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Abstract

Deficits in information processing speed (IPS) are among the earliest and most promi-

nent cognitive manifestations in mild traumatic brain injury (mTBI). We investigated the

impact of white matter fiber location on IPS outcome in an individual basis assessment.

A total of 112 acute mild TBI with all CT negative underwent brain DTI and blood sam-

pling for inflammation cytokines within 7 days postinjury and 72 age- and sex matched

healthy controls with same assessments were enrolled. IPS outcome was assessed by

the trail making test at 6–12 month postinjury in mild TBI. Fractional anisotropy

(FA) features were extracted using a novel lesion-load analytical strategy to capture spa-

tially heterogeneous white matter injuries and minimize implicit assumptions of uniform

injury across diverse clinical presentations. Acute mild TBI exhibited a general pattern of

increased and decreased FA in specific white matter tracts. The power of acute FA mea-

sures to identify patients developing IPS deficits with 92% accuracy and further

improved to 96% accuracy by adding inflammation cytokines. The classifiers predicted

individual's IPS and working memory ratings (r = .74 and .80, respectively, p < .001). The

thalamo-cortical circuits and commissural tracts projecting or connecting frontal regions

became important predictors. This prognostic model was also verified by an independent

replicate sample. Our findings highlighted damage to frontal interhemispheric and tha-

lamic projection fiber tracts harboring frontal-subcortical neuronal circuits as a predictor

for processing speed performance in mild TBI.
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DTI, information processing speed, mild traumatic brain injury, prognosis, serum inflammation

cytokine

1 | INTRODUCTION

Traumatic brain injuries (TBI) is a public health challenge of vast, but

insufficiently recognized, proportions. Mild traumatic brain injury (TBI)

accounts for 80–90% of all cases of TBI worldwide (Levin & Diaz-

Arrastia, 2015; Thornhill et al., 2000). Approximately 30% patients will

harbor persistent cognitive deficits that contribute to life changing

sequelae (Max, Mackenzie, & Rice, 1991; Sharp, Scott, &
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Leech, 2014). Of which, reduced information processing speed (IPS)

are pervasive, precede clinical diagnosis, and form the core of TBI-

associated cognitive disabilities (Draper & Ponsford, 2008). Potential

therapeutic strategies (i.e., catecholaminergic drugs) are available and

improve IPS. Therefore, identification of theranostics biomarkers for

mild TBI with developing IPS deficits is essential that can guide the

use of treatment that enhances individual cognition.

The clinical assessment of this persisting cognitive deficit is chal-

lenging, especially when no gross abnormalities indicative of the cogni-

tive or functional loss are detected on routine diagnostic imaging

(e.g., structural MRI and CT). Only 4% of mild TBI have relevant or

suspected pathological findings (Smith, 2012), leading to the larger pro-

portion of patients receiving no medical attentions. It is suggested that

abnormalities of selective swelling and disconnection of white matter

axons following trauma can be better detected by diffusion tensor

imaging (DTI) than by conventional imaging (Niogi & Mukherjee, 2010;

Shenton et al., 2012). However, heterogeneous and inconsistent con-

clusions have been drawn regarding to the direction of tissue water dif-

fusivity abnormalities, including increased (Henry et al., 2011; Ling

et al., 2012; Mayer et al., 2010), decreased during the initial diagnose

(acute or semi-acute stage) (Messe et al., 2012; Miles et al., 2008). Spe-

cially, this claim of traumatic axonal injury has been challenged by

recent study reporting null changes in mild TBI (Ilvesmaki et al., 2014).

Besides variability due to clinical factors, the analytical approach used

for detecting white matter abnormalities may attribute to discrepancies

in mild TBI DTI studies. In general, previous studies assumed that clini-

cally heterogeneous patients have a homogenous (i.e., high degree of

spatial overlap) pattern of white matter abnormalities. To address this

question, we adopted a novel approach by measuring diffusion abnor-

malities through a metric similar to lesion-load (White, Schmidt, &

Karatekin, 2009). Specifically, clusters of abnormally high or low aniso-

tropic diffusion were determined on a voxel-wise basis and then

summed to represent total burden of distributed pathology. Such bi-

directional changes in fractional anisotropy (FA) are also detected after

early injury in the rodent controlled cortical impact (CCI) model (Harris,

Verley, Gutman, & Sutton, 2016), as well as following subacute of mild

TBI (Ling et al., 2012).

TBI effects on white matter as well as white matter effects on cog-

nition are region specific (Kinnunen et al., 2011). It is reported that the

structure of the fornix is related to the efficiency of working memory

and the anterior corona radiata associated with executive function fol-

lowing mild TBI (Kinnunen et al., 2011). Chronic decreased FA in the

anterior forceps is associated with persistent verbal letter fluency impair-

ment after mild head injury (Croall et al., 2014). However, these studies

primarily focus on the relation between microstructural changes and

cognition within either acute or chronic stage, potential of very early

injury of specific white matter tracts in identifying the long-term cogni-

tive outcome is still unclear. Among this, processing speed presents as

the most sensitive cognitive domains to mild TBI (Karr, Areshenkoff,

Duggan, & Garcia-Barrera, 2014). It is supposed that the physiological

effects of mild TBI interact with the aging process and exacerbate cogni-

tive impairments (Henry, Tremblay, & De Beaumont, 2017). Models of

cognitive aging proposes the processing speed as the fundamental

cognitive process to support higher cognitive functions (i.e., working

memory) and drive general declines (Salthouse, 2009). Information

processing speed (IPS) depends on large-scale, long-distance neural net-

work operations that are supported by myelinated neuronal axonal fibers

(Bartzokis et al., 2010; Waxman & Bennett, 1972). Therefore, the exis-

tence of specific white matter abnormalities maybe an important predic-

tor to classify subtype of mild TBI patients with differential IPS outcome.

Additionally, our recent study also demonstrates that acute serum

inflammation cytokine levels (i.e., chemokine ligand 2, CCL2) can predict

long-term IPS profiles in participants with mild TBI (Sun et al., 2019).

Ultimately, combination of both DTI metrics and inflammation cytokine

at the very early acute phase can provide better predictor to help clini-

cians rule out long-term cognitive impairment in acute mild TBI.

In the past few years, our research group has followed a relatively

large sample of civilian mild TBI and acquired various measurements

of their neuropsychological function, brain imaging and blood serum

(Niu et al., 2019; Wang et al., 2019; Xu et al., 2018). We have identi-

fied several cognitive and brain abnormalities in the group level, but

we never combined these into an integrated biological signature that

could be used at the individual level. The emerging field of machine

learning provide a way to identify an integrated biological signature

for unbiased diagnostic purposes. Here, a longitudinal study combin-

ing MRI-DTI and inflammation cytokine with multivariate pattern

analysis aimed to test: (a) whether diffusion metrics combined with

inflammation cytokine during early acute mild TBI contained sufficient

information to identify patients with IPS deficits over 6–12 months

postinjury; (b) whether the predicted model based on IPS training can

be adopted to provide predictions of working memory in individuals,

considering mediation effects of IPS observed in healthy and neuro-

logical related changes in working memory; (c) whether this predict

model can be independently replicate in a new cohort of patients

using identical experimental protocols to enhance its general applica-

bility. We hypothesized that deficits in processing speed would be

related to white matter lesions at strategic locations.

2 | METHODS

2.1 | Participants

The study involved 112 mild TBI patients and 72 healthy controls

from two independent cohorts (as original and replicated samples)

(Table 1). The original cohort was enrolled from March 2014 to Oct.

2015 and replicated sample from April 2016 to Dec 2018 respec-

tively, and all of datasets for these two cohort were collected from

the same center and using the same scanner. Inclusion and exclusion

criteria were maintained for both samples and reported in our previ-

ous studies (Niu et al., 2019). Screening for mild TBI was based on the

World Health Organization's Collaborating Centre for Neurotrauma

Task Force (Holm, Cassidy, Carroll, & Borg, 2005). All the subjects

gave written, informed consent in person approved by the Local Insti-

tutional Review Board and conducted in accordance with the Declara-

tion of Helsinki.
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2.2 | Clinical assessment and outcome

Consistent clinical and cognitive assessments were maintained for

both samples, and were conducted at both initial (acute phase, within

7 days postinjury) and follow-up (6–12 month postinjury). All of

patients in the present study were free of litigation to avoid any bias

on the testing performance. The neuropsychological tests mainly

included the information processing speed (IPS rated by Trail Making

Test A) (Arnett & Labovitz, 1995) and working memory (by Backward

Digit Span from the WAIS-III) (Harman-Smith, Mathias, Bowden,

Rosenfeld, & Bigler, 2013). For the cognitive information processing

speed measured by the Trail A, the split criteria were based on the

norms adjusted by both age and education level (Tombaugh, 2004).

2.3 | Serum biomarkers

Acute mild TBI patients and matched healthy controls were collected

the serum samples, and the details were reported in our current study

(Sun et al., 2019). The 9-plex panel of serum cytokines included the

interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-10, IL-12, chemokine ligand

2 (CCL2), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α). In

the present study, we found that serum levels of IL-1β, IL-6, and

CCL2 were acutely elevated in mild TBI patients relative to controls

(Table 1). Thus, these three serum biomarkers were selected as predic-

tor features.

2.4 | MRI imaging

The protocol for scanning included a noncontrast CT scan for acute head

injury. The MRI (3 T GE 750) protocol for each subject (mild TBI patients

and controls) included the high-resolution T1-weighted 3D MPRAGE

sequence (TE = 3.17 ms, TR = 8.15 ms, flip angle = 9�, slice thick-

ness = 1 mm, field of view [FOV] = 256 × 256 mm, matrix

size = 256 × 256), DTI (TR = 7,300 ms, TE = 99 ms, flip angle = 90�, thick-

ness = 3 mm, slices = 50, FOV = 256 mm × 256 mm, matrix

size = 128 × 128, two averages, voxel size = 2 mm × 2 mm × 3 mm). DTI

scan (b = 1,000 s/mm2) were acquired with 30 diffusion gradient orienta-

tions and the b = 0 repeated two times. The presence of nonhemorrhagic

and micro-hemorrhagic lesions was independently determined by experi-

enced clinical neuroradiologists (with 9 and 10 years' experience) who

assessed multiple modalities of neuroimaging data acquired at baseline

(T1-flair; T2-flair; susceptibility weighted imaging, SWI).

2.5 | Quality control

Head motion induces bias in DTI scalar measurements (Jenkinson,

Bannister, Brady, & Smith, 2002; Ling, Merideth, et al., 2012). Quality

assurances were conducted on head motions for all subjects and sub-

jects were excluded from further analysis if they were identified as

motion outliers (three standard deviations [SD] greater than their

cohorts). The rotation and translation parameters from each DTI

acquisition were obtained using FSL' s linear registration tool FLIRT of

each brain volume to the averaged b0 volume (Mukherjee, Chung,

Berman, Hess, & Henry, 2008). Of 184 subjects, none of them were

discarded due to excessive motions. There was also no significant dif-

ference in the measurement of head motion between patients and

controls for both cohorts (p > .5).

Quantitative estimation of signal-to-noise (SNR) value is challeng-

ing for DTI because of the different signal properties of the b0 and

diffusion weighted images. Typically the b0 images are generally used

and reflect the SNR measurements for several possibilities (Mukherjee

et al., 2008). In this study, we used the motion corrected, co-

registered and averaged b0 volume output for each subject

TABLE 1 Demographic and behavioral statistics for patients with mild TBI and healthy controls (Mean ± SD)

Patients characteristic

Original sample Replicate sample

Patients Controls P value Patients Controls P value

Age 35.3 (14.8) 36.5 (13.6)a .77 (−0.14) 37.0 (11.2) 37.3 (8.9)a .95 (−0.03)

Gender 35/25 25/15a .84 (0.08) 20/18 18/12a .36 (−0.24)

Educational level 8.1 (4.1) 10.8 (4.9)a .12 (−0.38) 8.7 (4.2) 10.4 (3.6)a .21 (−0.43)

Neuropsychological testing

TMT-A (at initial) 58.7 (44.5) 28.3 (8.0) <.001 (1.55) 58.7 (26.8) 30.0 (10.8) <.001 (1.41)

TMT-A (at follow-up) 51.2 (39.3) 27.6 (3.5) <.001 (1.48) 59.3 (38.9) 32.0 (12.3) <.001 (0.96)

BDS (at initial) 3.9 (1.6) 5.1 (1.9) <.001 (−1.48) 3.2 (1.8) 5.2 (2.0) <.005 (−0.76)

BDS (at follow-up) 3.7 (1.4) 4.9 (1.3) <.005 (−0.84) 3.9 (1.7) 5.1 (2.7) <.005 (−0.51)

Serum cytokines

IL-6 1.3 (2.4) 0.9 (0.3) <.001 (1.84) 1.2 (1.9) 0.8 (0.5) <.001 (0.96)

CCL2 259.7 (116.7) 212.3 (50.9) <.001 (0.86) 276.6 (140.5) 211.1 (79.1) <.001 (1.61)

IL-1β 2.6 (0.8) 2.2 (0.9) <.001 (0.99) 3.1 (1.0) 2.3 (1.2) <.001(1.19)

Abbreviations: BDS, backward digit span; CCL2, chemokine ligand 2; IL1, interleukin-1; IL6, interleukin-6; TMT A, trail-making test part A.
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(Jenkinson et al., 2002). The mean SNR value (%, ± SD) of b = 0 s/

mm2 images for all regions in vivo measurements was 37.2 ± 5.1% for

original sample (34.3 ± 7.3% for replicated sample). Our data obtained

good SNR (at least 20) to derive relatively reliable FA values according

to (Mukherjee et al., 2008). There were also no significant difference

in the measurement of SNR between patients and controls for these

two cohorts (all for p > .4).

2.6 | Calculation of imaging features

For DTI analysis, fractional anisotropy (FA) were generated using the

Tract-Based Spatial Statistics (TBSS) in the FMRIB Software Library

(Smith et al., 2006). Image analysis using TBSS included the following

steps: (a) nonlinear alignment of all subjects' FA images into a common

space using the FMRIB nonlinear registration tool; (b) affine-

transformation of the aligned images into standard MNI152 1 mm

space; (c) averaging of the aligned FA images to create a 4D mean FA

image; (d) thinning of the mean FA image to create a mean FA “skele-

ton” that represents the centers of all white matter tracts common to

the group; and (e) thresholding of the FA skeleton at fractional anisot-

ropy≥0.2 to suppress areas of extremely low mean FA.

We then captured the lesion-load diffusion abnormalities, sepa-

rately summing clusters of abnormally high and low anisotropy,

regardless of specific location. Specifically, the mean and SD of FA

was first calculated for each voxel from the spatially normalized

(whole-brain fractional anisotropy template) sample of matched

healthy controls (EZ-MAP) (Lipton et al., 2012). The EZ used a boot-

strap procedure to overcome the potential for sample-to-sample vari-

ation of reference healthy control. Control group, with an even

distribution of age, gender and educational attainment that fully cover

the range of the patients, was subdivided into two similar subgroups

of controls each (“reference group” and “normal control subjects”). A

linear regression model was also created to adjust the potential covar-

iate effects of age, gender and educational attainment from the refer-

ence group (Hakulinen et al., 2012). The derived regression

coefficients were used to FA images of another subgroup of control

subjects (“normal control subjects”) and patients with mild TBI, but

restricted to the locations where effects were significant (p < .05).

The abnormal voxel was determined for patients and normal control

groups separately based on the two criteria: (a) each voxel met the

threshold EZ j > 1.96 and is masked with the fiber tract defined by

the Johns Hopkins University WM atlas and within the FA skeleton;

(b) search for contiguous clusters meeting a size threshold (5%,

corrected for multiple comparison) based on the Gaussian Random

Field (GRF) theory (Friston, Worsley, Frackowiak, Mazziotta, &

Evans, 1994). These thresholds are determined by the maximal dis-

crimination between patients and normal controls based on ROC

curve measured by a range of thresholds (Lipton et al., 2012). We

then extracted abnormally high or low diffusion respectively for each

fiber tract. Finally, 26 fiber tracts and 43 clusters (for either high or

low diffusion) met the criteria. Then the mean value of FA for each

cluster was used as the predictor feature from each mild TBI patient.

Besides, we also defined additional thalamo-cortical tracts using

probabilistic tractography as the supplement because the JHU atlas

under-represents subcortical and interhemispheric connections.

Tractography was performed using the thalamus as the seed and the

anterior cingulate gyrus, inferior frontal gyrus, and superior frontal

gyrus as target regions. The projected tracts were then averaged

across an independent cohort of 10 control subjects. We also

repeated the EZ analysis and finally extracted 6 fibers and 10 clusters

(for either high or low diffusion) met the criteria. Then the mean value

of FA for each cluster was used as predictor feature. Overall, for each

participant in this study, there were 53 imaging cluster features.

2.7 | Imaging feature selection

These 53 imaging FA features were then entered into the feature

selection procedures. Feature selection techniques have been widely

adopted in brain analysis studies, in order to produce a small number

of features for efficient classification or regression, and to reduce

overfitting and increase the generalization performance of the model

(Dosenbach et al., 2010; Drysdale et al., 2017). We adopted recursive

feature elimination (RFE) procedure (Fagerholm, Hellyer, Scott,

Leech, & Sharp, 2015), where features contributing little would be

recursively eliminated until the optimal pattern that gave maximal per-

formance was obtained. Every feature was ranked according to the

weight vector (i.e., the importance in the final prediction) by using a

linear kernel. The least important feature (in terms of its weight vec-

tor) was removed and a new SVM trained with the remaining features.

The number of features used for the classifier was determined by the

optimal accuracy of the classification performance.

2.8 | Prognostic modeling and internal validation

For the original sample, support vector machines (SVM) (the LIBSVM

classification library, http://www.csie.ntu.edu.tw/�cjlin/libsvm/) used

the selected imaging features to examine whether acute features can

divide patients into two groups (improved as class label +1 or not as

−1at follow-up) (Figure 1). For the internal validation of model, leave-

one-subject-out cross validation (LOOCV) was used to estimate classi-

fication (SVM) and prediction (SVR) accuracies (Dosenbach

et al., 2010). LOOCV is a commonly implemented cross-validation tool

because it allows using most of the data for training and provides a

conservative estimate of a classifier's or predictor's true accuracy

(Kohavi, 1995). To avoid high degrees of variance produced by

LOOCV, we used repeated subsampling validation to randomly select

n subjects as the test sample and thus set aside whereas all remaining

subjects formed the training sample (Cawley, 2006). The statistical sig-

nificance of all LOOCV results was determined by using permutation

testing by randomly reassigning class labels for 5,000 times (p < .05)

for each n from 1 to 8. Using this approach we estimated the empirical

cumulative distribution of the classifier and predictor accuracies under

the null hypothesis (no discriminability) (Taylor & Noble, 2003).
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Support vector regression (SVR) was used to predict continuous

labels of neuropsychological scores in libSVM classification library

(Vapnik, 2000). The model trained on diffusion metric to identify

patient with IPS deficit was then adopted to predict IPS. We also

tested whether this model can predict working memory profile, con-

sidering mediation effect of IPS observed in healthy and neurological

changes in working memory (Fry & Hale, 2000; Kochunov

et al., 2017).

2.9 | Comparison of the single-domain and
combination models

Using the same modeling and validation method as described above,

we examined predictability in the original dataset based on the serum

cytokine features alone, or the combination of the two-domain

features.

2.10 | External validation of model

External validation is essential to support the general applicability of a

prediction model. We ensured external validity by testing the model

in the replicate sample dataset, which included samples not involved

in the development of the model. Using this prognostic model, all the

determined optimal features and their weight vectors (i.e., the impor-

tance in the final prediction) were adopted in the replicated sample to

divide patients into two groups (improved as class label +1 or not as

−1at follow-up). The performance of the classification, including the

accuracy, sensitivity and specificity, was determined.

F IGURE 1 Summary of methods. (a) Skeletonized diffusion metric for white matter tracts was measured from 98 patients with mild TBI and
70 matched healthy controls. Additional thalamo-cortical tracts were defined by using probabilistic tractography in 10 separate healthy controls.
(b) lesion-load analytical strategy to capture spatially heterogeneous white matter injuries from the skeletonized diffusion metric; (c) Patients
were grouped into those whose information processing speed (IPS) score was improved to the normal level or not at follow-up visit. (d) SVM was
used to examine whether structural DTI measured at acute phase can divide patients into the above two groups. (e) Comparison of predicted
performance with only lesion-load abnormality features or combination with serum cytokine

BAI ET AL. 4435



2.11 | Statistical analysis

The Shapiro–Wilk W test was used to test for normality distribution

of all continuous variables. The independent two-sample t test and

Mann–Whitney test were used to compare group differences based

on data normality, respectively. Chi square analyses were applied to

assess categorical variables. Effect sizes (Cohen's d) were computed

to demonstrate the magnitude of observed differences. 95% confi-

dence intervals (CI) were reported to convey the effects of sampling

variation on the precision of estimated statistics (Chavalarias, Wallach,

Li, & Ioannidis, 2016).

3 | RESULTS

FLAIR and SWI images of all the subjects were reviewed by two

board-certified neuroradiologists to rule out nonhemorrhagic and

micro-hemorrhagic lesions. Fourteen patients and two healthy con-

trols were excluded from the analyses due to gross abnormalities in

the central cerebral white matter, visible on FLAIR or SWI images.

Some subjects had small superficial hemosiderin staining but were not

excluded, as these lesions are not expected to affect the central white

matter tracts that this study aimed to analyze. Finally, a total of

98 patients and 70 HC met the inclusion criteria. Demographics,

behavioral statistics and serum cytokines for original and replicated

cohort of patients and controls were summarized in Table 1. There

were no significant differences between healthy controls from the

original and replication samples on major demographic variables

(p > .1). Patients presented impaired performance on the IPS and

working memory, compared with healthy controls in both original and

replicated patient sample (all for p < .005). Causes for injury included

motor vehicle accident (70% and 57% for original and replicated sam-

ples respectively), assaults (13% and 25% for original and replicated

samples respectively), and fall (17% and 18% for original and repli-

cated samples respectively). None of patients were with visible contu-

sion lesions using conventional neuroimaging techniques and

exhibited cerebral microbleeds on susceptibility weighted imaging.

Serum levels of CCL2, IL-1β, and IL-6 in acute phase were higher in

mTBI patients than in controls after Bonferroni correction (all

for p < .001).

Longitudinal analyses were conducted to examine change in the

IPS as a function of recovery. However, patient's performance on IPS

and working memory did not recovery to normal level at follow-up

compared with healthy control (all for p < .005, Table 1).

3.1 | DTI selected features

Table 2 showed the final selected imaging features. Based on the

lesion-load detection method, we found both low and high aniso-

tropic diffusion clusters for some fibers used as the predictors.

These fibers included the bilateral thalamus-superior frontal gyrus

(SFG) tract, left corticospinal tract, right cingulum (hippocampus),

right inferior longitudinal fasciculus (ILF) and right uncinated fas-

ciculus (UF). Some tracts present only high diffusion clusters, such

as the bilateral thalamus-anterior cingulate tract, left cingulum

(hippocampus), forceps minor, left ILF, right superior longitudinal

fasciculus (SLF), left UF, body and splenium of corpus callosum

(CC). Other tracts primarily exhibited low diffusion clusters,

including bilateral anterior thalamic radiation (ATR), left cingulum

(cingulate gyrus), right inferior fronto-occipital fasciculus (IFOF),

right SLF (temporal part) and genu of CC. Most important

weighted lesion-load clusters were then chosen based on: i) clus-

ters with weight vector ranked as top 25% (6 for total 27 fibers);

ii) presenting significant differences in patients without complete

recovery compared with both patients with complete recovery

and controls after Bonferroni correction for multiple comparisons,

yielding an adjusted level of p < .008 ([0.05�6] for 6 clusters).

The left thalamus-SFG tract with both low and high diffusion

clusters, left cingulum (hippocampus) with high diffusion cluster,

left anterior thalamic radiation, right uncinate fasciculus and genu

of CC with low diffusion cluster became the most important pre-

dictors (Figure 2).

TABLE 2 The final selected white matter fibers (with clusters for
either high or low diffusion) used as predictors and their normalized
contribution weights (w)

White matter fibers

Weights
for high
diffusion

Weights
for low
diffusion

Thalamus-anterior cingulate L 0.75 NS

Thalamus-anterior cingulate R NS 0.77

Thalamus-inferior frontal gyrus R NS 0.22

Thalamus-superior frontal gyrus L 0.82 1

Thalamus-superior frontal gyrus R 0.43 0.76

Anterior thalamic radiation L NS 0.93

Anterior thalamic radiation R NS 0.50

Corticospinal tract L 0.37 0.61

Cingulum (cingulate gyrus) L NS 0.45

Cingulum (hippocampus) L 0.87 NS

Cingulum (hippocampus) R 0.81 0.46

Forceps minor 0.42 NS

Inferior fronto-occipital fasciculus R 0.47 0.40

Inferior longitudinal fasciculus L 0.59 NS

Superior longitudinal fasciculus R 0.60 NS

Uncinate fasciculus L 0.44 NS

Uncinate fasciculus R 0.57 0.86

Superior longitudinal fasciculus

(temporal) R

NS 0.78

Genu of corpus callosum NS 0.83

Body of corpus callosum 0.45 NS

Splenium of corpus callosum 0.65 NS

Abbreviation: NS, not selected.
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3.2 | Predicting long-term IPS deficits and internal
validation

For the original sample, patients with incomplete recovery in IPS

accounted for 33% of the whole cohort at follow-up stage. SVM trained

on the diffusion metrics at acute stage was firstly trained to discriminate

mild TBI patients with and without IPS deficits at follow-up. Multivariate

fiber measures discriminated these subgroups of patients with high accu-

racy (92.1%; 95% CI, 91.6%–92.6%), sensitivity (99%; 95% CI, 99.1%–

99.5%) and specificity (84.9%; 95% CI, 83.9%–85.9%) for classifiers

trained on FA, which was significantly better than chance (p < .001).

3.3 | Predicting neuropsychological functions in
individual patient

We also trained SVM for regression using diffusion FA to predict the

IPS scores at follow-up. Spearman's correlation coefficient between

actual IPS and predicted IPS was r = .74 (95% CI, 0.58 to 0.86;

p < .001) (Figure 3a). The model trained on diffusion metric to identify

IPS deficits was then adopted to predict individual working memory

profile at follow-up. Spearman's correlation coefficient between actual

working memory and predicted working memory was r = .80 (95% CI,

0.67 to 0.92; p < .001) (Figure 3b).

F IGURE 2 Most important
weighted lesion-load cluster in
specific fiber tracts as predictors and
showing significant differences
between PAT1 and PAT2, as well as
PAT2 and healthy controls (p < .05,
Bonferroni correction for multiple
comparisons). These tracts included
the left thalamus-SFG tract with both

low and high diffusion clusters, left
cingulum (hippocampus) with high
diffusion cluster, left anterior
thalamic radiation, right uncinate
fasciculus and genu of CC with low
diffusion cluster. PAT1, patients with
recovery to the normal level for the
IPS; PAT2, patients with incomplete
recovery for the IPS; HC, healthy
controls. IPS, information processing
speed; L, left; R, right
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3.4 | Comparison of the single-domain and
combination models

The single serum cytokine features (assessed at acute phase)

predicted this outcome on its own with 54% accuracy (p > .1). Combi-

nation of the FA metric and serum cytokine features further improved

the prediction performance with high accuracy (96.7%; 95% CI,

96.4%–97.1%), sensitivity (99.5%; 95% CI, 99.3%–99.7%) and speci-

ficity (94.0%; 95% CI, 93.4%–94.7%).

3.5 | Model external validation

The prediction model tested on the replicate sample also produced

better performance using the diffusion features as predictors, with

high accuracy (82.4%; 95% CI, 81.7%–83.1%), sensitivity (90.7%; 95%

CI, 89.9%–91.5%) and specificity (74.1%; 95% CI, 72.9%–75.4%).

Combination of the FA metric and serum cytokine features further

improved the prediction performance with high accuracy (85.6%; 95%

CI, 84.9%–86.3%), sensitivity (86.6%; 95% CI, 85.6%–87.5%) and

specificity (84.6%; 95% CI, 83.6%–85.6%).

4 | DISCUSSION

Persist core cognitive impairment following mild TBI represented the

early brain pathology (i.e., white matter tract injury) and specific

regional fiber tracts involvement. The power of lesion-load diffusion

measures to identify patients developing IPS deficits (92.1% accuracy)

enhanced its possibility in diagnose for early prognostication. Combi-

nation of both diffusion metric and serum cytokine can further

improve this accuracy (96.7%). Importantly, its clinical diagnosing

potential was further verified by an independent replicate sample and

its successful predictions for clinical outcomes (IPS and working mem-

ory). To the best of our knowledge, this is the first study using both

the DTI metric and inflammation levels at the very early acute stage

to identify the core cognitive deficits in chronic mild TBI. These

findings provide targets for early interventions to improve outcome in

risky patients with incomplete cognitive recovery after mild TBI, and

warrant validation.

The study of risky patients with mild TBI is challenging because,

in the absence of positive signs on conventional neuroimaging, one

cannot be certain whether or when a given individual will develop

ongoing cognitive sequelae. Our study identified early regional diffu-

sion values can predict patients with core cognitive deficit (IPS)

6–12 month postinjury. This was consistent with one study that acute

altered FA represents a clear neurobiological link with one-year post-

injury cognitive dysfunction after mild/moderate TBI (Croall

et al., 2014). Discriminative fibers were mainly located in the thalamo-

cortical circuits and commissural pathways projecting or connecting

the frontal regions, including the anterior thalamic radiation, forceps

minor and genu of corpus callosum. The anterior thalamic radiation

carries fibers from the brainstem and connects thalamus, striatum and

anterior cingulate cortex to the anterior frontal region, which is

involved in the IPS and planning complex behaviors (Floresco &

Grace, 2003). The forceps minor is a part of the largest commissural

fiber pathway connecting bilateral anterior frontal regions between

two hemispheres (Fabri, Pierpaoli, Barbaresi, & Polonara, 2014). FA

values in the forceps minor can be used in machine learning to predict

cognitive impairments (Haller et al., 2010). This finding suggested that

fiber pathways connecting the anterior and ventromedial nuclei of

thalamus to the prefrontal cortex have tissue properties that enable

better information flow across brain regions.

Our results presented the bidirectional fractional anisotropy

changes and increased FA in the most of subcortical–cortical tracts

and association fibers during the acute phase of mild TBI. By contrast,

low fractional anisotropy changes were spatially distinct from regions

of bidirectional and high fractional anisotropy. TBI-induced FA

increases have been reported clinically and in experimental blast TBI

(Harris et al., 2016; Johnstone et al., 2015; Mayer, Hanlon, &

Ling, 2015; Sidaros et al., 2008). FA increase was also presented in

the widespread subcortical fibers at 1 week postinjury that persisted

at 4 weeks after rodent controlled cortical impact injury (Harris

et al., 2016). It was suggested as spontaneous axon sprouting occurs

F IGURE 3 Cognitive function
predicted using support vector
regression (SVR). SVR was trained by
using DTI classifier in identify
patients with information processing
speed (IPS) (rated by Trail-making A
test score, TMTA) deficit to predict
the individual IPS profile (a) and
working memory (b) (rated by back

forward digit sequencing, BDS).
There were significant positive
relations between the true
neuropsychological score and the
predicted value for both IPS and
working memory
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and lower brain structures may well attempt to regenerate after injury

(Sidaros et al., 2008). Other study from histopathologic investigation

has indicated that astrogliosis may also cause acute FA increases in

mild TBI (Budde, Janes, Gold, Turtzo, & Frank, 2011). While, the genu

of the CC exhibited low fractional anisotropy changes and consistent

with previous study (Ling, Pena, et al., 2012). The functional signifi-

cance of these changes remain unclear, but these findings may

indicate that white matter impairments in mild TBI was regional

tract–specific.

Our current study also indicated that serum cytokine levels are

increased after mild TBI and persist from acute to chronic phase (Sun

et al., 2019). Cytokine levels in acute phase can predict the patients'

IPS at 3 month postinjury. In the present study, combination of the

DTI metric and serum cytokine features can further improve the iden-

tification accuracy of patients with cognitive IPS deficits at

6–12 month follow-up. Systemic inflammation can trigger neu-

roinflammation through circumventricular organs, vagal afferents, or

the brain endothelium (Miller, Maletic, & Raison, 2009), undermining

the microstructural integrity of white matter (Arfanakis et al., 2013;

Briones & Woods, 2014), disrupting microglia function in synaptic

plasticity and reducing cognitive functioning.63 These results, in con-

junction with other studies, indicated that enhancing the white matter

tract integrity and anti-inflammation treatment showed the potential

in the improvement of cognitive functioning following mild TBI.

Several limitations of this study have to be mentioned, including

the restricted generalizability of results. First, the study was primarily

specific to the recruited cohort. Though cross-validation procedures

enhance the generalization of predicted model, further study is

needed to adequate sampling not only of a population as a whole but

also of the diversity of individuals. Second, future work with larger

patient groups could incorporate this type of technique, and should

explicitly model a large number of clinical variables that are known

to be important in explaining outcome, such as MR spectroscopic,

MRI volumetric, preinjury factors, neurobehavioral and genetic

markers (Tremblay, Iturria-Medina, Mateos-Perez, Evans, & De

Beaumont, 2017).

5 | CONCLUSION

For clinical practice, this early identification could be done at dis-

charge from the emergency department, measuring the white matter

integrity and blood serum cytokine. With this approach, the selection

of those patients who have to be seen at the outpatient clinic can be

narrowed down. Several studies investigating outcomes after mild TBI

found that indices of injury severity (CT-abnormalities, Glasgow Coma

Score, age and education levels) found to be reliable predictors for

incomplete recovery (Cnossen et al., 2017; Greenberg et al., 2017).

However, our study further proved that early diffusion measures

within specific tracts and inflammation levels can be effective in

predicting subtypes of patients with incomplete recovery in cognitive

domain. This model was also verified by an independent replicate

sample which further enhanced its clinical potentials. Future validation

study should be worthwhile to validate by large samples to investigate

the specific cutoffs from DTI metrics and serum cytokine.
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