleton can be required for 
endocytosis, depending on the cell type, and, most likely, 
on the mechanism of endocytosis (Anderson, 1991). We 
therefore examined, within lymphocytes, the influence of 
the actin cytoskeleton on the endocytosis of GPI-anchored 
proteins and proteins requiring a clathrin-dependent mech- 
anism of endocytosis. 

First, we measured endocytosis with 125I-labeled mAb. 
When cells were incubated with Cyto H, the internalization 

of [125[] CD59 mAb was abrogated, whereas [1251] CD3 
mAb was internalized to the same extent as in the controls 
(Fig. 5). Scanning confocal microscopy performed on sa- 
ponin-permeabilized cells showed that time-dependent in- 
ternalization of CD59 was completely abolished by 1 p~M 
of Cyto H. Importantly, it should be noted that Cyto H 
neither inhibited the initial patching nor the capping of CD59, 
suggesting that the inhibition of GPI-anchored protein in- 
ternalization cannot be accounted for by the inhibition of 
their clustering. By contrast neither CD3/TCR internaliza- 
tion (results not shown) nor Tf-FITC uptake by Jurkat 
cells (Fig. 6) was affected. 

We next examined CD59 internalization by electron mi- 
croscopy. Upon Cyto H treatment, cells exhibited a patched 
distribution of gold particles on the plasma membrane (2- 
10 particles per patch) (Fig. 7). Although the amount of 
clustered CD59-associated gold particles were identical in 
untreated or Cyto H-treated cells, only 4% of the particles 
were found within Cyto H-treated cells, even after 60 min 
of clustering at 37°C (Table I, Fig. 7, A-D). By contrast, 
the internalization of gold particles associated with the 
CD3 complex was not inhibited by Cyto H treatment, and 
particles (3-12 per vesicle) were still detectable in multive- 
sicular structures (Fig. 7 E). Thus, in lymphocytes, struc- 
tural integrity of actin filaments is required for the inter- 
nalization pathway mediated by glycolipid-based domains. 

Reorganization of the Actin Cytoskeleton 
and CD59 Clustering 

Given the effects of Cyto H on CD59 internalization, we 
examined the organization of the actin cytoskeleton fol- 
lowing CD59 cross-linking. CD59 was cross-linked for dif- 
ferent times at 37°C, cells were fixed, and then permeabilized 
with saponin. Incubation with FITC-conjugated phalloidin 
allowed detection of the cellular content of F-actin; quan- 
tification was performed by FACS analysis. CD59 cross- 
linking induced a transient augmentation of F-actin (1.4-fold 
augmentation of RFI at 10 rain), peaking at 15 min, and 
decreasing after 30 rain (Fig. 8 A). This process was abol- 
ished by incubating the cells with i jxM Cyto H (Fig. 8 A). 
Scanning confocal microscopy showed that CD59 cross- 
linking increased the level of F-actin, but also induced the 
formation of actin patches (Fig. 8 B, panel b). Cross-link- 
ing of CD59 mAb with a TRITC-labeled GAM IgG for 10 
min at 37°C, followed by FITC-conjugated phalloidin and 
confocal analysis, showed that F-actin closely localized with 
the CD59 clusters at the cell surface (Fig. 9). 

Discussion 

In this report, we have investigated the endocytosis of 
CD59, a typical GPI-anchored protein from human lym- 
phocytes (Deekert et al., 1992, 1995). We show that it first 
requires clustering within glycolipid-based membrane do- 
mains in a sterol-dependent manner. Next, a dynamic re- 
organization of the actin cytoskeleton is required. In addi- 
tion, we show that the signaling pathway leading to 
endocytosis is controlled both by PKC and PKA activity. 
It appears quite distinct from the signaling pathway initi- 
ated through CD59 cross-linking on lymphocytes, which 
requires protein tyrosine kinase activities. 
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Table L Quantitative Analysis of Gold-labeled Protectin Distribution after Adding a Second Ab; Influence of Cytochalazine H 

Percent of gold particles in invaginafions 
Gold Gold 

Conditions on surface internalized Coated Noncoated 

% % 

0°C 100 (10)* 0 0 14 
37°C 15 min 90 (45) 10 6 30 
37°C 60 min 67 (44) 33 9 27 
37°C 60 min + Cyto H 96 (41) 4 8 40 

*Numbers in parpentheses show the percentage of clustered gold particles at the cell surface. A cluster of gold paricles was defined as three or more associated gold particles. 
'250-300 individual gold particles were counted for each condition, representing 20-40 cells sections (representative of two different experiments). 

In  lymphoid  cells, caveolae  and caveol in are not  detect-  
able  (Fra  et al., 1994; Gorod insky  et  al, 1995). Instead,  
lymphocytes  display large, glycolipid-based domains  where 
GPI -anchored  prote ins  are found (Stefanova et al., 1991; 
Cinek and Horejsi ,  1992). Recently,  Par ton  and Simons 
p roposed  the term of detergent- insoluble  glycosphin- 
gol ip id-enr iched complexes to distinguish such regions 
from classical morphologica l  enti ty t e rmed  caveolae  (Par-  
ton and Simons,  1995). However ,  in the absence of  caveo- 
lae in lymphocytes ,  the endocyt ic  process of  GPI -anchored  
prote ins  remains  unclear.  We observed under  e lect ron mi- 
croscopy analysis that  the internal izat ion of CD59 on tym- 
phocytes  involves an initial step of accumulat ion in un- 
coa ted  membrane  invaginations. Af t e r  clustering, CD59 
prote ins  undergo  in ternal iza t ion via uncoa ted  pits and 

vesicles of  ~60-100  nm in diameter .  Most  of the  CD59- 
labeled mater ia l  was found within such uncoa ted  vesicles 
near  the membrane ,  a l though a small p ropor t ion  was also 
seen in coated  pits. Our  observat ions  are consistent  with 
the biochemical  studies from Horejs i  and colleagues about  
the dimension of the detergent- insoluble  GPI -domains  in 
immune  cells, including lymphocytes  (Cinek and Horejsi ,  
1992; Bohuslav et al., 1993) and monocytes  (Bohuslav et 
al., 1995). In studies pe r fo rmed  on nonlymphoid  cells, it 
was shown that  these domains  are disrupted in cells de-  
p le ted  of  cholesterol ,  or  t rea ted  with s terol-binding drugs 
such as nystat in or  filipin, leading to  unclustering of  GPI-  
anchored  prote ins  (Rothberg  et al., 1990a, 1992). W e  
found here  that,  in lymphoid  cells, nystat in inhibits the  an- 
t ibody- induced internal izat ion of CD59 while the clathrin- 

Figure 3. Staurosporine and 
forskolin inhibit the endocy- 
tosis of CD59 detected by 
scanning confocal analysis. 
JE6.1 cells were preincu- 
bated with staurosporine at 
100 nM (C) and forskolin at 
10 p~M (D) for 30 min at 37°C 
and labeled with CD59 mAb 
followed by secondary anti- 
body for 60 rain either at 4°C 
(A), or 37°C (B-D). After 
fixation and permeabiliza- 
tion with saponin, the cells 
were labeled with FITC-con- 
jugated anti-rabbit IgG, and 
then processed for scanning 
con focal immunofluores- 
cence analysis. (B) The ar- 
row shows accumulation of 
CD59 in endocytic compart- 
ments; (C and D) arrow- 
heads show representative 
CD59 clusters at the mem- 
brane weakly affected by in- 
cubation in the presence of 
either staurosporine or for- 
skolin. Bars, 10 Ixm. 
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Figure 4. Forskolin inhibits CD59 but not CD3/TCR downmod- 
ulation. JE6.1 cells were preincubated for 30 min with forskolin 
(10 ~M) or not and labeled with [1251] CD59 or CD3 mAb fol- 
lowed by secondary antibody for 2 h at 37°C. Results are ex- 
pressed as the percentage of variation relative to control cells 
(3,000 cpm and 12,000 cpm, respectively, for CD59 and CD3). 

dependent T C R  internalization pathway was unaffected. 
Taken together, our data also suggest that CD59 is not in- 
ternalized through the clathrin-coated pit pathway. In this 
respect, a GPI-anchored form of CD4 was shown to be 
preferentially internalized through uncoated vesicles on 
transfected C H O  cells (Keller et al., 1992). Similar obser- 
vations were reported about other GPI-anchored pro- 
teins such as the folate receptor (Rothberg et al., 1990b) 
and Thy-1 glycoprotein (Bamezai et al., 1992). Thus, it ap- 
pears that the glycolipid-based domains from lymphoid 
cells are also involved in the formation of endocytic vesi- 
cles, as it has been reported for glycolipid-based domains 

50 
CD59 CD3 

" 40 
O 

N 
= 30 
E 

c 20 

O 

10 

0 

"1" 

ii 

/ ° 
37oc - + + - + + 

Cyto H " = + " = + 

Figure 5. Cytochalasin H inhibits the endocytosis of [1251] CD59 
mAb but not those of [125I] CD3 mAb. JE6.1 cells were preincu- 
bated for 30 min at 37°C with or without cytochalasin H at 1 ~M, 
and then labeled with 125I-labeled antibodies to CD59 or CD3, 
followed by secondary antibody for 60 min at 4°C. Cells were 
then warmed to 37°C for 60 min. Surface label was removed by 
incubating cells twice with low pH medium. The fraction of inter- 
nalized radiolabel is expressed as the percentage of the total 
amount of cell-bound radioactivity for each condition. 

Figure 6. Cytochalasin H does not inhibit the uptake of FITC- 
conjugated transferrin. JE6.1 cells were incubated in serum-free 
medium for 45 min at 37°C in order to eliminate free and bound 
transferrin. Cyto H-treated cells (B and D) or -untreated cells (A 
and C) were labeled with FITC-conjugated transferrin for 60 min 
on ice and warmed to 37°C for 30 min. Cells were processed for 
scanning confocal immunofluorescence analysis. Arrows show 
endocytosed transferrin. Bars, 10 ~m. 

in nonlymphoid cells (Rothberg et al., 1990b; Parton et al., 
1994b). Finally, we used in our experiments two antibodies 
in order to cross-link CD59, a phenomenon which in gen- 
eral is considered to induce an artifactual organization of 
the plasma membrane molecules. However,  it might be 
important to note that since CD59 is constitutively clus- 
tered on the cell surface (Van den Berg et al., 1995), add- 
ing two antibodies may rather stabilize the native distribu- 
tion of CD59 on cell membrane.  

One important question is how mechanisms control the 
endocytic pathway of GPI-anchored proteins. We found 
that actin reorganization was a subsequent critical step, 
since we observed that Cyto H inhibited CD59 internaliza- 
tion, and that patches of polymerized actin colocalized 
with CD59 clusters before internalization. In addition, we 
found that Cyto H blocked the internalization of GM1 GSL 
(data not shown), which are enriched in caveolae (Parton 
et al., 1994a). The actin cytoskeleton has been shown to be 
involved in intracellular trafficking (Anderson, 1991), but 
its role in internalization remains unclear. In mammalian 
cells, cytochalasin D reduces uptake via a nonclathrin- 
dependent pathway (Sandvig and van Deurs, 1990), while 
apical uptake from polarized epithelial cells is also reduced 
by depolymerization of the actin cytoskeleton (Gottlieb et 
al., 1993). 

Furthermore, cytochalasin D inhibits okadaic acid-induced 
wash-out of  caveolae from epithelial cell membranes (Par- 
ton et al., 1994b). However,  we observed no effect (or 
weak effects) of Cyto H on the antibody-induced internal- 
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Figure 7. Immunogold localization of CD59 and CD3 on Cyto 
H-treated cells. JE6.1 cells were preincubated for 30 rain at 37°C 
with cytochalasin H at 1 txM, and then labeled with CD59, or 
CD3 mAb followed by secondary antibody conjugated with 10 
nm gold for 60 min at 4°C. Cells were then warmed to 37°C for 60 
rain before glutaraldehyde fixation. A-E show semi-thick Epon 
sections representative of the distribution of gold particles associ- 
ated with CD59 (A-C), or with CD3 (D and E). Gold label has 
clustered on plasma membrane (A-C). The arrowhead shows 
gold label near an uncoated structure at the membrane (C). Ar- 
rows show CD3-associated gold label in multivesicular bodies (D 
and E). Bars, 100 nm. 

ization of CD59 in A341 and transfected C H O  cells (data 
not shown). Although we could not exclude the attach- 
ment  of  these cells that might stabilize the actin cytoskele- 
ton, these results also suggest that glycolipid-based domains 
from different cell types may be subjected to different mo- 
lecular regulation. Based on our observations, we conclude 
that glycolipid-based domains in lymphocytes interact with 
the actin cytoskeleton. 

One possibility is that actin assembly participates in the 
early step of  invagination, which is presumably followed 
by fusion with endosomal structures. In this regard, corti- 
cal actin patches were recently found associated with in- 
vaginations of the yeast plasma membrane  (Mulholland et 
al., 1994). Fur thermore the actin cytoskeleton has been 
shown to be involved in receptor-mediated endocytosis in 
yeast (Ktibler and Riezman, 1993). Thus, the budding of 
GPI-domains  in lymphocytes may be controlled by corti- 
cal actin cytoskeleton. Caveolae from epithelial and en- 

Figure 8. FACS and scanning confocal analysis of the distribution 
of F-actin during CD59 clustering. JE6.1 cells were preincubated 
or not with Cyto H at 1 p.M for 30 min at 37°C, and then labeled 
or not with CD59 mAb followed by secondary antibody for 0-30 
rain at 37°C. At the indicated times, cells were fixed, permeabil- 
ized in 0.05% saponin, and labeled with FITC-phalloidin. F-actin 
content was determined either by FACS analysis (A) or by confo- 
cal analysis (B). The data are expressed as the relative fluores- 
cence index (RFI), relative to control ceils, and represents the 
mean of triplicate determinations -SD (A). B shows representa- 
tive confocal images of inactivated cells (a) and cells activated by 
CD59 mAb for 15 min (b) or 30 min (c) while d represents cells 
incubated in the presence of Cyto H at 1 IxM before activation by 
CD59 mAb for 15 min. 

dothelial cells have been found to be enriched in actin and 
actin-binding protein, heterotrimeric G-proteins, and small 
G-proteins from the Rab and Rap families (Chang et al., 
1994; Lisanti et al., 1994b). There is compelling evidence 
that both heterotrimeric and small G proteins regulate as- 
sembly/deassembly of actin filaments (Shefcyk et al., 1985; 
Hall, 1994). Thus, although they are not fully character- 
ized, the lymphocyte glycolipid-based domains provide 
likely sites for initiation of  actin nucleation and assembly. 

Proteins involved in regulating cytoskeletal organization 
or in the formation of endocytic vesicles are likely targets 
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Figure 9. Scanning confocal analysis of the colocalization of F-actin 
and CD59 clusters at the cell surface. JE6.1 cells were labeled 
with CD59 mAb followed by TRITC-conjugated GAM antibody 
for 10 rain at 37°C. The fixed and permeabilized cells were then 
incubated with FITC-conjugated phalloidin for 30 rain at room 
temperature and examined by scanning confocal microscopy. A 
and B show separate labetings while C shows double-labeling su- 
perposition. Bar, 10 ~m. 

for signal transduction elements, and both kinases and 
phosphatases play a central role in lymphocyte signaling 
pathways (Mustelin, 1994; Weiss and Littman, 1994). The 
finding that Src-related tyrosine kinases and GPI-anchored 
proteins are complexed within glycolipid-based domains is 
therefore of critical importance, since antibodies against 
these GPI-anchored proteins have been shown to trigger 
signals within different cell types (Brown, 1993). Indeed, 

we recently found that cross-linking of CD59 triggers acti- 
vation of the associated p561ck kinase and stimulates both 
CD3/TCR-dependent and -independent signaling path- 
ways in T cells (Deckert et al., 1995). Serine and threonine 
kinases are also critical for cell signaling, and stimulation 
of protein kinase C activity by phorbol esters has been 
shown to inhibit folate receptor internalization in MA104 
epithelial cells (Smart et al., 1994). In addition, a popula- 
tion of PKCot molecules were found to reside in the caveo- 
lar membrane, whose activity is required for caveolae in- 
vagination (Smart et al., 1995). In the present study we 
found that staurosporine, a PKC inhibitor, prevented 
CD59 internalization within human lymphoid cells. In Jur- 
kat variants deficient in TCR/CD3 or CD45 expression, 
we have observed that CD59 was still internalized (not 
shown). This establishes that the TCR/CD3 complex and 
the tyrosine phosphatase CD45 do not transduce biochem- 
ical signals required for internalization of GPI-anchored 
molecules, although these signals are critical for T cell acti- 
vation (Weiss and Littman, 1994). Moreover, activation of 
p561ck induced by cross-linking CD59 (Deckert et al., 
1995) was unaffected by actin filament depolymerization 
(data not shown). It is tempting to propose that internal- 
ization is a negative regulatory mechanism of activation 
signals, which would have an important role during cell ac- 
tivation. 

In conclusion, our data provide clues about the functions 
of glycolipid-based domains and the molecular mechanisms 
underlying their organization. Keeping in mind that lym- 
phocytes are unpolarized cells in a resting state, but be- 
come polarized upon cell-cell or cell-matrix interaction, 
such domains may provide critical spatial information and 
sites of integration for signaling pathways. Since many 
GPI-anchored molecules are involved in cell adhesion and 
in signal transduction, endocytosis of GPI-anchored mole- 
cules is a likely means for reversible adhesion and for fine 
tuning of cell signaling. 
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