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Regulation of neuronal bioenergetics as a therapeutic 
strategy in neurodegenerative diseases
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Abstract  
Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s 
disease, and amyotrophic lateral sclerosis are a heterogeneous group of debilitating 
disorders with multifactorial etiologies and pathogeneses that manifest distinct molecular 
mechanisms and clinical manifestations with abnormal protein dynamics and impaired 
bioenergetics. Mitochondrial dysfunction is emerging as an important feature in the 
etiopathogenesis of these age-related neurodegenerative diseases. The prevalence and 
incidence of these diseases is on the rise with the increasing global population and average 
lifespan. Although many therapeutic approaches have been tested, there are currently no 
effective treatment routes for the prevention or cure of these diseases. We present the 
current status of our knowledge and understanding of the involvement of mitochondrial 
dysfunction in these diseases and highlight recent advances in novel therapeutic strategies 
targeting neuronal bioenergetics as potential approach for treating these diseases.
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Introduction 
Neurodegenerative diseases (NDDs) such as Alzheimer’s 
disease (AD), Parkinson’s disease (PD), and Huntington’s 
disease (HD) and amyotrophic lateral sclerosis (ALS) are 
a heterogeneous group of progressively and irreversibly 
debilitating disorders with multifactorial etiologies and 
pathogeneses that manifest distinct molecular and clinical 
characteristics with impaired bioenergetics and abnormal 
protein dynamics (Yan et al., 2020). Mitochondrial dysfunction 
has emerged as an important feature in the etiopathogenesis 
of these age-related neurodegenerative diseases (Wang et al., 
2019b).

As aging is the primary risk factor for most neurodegenerative 
disease (Mattson and Arumugam, 2018; Hou et al., 2019), the 
prevalence and incidence of these diseases continues to rise 
with the increasing global population and average lifespan 
(Erkkinen et al., 2018). Currently, no neurodegenerative 
disease is curable, and the treatments available only manage 
the symptoms or at best slow the progression of disease. With 
the global aging population expected to double by 2050 to 2 
billion people (World Health Organisation, 2018), there is an 
urgent need  for effective therapeutic approaches that are 
amenable of improving clinical course and outcome of these 
conditions to a significant extent.

Mitochondria are the energy powerhouses of the cell and 
generate ~90% of energy in the form of ATP by coupling the 
flux of electrons throughout the mitochondrial respiratory 
complexes I–IV with oxidative phosphorylation (OXPHOS). 

The brain, at less than 3% of whole body weight (Attwell 
and Laughlin, 2001), utilizes approximately 25% of the total 

glucose required by the body (Rossi et al., 2001). This is 
mainly because neurons depend on OXPHOS to support their 
functions, and more than 50% of this energy consumption is 
devoted to maintaining synaptic homeostasis and plasticity. 
Dysfunctional mitochondrial bioenergetics therefore lead 
to altered neurometabolic coupling, neural processing and 
circuitry, and functional connectivity in mature neurons 
(Uittenbogaard and Chiaramello, 2014). This very high 
energy demand makes neurons especially susceptible to 
bioenergetic deficits that may arise from mitochondrial 
dysfunction. In addition to energy production, mitochondria 
also tightly regulate calcium homeostasis by modulating 
calcium uptake in an energy-dependent and pulsatile manner 
via the mitochondrial calcium uniporter and by providing 
ATP to stimulate the plasma membrane calcium- ATPase, 
thereby influencing synaptic transmission, cellular survival 
and metabolism (Zenisek and Matthews, 2000; De Stefani et 
al., 2011; Rizzuto et al., 2012). Under pathological conditions, 
mitochondrial calcium overload compromises the integrity 
of the mitochondrial inner membrane, thereby triggering 
mitochondrial permeability transition (MPT), a process when 
sustained results in cessation of ATP production, permeability 
of the outer mitochondrial membrane, cytochrome c 
leakage and subsequent neuronal cell death (Dong et al., 
2006; Pivovarova and Andrews, 2010). Additionally, the 
release of mitochondrial DNA (mtDNA), and peptides from 
the mitochondrial matrix can activate an immune response 
that promotes a pro-inflammatory cascade (Chandel, 
2015). The maintenance of an adequate and functional 
mitochondrial population during the lifetime of neurons 
is critical and involves a balance between mitochondrial 
biogenesis (Jornayvaz and Shulman, 2010; Golpich et al., 
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2017) , mitochondrial dynamics i.e. fusion and fission  (Haun 
et al., 2013; Morciano et al., 2016), and mitophagy (de Castro 
et al., 2010; Ding and Yin, 2012; Stetler et al., 2013). These 
processes are often dysregulated in NDDs (Figure 1).

AD, the most common NDD, is marked by progressive 
loss of memory, characterized by the increased presence 
of extraneuronal amyloid plaques derived from the 
proteolytic processing of the amyloid precursor protein 
(APP) and intraneuronal neurofibrillary tangles made from 
hyperphosphorylated tau protein in the brain. Mitochondrial 
dysfunction is a prominent early feature of AD with lower 
energy metabolism being one of the primary abnormalities 
in this disease (Sheng et al., 2012). Mitochondrial OXPHOS 
impairment is observed in AD brains (Hauptmann et al., 
2009) with the most consistent defect being a deficiency in 
cytochrome c oxidase (COX, complex IV) (Kish et al., 1992; 
Cardoso et al., 2004). Dysfunction of COX increases reactive 
oxygen species (ROS) production, reduces energy stores, and 
disturbs energy metabolism (Mutisya et al., 1994).

The second most common NDD is PD, a progressive 
neurological movement disorder linked to uncertain etiology 
having possible effects of genetic and environmental 
factors (Tomiyama et al., 2008; Korecka et al., 2013). While 
the cellular mechanisms that result in cell death in the 
nigrostriatal system in PD are still unclear (Korecka et al., 
2013), mitochondrial dysfunction, oxidative stress, chronic 
inflammation, aberrant protein folding, and abnormal protein 
aggregation are accepted as the main cause (Greenamyre 
and Hastings, 2004; Ortega-Arellano et al., 2011; Golpich et 
al., 2015). Complex I deficit is the most common underlying 
mitochondrial dysfunction observed in PD (Keeney et al., 
2006; Ng et al., 2012; Golpich et al., 2015). 

HD is a genetic disorder caused by trinucleotide repeat 
(CAG) expansions in the huntingtin gene that causes early 
degeneration of medium spiny neurons in the striatum, 
resulting in continuous involuntary motor movements. 
Striatal metabolism is decreased well before atrophy, and 
the progression of the disease is more strongly correlated 
with glucose hypometabolism than with the number of 
CAG repeats (Antonini et al., 1996; Ciarmiello et al., 2006; 
Civitarese et al., 2010). Mitochondrial dysfunction is strongly 
associated with the pathogenesis of HD (Quintanilla et al., 
2008; Chaturvedi et al., 2009; Chiang et al., 2011) and ATP 
levels and electron transport chain (ETC) activity are reduced 
in patients with HD (Cho et al., 2010). In late stage patients 
with HD, decreased activity of several OXPHOS components, 
including mitochondrial complexes II, III, and IV is observed in 
striatal neurons (Reddy et al., 2009).

ALS is a progressive adult-onset NDD that is accompanied by 
ongoing loss of motor neurons of central nervous system, 
causing muscle atrophy, respiratory failure and progressive 
weakness. ALS is characterized by accumulation of mutant 
proteins (like SOD1, FUS, TDP43, and Sqstm1/p62) (Vicencio 
et al., 2020). The etiology of ALS is still not fully understood 
but mitochondrial dysfunction has been identified as an 
initial phenomenon (Cozzolino and Carri, 2012). The loss of 
mitochondrial function precedes onset of diseases, which 
has been indicated in in vivo studies of ALS disease model 
by occurrence of defects in OXPHOS, calcium buffering, and 
mitochondrial transport (Orsini et al., 2015). ALS patients are 
hypercatabolic and have increased energy expenditure at rest 
(Funalot et al., 2009). ALS patients are also glucose intolerant 
(Pradat et al., 2010) and insulin resistant (Reyes et al., 1984) 
and the oxidative stress that contributes to the pathogenic 
pathway in ALS derives from defective OXPHOS (Lee, 2009).

At the subcellular level mechanistic similarities among these 
diseases include: mutations in mtDNA, impaired bioenergetics, 
increased ROS production, and abnormal protein dynamics, 
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including the mitochondrial accumulation of disease specific 
proteins, impaired axonal transport, and programmed cell 
death (Armstrong, 2007; Camandola and Mattson, 2017).  
Bioenergetic deficits strongly influence the initiation and 
progression of disease. [18F]-fluorodeoxyglucose positron 
emission tomography imaging studies document glucose 
hypometabolism in brain regions affected in patients with AD, 
PD, ALS, and HD  (Borghammer et al., 2010; Camandola and 
Mattson, 2017).  

Given that bioenergetics deficits are associated with 
mitochondrial dysfunction including ETC deficiencies (Golpich 
et al., 2017): mitochondrial complex I, III, and COX deficiency 
in AD  (Yamada et al., 2014), mitochondrial complex I and 
IV deficiency in PD (Hoglinger et al., 2003), mitochondrial 
complex II, III, and IV deficiency in HD (Fukui H and Moraes CT, 
2007), and mitochondrial complex I, II, III, and IV deficiency 
in ALS (Menzies et al., 2002), developing novel therapeutic 
strategies targeting neuronal bioenergetics is a viable 
approach for treating these diseases.

Database Search Strategy
We used keyword search on both PubMed and Google Scholar 
for articles with keywords mitochondrial dysfunction in 
neurodegenerative diseases from 1999 to present.

Mitochondrial Genome
Unlike the nuclear genome which is only present in two 
copies in a post-mitotic cell, mtDNA is present in 10 s–1000 s  
of copies in each cell and undergoes lifelong replication in 
post-mitotic cells including neurons (Wei et al., 2017). The 
overall cellular content of mtDNA generally correlates with 
the underlying energy demand of the cell. The human mtDNA 
is circular and contains 16,569 base pairs and 37 genes. Of 
these genes, 22 encode transfer RNAs, two encode ribosomal 
RNAs (rRNAs; 12S and 16S), and the remaining 13 encode 
polypeptides. The 13 polypeptides encoded by mtDNA 
belong to the subunits of OXPHOS enzyme complexes I–V. 
Unlike nuclear DNA in which 98–99% is non-coding (Venter 
et al., 2001), most mtDNA genes are contiguous, generally 
separated by one or two non-coding base pairs, resulting 
in approximately 93% of mtDNA bases encoding proteins. 
Since germ cells have few mitochondria and are selectively 
degraded, the hereditary mode of most mitochondria is 
maternal inheritance, although biparental transmission of 
mtDNA in an autosomal dominant-like pattern has recently 
been demonstrated (Luo et al., 2018). 

Figure 1 ｜ Mitochondrial dysfunction is implicated in sporadic age-related 
NDDs.  
Of the multiple possible causes, mitochondrial impairments ranging 
from mitochondrial DNA (mtDNA) mutations, oxidative stress, altered 
gene expression, impaired mitobiogenesis, altered protein turnover and 
changed organelle dynamics (fission and fusion) are implicated. NDDs: 
Neurodegenerative diseases.
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MtDNA Mutations
mtDNA do not have histone protection and are more likely 
to be exposed to ROS. Further, most of their entire coding 
regions lack repair mechanisms. As a result, mtDNA are 
highly susceptible to damage and mutations, with a 10- to 
100-fold greater mutation rate than nuclear DNA (Stewart 
and Chinnery, 2015). The accumulation of mtDNA mutations 
impairs the electron transport chain (ETC), triggers oxidative 
damage, and generates ROS, resulting in bioenergetic deficits, 
dysregulated intracellular calcium levels (from calcium 
pump inactivation), activated  and damaged membrane 
phospholipids and ultimately neurodegeneration (Reddy, 
2009; Cha et al., 2015).

Different versions of the mitochondrial genome can coexist 
in each cell, where unlike the maternally inherited germ line 
variants (which are ‘homoplasmic’), the somatic mutations 
are usually present alongside the original wild-type molecules 
(heteroplasmy). Since each cell contains thousands of copies 
of mtDNA, the proportion of mutants in any one cell changes 
over time (Naue et al., 2015; Duan et al., 2018). Having several 
copies of mtDNA allows each mitochondrion to function 
normally, even when some copies are mutated, allowing 
cells to carry high loads of mutant mitochondrial DNA before 
their function is affected and disease symptoms emerge only 
when the mutant load exceeds a specific threshold (Stewart 
and Larsson, 2014). This threshold is lower for certain cell 
types, such as postmitotic neurons, which depend highly on 
mitochondria due to their high-energy metabolism (Carelli and 
Chan, 2014) and lack the capacity to proliferate, as a means 
of mitigating the damage that accumulates. Indeed, mtDNA 
deletions accumulate in the aging brain, reaching higher levels 
in regions vulnerable to neurodegeneration (Bender et al., 2006; 
Ross et al., 2013). Genetic evidence that mtDNA mutations can 
institute AD, PD HD and ALS like changes comes from cybrid 
studies (Swerdlow et al., 1997; Flint Beal, 2000; Trimmer and 
Bennett, 2009; Ferreira et al., 2010). Extensive analysis of such 
cybrid cell lines has revealed that their bioenergetic function 
declines with increasing time in cell culture (Trimmer et al., 
2004). Indeed both inherited and acquired mtDNA mutations 
contribute to neural aging and NDDs (Cha et al., 2015; Keogh 
and Chinnery, 2015) and abnormal amounts of mtDNA have 
been found in the cerebrospinal fluid and brains of patients 
with neurodegenerative diseases (Hauptmann et al., 2009; 
Sheng et al., 2012).

Mitochondrial Oxidative Stress
Oxidative stress can occur when production of ROS, as well as 
reactive nitrogen species (RNS), outpaces the neuron’s ability 
to inactivate ROS/RNS and to repair damage (Jodeiri Farshbaf 
et al., 2016).

Mitochondria convert between 0.4–4% of the total consumed 
oxygen into superoxide radicals as a by-product of OXPHOS 
via electron leakage from the respiratory chain (Pieczenik and 
Neustadt, 2007). ROS comprise superoxide radicals, H2O2, and 
hydroxyl radicals (Naudi et al., 2012) while RNS include the 
nitric oxide radical (NO•), the nitrogen dioxide radical (•NO2), 
nitrite (NO2

–) and peroxynitrite (ONOO–). Mitochondrial 
thioredoxin reductase/thioredoxin/peroxiredoxin-3,5 system, 
glutathione peroxidase, and glutathione anti-oxidant system  
effectively scavenge these ROS (Drose and Brandt, 2012). ROS 
stimulate mild uncoupling of mitochondria, and the resulting 
increase in proton conductance can have a negative feedback 
effect on ROS production (Naudi et al., 2012). Furthermore, 
the MPT pore (MPTP) is opened to reduce the electrochemical 
gradient and accelerate oxygen consumption, which 
decreases ROS production. Cytochrome c is also a powerful 
ROS scavenger. The presence of low ROS concentrations 
is physiologically normal, and ROS function as important 
intracellular second messengers (Murphy et al., 2011). 

However, excessive ROS generation is injurious to mtDNA 
and potentially leads to impaired ETC functions, reduced ATP 
synthesis, mitochondrial dysfunction, cell injury, and even 
apoptosis. ROS play key roles in the initiation and modulation 
of cell apoptosis (McCarroll et al., 2004). Similar to ROS, RNS 
are highly toxic (Bergendi, 1999). Microglia also play a role 
in generating RNS as nitric oxide synthases, inducible nitric 
oxide synthase and NADPH oxidase 2 (NOX2), and NADPH 
oxidase (NOX) are induced in these glial cells (Saha and Pahan, 
2006). NOX2 activation can lead to a respiratory burst of 
superoxide flooding the mitochondria further contributing 
to neurodegeneration. NO• has been shown to play a role in 
neurodegenerative diseases by acting as a neurotoxin when 
excessively produced (Schulz et al., 1995). 

Oxidative imbalance and resultant neuronal damage play a 
critical role in the initiation and progression of AD (Wang et al., 
2014). The excessive accumulation of ROS in AD may induce 
mitochondrial dysfunction although the exact mechanisms 
underlying the disruption of redox balance still remain elusive 
(Zhao and Zhao, 2013). Aβ-induced mitochondrial dysfunction 
has been suggested to inhibit the efficient production of ATP 
and increase the generation of ROS in AD (Castellani et al., 
2002; Zhao and Zhao, 2013). The activity of Complex I of the 
respiratory chain in SNc of patients with PD is reduced and 
may contribute to the generation of excessive ROS which in 
turn can induce apoptosis (Schapira, 2008; Blesa et al., 2015; 
Franco-Iborra et al., 2016). This mitochondrial Complex I 
deficiency is also present in the frontal cortex, fibroblasts, and 
blood platelets of PD patients (Blesa et al., 2015). Oxidative 
stress plays a crucial role in the neurodegenerative process of 
HD (Stack et al., 2008; Tasset et al., 2009). Indeed, susceptible 
neurons in the HD brain may not be able to handle well an 
increase in ROS/RNS production. Studies in transgenic mouse 
models of HD have shown an altered pattern of expression 
and activity of the enzyme nitric oxide synthase (NOS) (Deckel, 
2001, 2002), as well as of the antioxidants SOD (Santamaria et 
al., 2001) and ascorbate (Rebec et al., 2002) in R6/1 and R6/2 
HD transgenic mice (which express exon 1 of the human HD 
gene with 115 and 145 CAG repeats respectively (Mangiarini 
et al., 1996)). Furthermore, ROS production is also increased in 
the striatum of R6/1 mice (Perez-Severiano et al., 2004), while 
an increase in the levels of lipid peroxidation has recently 
been detected in several transgenic and knock-in HD mouse 
models (Lee et al., 2011). Free radical damage and abnormal 
free radical metabolism is evident in sporadic ALS and familial 
ALS patients (Pollari et al., 2014). The aberrant activity of 
mSOD1 leads to oxidative damage (Wiedau-Pazos et al., 
1996; Crow et al., 1997) and other ALS-linked proteins, such 
as mutant TDP-43, promote oxidative stress in a motoneuron 
cell line (Duan et al., 2010). Excitotoxicity and oxidative stress 
caused by astrocytes arises from aberrant glutamate receptor 
function which leads to mis-regulated glutamate homeostasis 
(Rothstein et al., 1992). 

Mitochondrial Dynamics
The movement, fusion and fission, remodeling of cristae, 
biogenesis and mitophagy constitute mitochondrial dynamics. 
These quality control processes are stringently regulated and 
adjusted to modify the overall mitochondrial morphology 
in response to changing energy demands and cellular stress 
(Eisner et al., 2018; Tilokani et al., 2018). Alteration in 
trafficking and fusion-fission dynamics in AD, PD, HD, and ALS 
has been shown (Kodavati et al., 2020).

Mitochondrial Fusion and Fission
Imbalances between mitochondrial fission and fusion have 
been proposed to cause neurodegenerative diseases; acute 
readjustment of such imbalances can have beneficial effects 
on mitochondrial structure and function and positively 
influence cell survival in various disease models (Chen 
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and Chan, 2009; Itoh et al., 2013; Sebastián et al., 2017). 
Mitochondrial fusion is conserved in all eukaryotic cells 
and is essential for life (Chen et al., 2003). Fusion enables 
the transfer of mitochondrial components from viable 
mitochondria into those that are functioning at a sub-
optimal level thereby mitigating damage and ensuring the 
maintenance of an efficient homogeneous mitochondrial 
population (Youle and van der Bliek, 2012). When cells are 
stressed, stress-induced mitochondrial hyperfusion, prevents 
mitophagy, maintains OXPHOS and preserves mitochondrial 
integrity (Wai and Langer, 2016). During starvation, stress-
induced mitochondrial hyperfusion maintains ATP levels 
and protects cells from apoptosis (Gomes et al., 2011). 
Conversely, fusion-deficient cells have reduced growth, wide-
spread differences in ∆ψm and reduced respiration (Chen 
et al., 2005). Thus, fusion of the mitochondrial network is 
cytoprotective, especially during stress (Neuspiel et al., 2005; 
Gomes et al., 2011), while the loss of fusion predisposes 
cells to apoptosis. Fusion occurs only between two partner 
mitochondria that have sufficient ∆ψm, whereas those 
that are depolarised are fusion-deficient (Twig et al., 2008) 
ensuring that only biochemically functional mitochondria can 
fuse back with the network, while dysfunctional mitochondria 
are isolated and degraded. Mitochondrial outer membrane  
fusion is mediated by the mitofusin proteins Mfn1 and 
Mfn2, which form homo and heterodimers between the two 
opposing membranes  (Koshiba et al., 2004). Mitochondrial 
inner membrane fusion is regulated by optic atrophy protein 1 
(OPA1). OPA1-depletion induces mitochondrial fragmentation 
(Cipolat et al., 2004; Wu et al., 2019). OPA1 also has roles in 
shaping the mitochondrial cristae junctions, which house the 
majority of ATP synthase, complex III and cytochrome c thus 
playing an important role in regulating OXPHOS and apoptosis 
(Olichon et al., 2003; Griparic et al., 2004; Cogliati et al., 
2016).

T h e  m a j o r  m i t o c h o n d r i a l  f i s s i o n  p r o t e i n  i s  t h e 
mechanochemical GTPase dynamin-related protein 1 (Drp1), 
which constantly cycles between the cytoplasm and the 
mitochondrial outer membrane (Wasiak et al., 2007). Fission 
is required to maintain mitochondrial function and integrity 
and in postmitotic cells such as neurons it plays an important 
role in transport and distribution of mitochondria to distal 
neurites (Li et al., 2004; Verstreken et al., 2005; Lewis et al., 
2018). It is also crucial for quality control as elimination of 
damaged mitochondria by mitophagy via the PINK1/parkin 
pathway (Narendra et al., 2008, 2010; Ashrafi et al., 2014; 
Pickrell and Youle, 2015) involves mitochondrial fission (Tanaka 
et al., 2010; Kageyama et al., 2014).

The balance between mitochondrial fusion and fission is 
impaired in AD neurons (Zhu et al., 2018). The balance of 
mitochondrial fusion and fission is disrupted in several models 
of PD (Santos and Cardoso, 2012). In PD cytoplasmic hybrid 
(cybrid) cells there is a significantly increased proportion of 
mitochondria with swollen vacuoles, pale matrices and few 
remaining cristae (Castellani et al., 2002). In HD brain there is 
a significant increase in Drp1 and decrease in  Mfn1 (Reddy, 
2014). This imbalance between the mitochondrial fusion and 
fission results in alterations of mitochondrial morphogenesis 
and negatively impacts important cellular mechanisms thus 
exacerbating neuronal death (Kim et al., 2010). Further, 
mutant HTT protein triggers mitochondrial fission prior to the 
emergence of neurological deficits and mutant HTT protein 
aggregates (Shirendeb et al., 2011, 2012; Reddy, 2014). ALS 
patients and animal models have altered mitochondrial 
dynamics with excessive fragmentation of mitochondria. 
Smaller mitochondria are observed in different models 
expressing ALS mutant SOD1 (Khalil and Liévens, 2017) and 
linked to a misexpression of mitochondrial dynamics genes. 
Mutant SOD1 mouse model spinal cord and skeletal muscles 
reveal downregulated Mfns (Liu et al., 2013; Russell et al., 

2013) as well as OPA1, while levels of phosphorylated DRP1 
and Fis1 are elevated (Liu et al., 2013). Inactivating DRP1 
restores normal morphology of mitochondria and prevents 
death of mutant SOD1-expressing neurons (Song et al., 2013).

Mitochondrial Biogenesis
Increased mitochondrial biogenesis is a physiological response 
to stress conditions (e.g., cold, exercise, nutritional status), 
which is activated to meet the energetic requirements of 
tissues (Viscomi et al., 2015). 

Mitochondrial biogenesis is essential for maintaining an 
adequate functional neuronal mitochondrial mass. It is a highly 
regulated process that requires coordination and crosstalk 
between the nuclear and mitochondrial genomes (Ryan and 
Hoogenraad, 2007) and occurs on a regular basis in healthy 
cells where mitochondria constantly divide and fuse with 
each other. Replication is regulated by the mtDNA polymerase 
γ (POLG) consisting of the catalytic subunit encoded by the 
POLG gene and auxiliary dimeric subunit encoded by the 
POLG2 gene (Graziewicz et al., 2006 ). mtDNA is transcribed 
by the mitochondrial RNA polymerase POLRMT (Tiranti et 
al., 1997). The key enhancer protein is TFAM (transcription 
factor A, mitochondrial), which ensures mtDNA unwinding 
and flexing required for the POLRMT binding to the mtDNA 
promoters. TFB2M (transcription factor B2, mitochondrial) 
acts as a specific dissociation factor that provides interaction 
between POLRMT and TFAM. Both TFB1M and TFB2M bind 
rRNA dimethyltransferases and, therefore, can function as 
rRNA modifiers (Rebelo et al., 2011). The major role of TFB1M 
is rRNA methylation and not its transcription factor function 
(Metodiev et al., 2009). Nuclear respiratory factors NRF1 and 
NRF2 regulate expression of the ETC subunits encoded by the 
nuclear genome (Evans and Scarpulla, 1990) and bind to the 
promoters of genes involved in mtDNA transcription. NRF1 
binds to the specific promoter sites and regulates expression 
of TFAM (Virbasius and Scarpulla, 1994), TFB1M, and TFB2M 
(Gleyzer et al., 2005). Besides, nuclear respiratory factors, in 
particular NRF2, regulate expression of other mitochondrial 
enzymes, e.g., TOMM20 (translocase outer mitochondrial 
membrane), a key enzyme in the mitochondrial membrane 
transport (Blesa and Hernández-Yago, 2006). In turn, NRF1 
and NRF2 are regulated by transcription coactivators, 
including PGC-1α (Scarpulla, 2008). PGC-1α is regulated on 
both the transcription and post-translation levels (Fernandez-
Marcos and Auwerx, 2011). p38 MAPK is another factor that 
regulates the expression of PGC-1α by activating transcription 
factor 2 (Akimoto et al., 2005). 

The impaired funct ion of  the master  regulator  for 
mitochondrial biogenesis PGC-1α has been recognized as 
a major contributor to the neuropathogenesis of several 
NDDs including AD, PD and HD (Tsunemi and La Spada, 
2012; Uittenbogaard and Chiaramello, 2014). Reduced 
mitochondrial number and impaired mitochondrial gene 
expression contribute to mitochondrial dysfunction associated 
with AD (Zhu et al., 2013). Morphometric analyses performed 
on hippocampal neurons of autoptic brains from patients with 
AD have revealed a significant decrease in intact mitochondria 
(Hirai et al., 2001). The decreased levels of PGC-1α imply 
abnormal mitochondrial biogenesis as a key event for 
reduction of mitochondrial mass and bioenergetic functions 
in AD brain (Qin et al., 2009). The network of transcription 
factors regulating mitochondrial biogenesis, including NRF-1, 
NRF-2 and TFAM, are also altered suggesting a deficiency in 
the process of mitochondrial biogenesis (Sheng et al., 2012).

Abnormal PGC-1α-mediated mitochondrial biogenesis also 
interfaces with PD (Zheng et al., 2010; Shin et al., 2011). 
A meta-analysis of independent microarray analyses using 
microdissected human DA neurons from PD patients has 
documented a down-regulation of PGC-1α-regulated target 
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genes, congruent with the concept of altered PGC-1α 
expression being the cause rather than the consequence of 
PD pathogenesis (Zheng et al., 2010).

In HD the severity of symptoms have been linked to sequence 
variants of PGC-1α (Chaturvedi et al., 2009; Weydt et al., 
2009). PGC-1α dysfunction extends beyond the neuronal 
lineage to oligodendrocytes where PGC-1α regulates the 
expression of several genes required for proper myelination, 
such as myelin basic protein, in keeping with the observed 
deficient myelination in HD transgenic mice (Xiang et al., 
2011). Finally, PGC-1α and its downstream effector NRF1 are 
downregulated in spinal cord and muscle tissues of patients 
and mutant SOD1 mice (Thau et al., 2012; Russell et al., 2013). 
Further, single-nucleotide polymorphisms reported in the 
brain-specific promoter region of PGC-1α modify age of onset 
and survival of ALS patients and mutant SOD1 mice (Eschbach 
et al., 2013).

Mitochondria Stress Response Signaling 
Mitochondria produce most of the cellular ROS and the stress 
signaling that induces cellular senescence and apoptosis 
(Hamanaka and Chandel, 2010; Sena and Chandel, 2012). 
A major consequence of increased ROS and altered cellular 
redox state is the oxidation of thiol groups in cysteine residues 
in relevant proteins (Hamanaka and Chandel, 2010). FoxO 
transcription factors are activated in response to elevated 
ROS levels and induce anti-oxidant responses (increased 
expression of catalase and SOD2), cell cycle arrest and/or cell 
death (Kops et al., 2002; Fu and Tindall, 2008). Mitochondrial 
Akt, glycogen synthase kinase 3β (GSK3β), PKA, Abl, PKC, 
Src and Atm modulate the cellular stress response (Bera et 
al., 1995; Kumar et al., 2001; Majumder et al., 2001; Alto et 
al., 2002; Das et al., 2008; Robey and Hay, 2009; Mihaylova 
and Shaw, 2011). Akt phosphorylates and inactivates GSK-
3β, which can localize to the mitochondria. Mitochondrial 
GSK-3β phosphorylates myeloid leukemia cell differentiation 
protein (MCL-1) and voltage-dependent anion channel (VDAC) 
(Juhaszova et al., 2004; Maurer et al., 2006) leading to MCL-1 
degradation and induction of  apoptosis (Maurer et al., 2006). 
The phosphorylation of VDAC by GSK-3β results in increased 
mitochondrial membrane permeability which also leads to 
apoptosis (Juhaszova et al., 2004; Martel et al., 2013). GSK-
3β can also phosphorylate and promote the proteasomal 
degradation of c-Myc, cyclin D1, and β-catenin (Rubinfeld et 
al., 1996; Diehl et al., 1998). Hypoxia and other physiological 
stresses can induce the translocation of PKA to mitochondria 
(Carlucci et al., 2008; Kim et al., 2011) causing it to bind 
through Rab32 and other A-kinase AKAPs (163) resulting in 
the phosphorylation of VDAC (164), Drp1 (Kim et al., 2011), 
and other mitochondrial proteins. 

Hypoxia, by inducing SIAH2, a mitochondrial ubiquitin 
ligase, destabilizes AKAP121 and limits oxidative capacity 
under conditions of low oxygen. Interestingly, AKAP121 also 
appears to promote mitochondrial localization of Src-tyrosine 
kinase (Livigni et al., 2006) where Src appears to regulate 
COX activity and respiratory activity (Miyazaki et al., 2003; 
Livigni et al., 2006), and other mitochondrial substrates for 
Src family kinases are likely (Tibaldi et al., 2008). Increased 
ROS induces protein kinase C-delta (PKCδ) associated with 
the mitochondria and this in turn recruits other signaling 
molecules, including the Abl tyrosine kinase that is associated 
with loss of membrane potential and non-apoptotic cell 
death (Kumar et al., 2001). Impaired oxidative metabolism 
and decreased ATP levels in neurons activate AMPK (Maurer 
et al., 2006). AMPK can also be activated by drugs such 
as metformin that inhibits complex I or resveratrol that 
inhibits the F0F1 ATPase (Mihaylova and Shaw, 2011). AMPK 
modulates mitochondrial metabolism and targets Acetyl CoA 
carboxylase-2 to the outer mitochondrial membrane (OMM) 
where it regulates lipid metabolism by controlling production 

of malonyl CoA (Mihaylova and Shaw, 2011). AMPK therefore 
plays a key role in mitochondrial homeostasis by ensuring 
that only functionally viable mitochondria are retained. Upon 
its activation it induces not only mitochondrial biogenesis 
through activation of PGC-1α (Zong et al., 2002; Jäger et al., 
2007) but also initiates mitophagy through ULK1 activation 
and mTOR inhibition (Egan et al., 2011; Kim et al., 2011). 

ATM kinase inhibition causes central nervous system 
neurodegeneration in animal models (Petersen et al., 2012). 
ATM kinase, is partly located at the mitochondria and is 
activated by mitochondrial uncoupling (Valentin-Vega et al., 
2012). While the mitochondrial substrates of ATM are not 
known, loss of ATM in genetically engineered mouse models 
leads to mitochondrial dysfunction. ATM signaling is reduced 
in the neurons in vulnerable regions of the AD brain (Shen 
et al., 2016). A recent study of a mouse model of familial AD 
showed that the mutant amyloid precursor protein (APP) 
transgene caused aberrant persistence of gH2AX in the brain 
(Gleyzer et al., 2005). ATM is also involved in the pathogenesis 
of PD because ATM gene knockout (ATM KO) mice exhibit 
severe loss of tyrosine hydroxylase-positive DA nigro-striatal 
neurons, and midbrain DA neurons progressively degenerate 
with age (Eilam et al., 2003). PARK2 and ATM mutations 
sometimes occur synchronically at the same amino-acid 
residue, causing neuronal degeneration (Veeriah et al., 2010). 
ATM deficient neurons re-enter the cell cycle and die (Yang 
and Herrup, 2005; Rimkus et al., 2008), suggesting that ATM 
may protect neuron by stopping cells re-entering the cell cycle 
and lessening DNA damage. ATM impairment in glial cells 
may also trigger innate immune responses leading to cause 
neurodegeneration (Petersen et al., 2012). The histology of 
microglial cell in ATM KO mice is abnormal, and astrocytes 
from ATM KO mice show significant expressions of oxidative 
and endoplasmic reticulum stress and a senescence-like 
reaction (Kuljis et al., 1997; Liu et al., 2005). ATM deficiency 
may disturb DNA repair, trigger apoptosis, and accelerate 
aging and neuroinflammation. In HD, cells transfected with 
mutant HTT protein fragments showed elevated DNA damage 
and ATM activation (Giuliano et al., 2003; Illuzzi et al., 2009), 
and increased gH2AX was also found in fibro blasts from 
HD patients (Giuliano et al., 2003) and in HD mouse and 
patient striatal neurons (Enokido et al., 2010). Intriguingly, HD 
patient cells exhibit radiosensitivity, albeit less than A-T cells, 
suggesting subtle dysfunction in the DNA damage response 
(Ferlazzo et al., 2014).

Mitochondria and Inflammation
The local sterile inflammation has been shown to be 
finely linked with the development and the progression 
of different NDDs including AD, PD and ALS (Lin and Beal, 
2006). Neuroinflammation is commonly driven through the 
abnormal activation of microglia and astrocytes, by damage-
associated molecular patterns (DAMPs) molecules released 
from damaged and necrotic cells (Yin et al., 2016; Wilkins et 
al., 2017). Dysregulated activation of microglia and astrocytes 
results in persistent inflammasome activation, which, together 
with an increased level of DAMPs, leads to the establishment of 
low-grade chronic inflammation and thus to the development 
of age-related pathological processes (Kapetanovic et al., 
2015). Noticeably, neuroinflammation drives the increased 
secretion of cytokines and chemokines not only within the 
brain, but also systemically (Licastro et al., 2000) and, in some 
cases, might lead to blood-brain barrier disruption with the 
consequent infiltration of peripheral immune cells (Wilkins et 
al., 2017). At the molecular level, neuroinflammation is mainly 
triggered by redox status (Innamorato et al., 2009): ROS are 
produced by microglia upon their activation by intrinsic or 
extrinsic factors [reviewed in Kierdorf and Prinz (2013)] and 
are released in the extracellular space. Uncontrolled ROS 
production might affect intracellular redox balance, thus 
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inducing the expression of proinflammatory genes by acting 
as second messengers (Rojo et al., 2014). Consequently, 
abnormal activation of microglia leads to the release of 
reactive oxygen intermediates, proinflammatory cytokines, 
complement proteins and proteinases, driving a chronic 
inflammatory state responsible for triggering or maintaining 
neurodegenerative processes (Dheen et al., 2007). The main 
players involved in these processes are mitochondria, which 
not only generate ROS but also respond to ROS-induced 
cellular changes (Handy and Loscalzo, 2012). 

Mitochondrial dysfunction can be both the leading cause 
of neuroinflammation and can be induced by it. Damaged 
mitochondria trigger the process of mitochondrial membrane 
permeabilization that initiates both apoptosis and necrosis. 
Adult neurons are resistant to apoptosis (Yuan et al., 2019). 
Necroptosis, a form of regulated necrotic cell death induced by 
tumor necrosis factor α (TNFα), is highly activated in NDDs (Ito 
et al., 2016; Yuan et al., 2019). Briefly, necroptosis is a form 
of programed cell death coordinated by receptor-interacting 
kinases 1 (RIPK1) and RIPK3 and mixed lineage kinase domain-
like protein under caspase-8 deficient conditions. Necroptosis 
can be stimulated by TNF, other members of the TNF death 
ligand family, interferons, Toll-like receptor signaling and viral 
infection (Zhang et al., 2017). Ultimately, accumulation of 
damaged mitochondria can activate NLRP3 inflammasome-
dependent inflammation in microglia. Moreover, damaged 
neurons are responsible for releasing DAMPs, such as mtDNA, 
in the extracellular environment, eliciting local inflammation 
(Nakahira et al., 2011) by increasing inflammasome activation, 
and thus IL-1β secretion, and also binding to microglial toll-like 
receptor-9, inducing TNFα and nitric oxide (NO) production 
(Iliev et al., 2004).

Mitochondrial Calcium Dyshomeostasis
Mitochondria actively regulate intracellular calcium levels; and 
when matrix calcium increases beyond physiological demands, 
the MPT pore (MPTP) opens, resulting in apoptotic or necrotic 
cell death (Rasola and Bernardi, 2011). The pathophysiological 
implications of altered calcium homeostasis has been 
described in AD (Yu et al., 2009), PD (Surmeier, 2007), HD 
(Bezprozvanny and Hayden, 2004) and ALS (von Lewinski 
and Keller, 2005). The common thread in these NDDs is that 
MPTP opening and altered calcium handling are involved (Lin 
and Beal, 2006; Wojda et al., 2008; Abramov et al., 2017) 
and precede neuronal death (Calì et al., 2012). In AD, the 
Aβ peptide is translocated to the mitochondria via the TOM 
(translocase of the outer membrane) machinery, where 
it localizes to the mitochondrial matrix and interacts with 
specific intra-mitochondrial proteins (Hansson Petersen et al., 
2008) and impairs the activity of respiratory chain complexes 
III and IV (Caspersen et al., 2005). Aβ peptide can also induce 
calcium release from the endoplasmic reticulum (ER) resulting 
in mitochondrial calcium overload (Ferreiro et al., 2008; Sanz-
Blasco et al., 2008) leading to MPTP opening and cell death (Du 
et al., 2008). In PD, α-synuclein plays a similar role in inducing 
mitochondrial dysfunction and cell death. α-synuclein localizes 
in the mitochondria (Nakamura et al., 2008; Di Maio et al., 
2016) and inhibits complex I activity (Luth et al., 2014) leading 
to dose-dependent loss of mitochondrial membrane potential 
with an associated decrease in phosphorylation capacity 
(Banerjee et al., 2010). 

Mutant, but not wild-type, huntingtin can interact with the 
outer mitochondrial membrane and significantly increase the 
susceptibility of mitochondria to calcium-induced MPTP opening. 
Mutant huntingtin induces mitochondrial swelling, MPTP 
opening, release of cytochrome c and subsequent activation 
of the apoptotic cascade. All these events were completely 
inhibited by CsA, indicating a role for calcium and MPTP opening 
in the pathogenesis of this disease (Choo et al., 2004).

In ALS, the mutant SOD1 protein impairs mitochondrial 
functions by aggregating in the mitochondria and binding 
to the Bcl-2 protein thereby reducing its anti-apoptotic 
properties (Pasinelli et al., 2004 ), and impairing the activity 
of complexes I, II and IV of the respiratory chain (Jung et al., 
2002). Motoneurons expressing mutant SOD1 showed an early 
increase in mitochondrial calcium with loss of mitochondrial 
membrane potential, mitochondrial swelling and ER overload, 
followed by an increase in cytosolic calcium (Tradewell et al., 
2011).

Mitophagy
Mitophagy is the selective degradation of mitochondria by 
autophagy. Mitophagy can effectively remove damaged or 
stressed mitochondria, which is essential for cellular health 
(Wang et al., 2019a).

An excess of ROS may function as an autophagy trigger (Kurz 
et al., 2007) and dysfunctional mitochondria that overproduce 
ROS, are indeed selectively targeted for mitophagy (Lemasters, 
2005). Central to mitochondrial and cellular homeostasis, 
mitophagy is modulated by the PTEN-induced putative 
kinase 1 (PINK1)/Parkin pathway (Narendra and Youle, 2011) 
which primarily targets mitochondria devoid of membrane 
potential (ΔΨm). PINK1 accumulates on the outer membrane 
of dysfunctional mitochondria and recruit the E3 ubiquitin 
ligase Parkin (Valente et al., 2004; Jin et al., 2010; Narendra 
et al., 2010) that ubiquitinates several OMM proteins that 
are consequently targeted by P62/SQSTM1 (Geisler et al., 
2010). F-box-containing proteins, sterol regulatory element 
binding transcription factor 1, and WD40 domain protein 
7 (FBXW7) have been identified as the critical regulators in 
the PINK/Parkin pathway of mitophagy (Rasola and Bernardi, 
2011). p62 recognizes ubiquitinated substrates and directly 
interacts with autophagosome-associated LC3 to recruit 
autophagosomal membranes to the mitochondria (Pankiv et 
al., 2007). Damaged mitochondria can also, independently 
of Parkin, increase FUNDC1 and Nix expression to recruit 
autophagosomes to mitochondria via direct interaction with 
LC3 (Novak et al., 2010; Liu et al., 2012). Ubiquitin ligases, like 
Smurf1, target depolarized mitochondria for mitophagy (Ding 
and Yin, 2012; Lokireddy et al., 2012; Fu et al., 2013). The 
transcription factor nuclear factor erythroid 2-related factor 2 
(Nrf2) partly regulates p62 expression due to the presence of 
an antioxidant response element in its promoter region (Ishii 
et al., 2000; Jain et al., 2010). Electrophilic natural products 
such as isothiocyanate compound, sulforaphane which 
upregulate Nrf2 by interfering with its regulator protein, the 
redox sensitive ubiquitination facilitator Keap1 (Kelch-like ECH-
associated protein 1) can potentially induce p62 expression 
(Kensler et al., 2007; Cheng et al., 2011). p62-mediated 
mitophagy inducer (PMI) (HB229), was recently developed 
to upregulate P62 via stabilization of Nrf2 and promote 
mitophagy. This compound bypasses the upstream steps of 
the mitophagic cascade and acts independently of the ΔΨm 
collapse, and does not mediate any apparent toxic effects 
on mouse embryonic fibroblast cells at the concentrations 
used in the assays (East et al., 2014). Parkin also modulates 
transport of mitochondria along microtubules to a perinuclear 
region where autophagosomes are concentrated (Narendra et 
al., 2010; Vives-Bauza et al., 2010). This is likely due to Parkin-
mediated turnover of Miro, a protein required to tether 
kinesin motor protein complexes to the OMM (Wang et al., 
2011). HDAC6, a ubiquitin-binding protein deacetylase is also 
recruited to mitochondria by Parkin (Cho et al., 2009) along 
microtubules (Lee et al., 2010a, b). Mitophagy is crucial for 
cellular homeostasis and its impairment is linked to several 
neurodegenerative diseases (de Castro et al., 2010; Karbowski 
and Neutzner, 2012). However, selective pharmacologic 
modulators of mitophagy that would facilitate dissection of 
the molecular steps involved in the removal of mitochondria 
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from the network via this pathway are not presently available.

The development  of  AD is  c lose ly  corre lated with 
mitochondrial autophagy defects [219, 220] and Parkin plays a 
key role in the removal of mitochondria. Parkin overexpression 
alleviates symptoms of AD (Ye et al., 2015). Supporting a role 
of mitophagy in AD, amyloid beta-derived diffusible ligands 
can induce the fragmentation of mitochondria and mitophagy 
(Wang et al., 2009; Nakamura et al., 2010). Sterol regulatory 
element binding transcription factor 1 is also one of the risk 
factors for sporadic PD (Rasola and Bernardi, 2011), and 
mitophagy thus may represent a common mechanism linking 
sporadic and familial PD (Bezprozvanny and Hayden, 2004; 
Surmeier, 2007; Yu et al., 2009). Mutation in the F-box domain 
is reported to be associated with the early-onset autosomal 
recessive PD. FBXW7 is involved in maintaining mitochondria 
and inducing mitophagy through direct interaction with 
Parkin, further confirming the significance of mitophagy in the 
pathogenesis of PD (von Lewinski and Keller, 2005).

Mitophagy is also altered in HD, and the mutant huntingtin 
induces selective autophagy (Khalil et al., 2015) and in  
cell culture models of HD, excessive mitochondrial fission 
partially mediates cytotoxicity (Guo et al., 2013). In addition, 
mutant Huntingtin is found to cause formation of spherical 
mitochondria in a nonapoptotic state, and it can also repress 
mitophagy, resulting in the impaired mitochondrial clearance 
(Rasola and Bernardi, 2011). In ALS, the reduced targeting 
of ubiquitinated mitochondria to autophagosomes may 
contribute to the disease pathogenesis (Benatar, 2007). In 
ALS models, the accumulation of damaged mitochondria can 
be detected by live cell imaging. Mitochondrial homeostasis 
can be reconstituted by inhibiting OPTN or TBK1 mutations, 
as well as pharmacological inhibition or genetic knockdown of 
PINK1 or Parkin. Altering TBK1/OPTN can significantly improve 
neuronal function and block disease progression. These data 
support the potential role of mitochondrial autophagy in ALS 
(Caspersen et al., 2005; Hansson Petersen et al., 2008; Calì et 
al., 2012).

Potential interventions to restore or enhance 
mitochondrial function in NDDs
We conclude with potential mitochondria-targeted therapies 
that may be beneficial for these age-related NDDs.

Genetic therapies
Mitochondrial-targeted transcription activator-like effector 
nucleases (mitoTALENs) can correct mtDNA mutations in 
cultured human cells from patients with a mtDNA disease 
(Bacman et al., 2013; Yang et al., 2018) and correct induced 
mtDNA mutation in vivo in mouse models (Bacman et 
al., 2018). Mitochondrially targeted zinc-finger nucleases 
(mtZNFs)(Gammage et al., 2014) are another tool for specific 
removal of mtDNA mutations with a relatively low risk for 
interaction with the cell’s nuclear DNA. myZNFs are able 
to remove a pathogenic mtDNA mutation in vivo mouse 
experiment (Gammage et al., 2018). Almost all adult cells are 
heteroplasmic for mtDNA due to age-related acquired mtDNA 
mutations. The degree of mtDNA mutation load determines 
the onset of clinical symptoms, a phenomenon known as the 
threshold effect (Craven et al., 2017). Clinical symptomatology 
can be alleviated by shifting the existing equilibrium between 
healthy and mutated mtDNA in different ways (Rai et al., 
2018). This is appealing for human clinical applications 
because it avoids the use of gene-editing techniques which 
might erroneously disrupt the function of normal genes of 
the treated cells (Gammage et al., 2014, 2018; Bacman et al., 
2018; Peeva et al., 2018; Pereira et al., 2018).

Mitochondria-targeted antioxidants
Targeting detrimental neuronal ROS at the production 

stage without affecting ROS signaling would be ideal in 
preventing and treating AD. In this regard, it has been 
shown that mitochondria-targeted antioxidants potently 
sequester reactive oxygen intermediates and confer greater 
protection against oxidative damage in the mitochondria than 
untargeted cellular antioxidants. These mitochondria-targeted 
antioxidants such as (10-(6′-plastoquinonyl) decyltriphenyl-
phosphonium) (SkQ1), MitoQ, MitoTEMPOL and MitoVitE 
prevent apoptosis by mitigating the oxidative damage more 
effectively than untargeted antioxidants such as 6-hydroxy-
2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) 
(Oyewole and Birch-Machin, 2015). Other such antioxidants 
include: 4,5-dihydroxybenzene-1,3-disulfonate (Tiron), which 
has been engineered to accumulate within the mitochondria 
by permeabilizing the mitochondrial membrane (Fang et 
al., 2012) and astaxanthin, a mitochondrion-permeable 
antioxidant, that can penetrate the blood-brain barrier and 
is effective in preventing and treating macular degeneration 
(Piermarocchi et al., 2012; Wu et al., 2014). 

Antioxidants can also be targeted to mitochondria through 
the use of small, aromatic-cationic sequence motif called 
Szeto-Schiller (SS) tetrapeptides which enables them to be 
delivered and localized to the inner mitochondrial membrane 
with an approximate 1000–5000-fold accumulation (Smith 
and Murphy, 2011; Jin et al., 2014). Novel XJB peptides 
which consist of an electron and ROS scavenger (4-NH2-
TEMPO) conjugated to the Leo-D-Phe-Pro-Val-Orn fragment of 
gramicidin S have been invented. This pentapeptide fragment 
can specifically target the XJB peptides to mitochondria. 
One of these peptides, XJB-5-131, improved mitochondrial 
function and enhanced the survival of neurons in a mouse 
model of HD (Xun et al., 2012). Another approach of targeting 
mitochondria with small bioactive molecules involves polymer 
based nano-carriers. These include biodegradable poly-
lactide-co-gylcolide (PLGA) like PLGA CoQ10 nanoparticles 
(Nehilla et al., 2008) although their biological effects are yet to 
be fully elucidated.

N-Acetyl-5-methoxytryptamine (Melatonin), which is 
synthesized from tryptophan provides remarkable protection 
against oxidative stress in the brain and at physiological 
concentrations is more potent than vitamins C and E (Reiter et 
al., 1997, 1999, 2014; Galano et al., 2011). Melatonin and its 
metabolites function as broad-spectrum antioxidants (Tan et 
al., 2001, 2002; Ressmeyer et al., 2003). Melatonin also down 
regulates caspase-3 levels (Espino et al., 2010), which are 
linked directly to neuronal death (Louneva et al., 2008). 

Enhancing mitochondrial biogenesis
The human mitochondrial genome can be manipulated 
from outside the cell to change expression and enhance 
mitochondrial energy production. TFAM has been engineered 
to rapidly pass through cel l  membranes and target 
mitochondria. Recombinant-human TFAM acts on cultured 
cells carrying a mtDNA disease (Iyer et al., 2012) as well as 
lab mice, energizing the DNA of the mice’s mitochondria, 
improving the memory of aged mice (Iyer et al., 2009; 
Thomas et al., 2012) and enabling them to run two times 
longer on their rotating rods than a control group cohort 
(Thomas et al., 2012). Expression of human TFAM significantly 
improved cognitive function, reducing accumulation of both 
8-oxoguanine, an oxidized form of guanine, in mtDNA and 
intracellular Aβ in 3xTg-AD mice and increased expression 
of transthyretin, known to inhibit Aβ aggregation (Oka et al., 
2016). 

Calorie restriction to induce mitochondrial biogenesis
Calorie restriction (CR), i.e. the limitation of ingested calories 
without malnutrition, is known to enhance animal life span 
and prevent age-related diseases, including neurological 
deficits, brain atrophy, and cognitive decline (Colman et al., 
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2014). CR induces mitochondrial biogenesis (Cerqueira et al., 
2012) in a NO•-mediated manner that culminates in increased 
mitophagy and the production of new, more efficient 
mitochondria that have reduced membrane potential, 
produce less ROS, consume increased levels of oxygen and 
exhibit an improved ATP/ROS ratio, leading to decreased 
energy expenditure (Onyango et al., 2010). In particular, the 
tissue-specific effects of CR include the prevention of the 
age-related loss of mtDNA in rat liver (Cassano et al., 2006) 
and the partial preservation of TFAM binding to mtDNA in 
rat brain with enhanced reserve respiratory capacity and 
improved survival in neurons (Picca et al., 2013).

Inducing mitophagy
Focal mitophagy eradicates degraded mitochondria and 
decreases ROS-induced neuronal death (Kubli and Gustafsson, 
2012). Regulators of PINK1/parkin, metformin, and resveratrol 
have also been shown to increase mitophagy (Wang et al., 
2019a). Sirtuin activating compounds or nicotinamide adenine 
dinucleotide (NAD) precursors such nicotinamide riboside 
(NR) or nicotinamide mononucleotide also induce mitophagy 
via sirtuins (Song et al., 2015). A novel potential inducer of 
mitophagy, PMI (P62-mediated mitophagy inducer), acts 
independently of the PINK1/parkin pathway, and therefore 
does not affect the mitochondrial network or cause loss of 
mitochondrial membrane potential (East et al., 2014). 

Inactive glyceraldehyde-3-phosphate dehydrogenase 
(iGAPDH) can also induce mitophagy. It follows that 
iGAPDH serves as a molecular sensor for detecting and 
tagging damaged mitochondria as GAPDH is inactivated 
by mitochondrial ROS. Mitochondria-associated iGAPDH 
promotes direct uptake of damaged mitochondria into a 
lysosomal-like structure, a hybrid organelle of late endosome 
and lysosome (Yogalingam et al., 2013). Exogenously 
expressed, catalytically dead iGAPDH is sufficient to induce 
lysosomal-like structures to engulf damaged mitochondria for 
degradation (Yogalingam et al., 2013). Removing damaged 
or excessively ROS-producing mitochondria by modulating 
mitochondrial GAPDH may be key in protecting cells from 
damage.

Mild mitochondrial uncoupling
T h e  p h a r m a c o l o g i c a l  m i t o c h o n d r i a l  u n c o u p l e r 
2,4-dinitrophenol (DNP) at low doses stimulates adaptive 
cellular stress-response signaling pathways in neurons 
including those involving brain-derived neurotrophic factor, 
the transcription factor cAMP response element-binding 
protein, and autophagy. Preclinical data show that low doses 
of DNP protects neurons and improves functional outcome 
in animal models of NDD (Geisler et al., 2017). The molecular 
reprogramming induced by DNP, which is similar to exercise 
and fasting is associated with improved learning and memory, 
suggesting potential therapeutic applications for DNP (Wei et 
al., 2015)

Enhancing proteasome function
Proteasome activation by small molecules is a promising 
strategy to treat or prevent NDDs characterized by the 
accumulation of toxic protein aggregates (Lee et al., 2010; 
Dantuma and Bott, 2014; Myeku et al., 2016). 

Betulinic acid is a small molecule capable of increasing 
proteasome activity. It is a triterpene natural product that 
selectively enhances the chymotryptic-like site of proteasome 
activity. Synthetic modifications yielded inhibitory analogs, 
suggesting a complex structure activity relationship (Huang et 
al., 2007).

Another small molecule activator of the proteasome is 
Pyrazolone (Lee et al., 2010). It shows significant disease 
attenuation in vivo models of ALS (Trippier et al., 2014) and 
while affinity pull down experiments verify its association 

with the proteasome, the mechanism of its regulation is still 
unclear. PD169316 a small molecule p38 MAPK inhibitor 
very potently activates proteasome activity and enhances 
Proteolysis Targeting Chimeric (PROTAC)-mediated and 
ubiquitin-dependent protein degradation and decreasing the 
levels of both overexpressed and endogenous α-synuclein in 
a bimolecular fluorescence complementation assay (Outeiro 
et al., 2008). It does this without affecting the overall protein 
turnover while increasing the viability of cells overexpressing 
toxic α-synuclein assemblies (Leestemaker et al., 2017).

Synthetic peptides based upon the HbYX motif are the most 
common class of proteasome gate openers. Activity of these 
vary greatly depending on which protein activator protein 
they are modeled after, yet several have been reported to 
increase turnover of oxidized (Lau and Dunn, 2018; Jones and 
Tepe, 2019) proteins (Gillette and et al., 2008; Dal Vechio et 
al., 2014). 

Finally, proteasome activity can be enhanced through 
activation of the transcription factor (Nuclear factor 
(erythroid-derived 2)-like 2 (Nrf2)). The antioxidant 3H-1,2-
dithiole-3-thione (D3T) upregulates both 20S and 19S 
proteasome subunits, resulting in an increase in proteasome 
activity (Kwak et al., 2003). As a proof of concept, it has been 
shown that proteasome activation by genetic manipulation 
ameliorates the aging process and increases lifespan in 
different models including C. elegans, human fibroblasts and 
yeast cells (Chondrogianni et al., 2015).

Inhibiting excessive mitochondrial fission
Mitochondrial fission is mediated by dynamin-related protein 
1 (Drp1), a large GTPase, that is recruited to the OMM from 
the cytosol by several mitochondrial outer membrane protein 
adaptors, including fission 1 (Fis1), mitochondrial fission 
factor (Mff), as well as mitochondrial dynamics protein (MiD) 
MiD49 and MiD51 (Palmer et al., 2011, 2013; Loson et al., 
2013). Mitochondrial fragmentation (a pathological process) is 
caused by excessive mitochondrial fission and/or by impaired 
mitochondrial fusion (Knott et al., 2008; Chen and Chan, 
2009).

Inhibiting excessive Drp1/Fis1-mediated mitochondrial fission 
may restore mitochondrial function and therefore benefit 
AD patients. Mdivi-1 is a Drp1 inhibitor (Cassidy-Stone et 
al., 2008) and its effects on Aβ-mediated mitochondrial 
dysfunction and AD-associated neuropathology in cultured 
neurons and APP/PS1 double-transgenic AD mice have been 
investigated (Joshi et al., 2017). The mdivi-1 treatment 
improves ATP production and cell viability. Its effects in vivo 
have been tested in TgCRND8 mice, an amyloid precursor 
line (Veeriah et al., 2010). Primary neuronal cultures from 
TgCRND8 mice treated with mdivi-1 showed significantly 
reduced amount of fractured mitochondria and increased 
mitochondrial membrane potential and ATP output and 
improves behavior in the spontaneous alteration task in a 
Y-maze apparatus (Veeriah et al., 2010). 

P110, a seven-amino acid peptide, which specifically inhibits 
Drp1/Fis1 interaction without affecting the interaction of Drp1 
with its other adaptors, attenuates Aβ42-induced mitochondrial 
recruitment of Drp1. The mitochondrial structure and 
function remains intact in cultured neurons of cells expressing 
mutant amyloid precursor protein (KM670/671NL), and in 
five different AD patient-derived fibroblasts that are treated 
with P110. The advantage of P110 is that it inhibits excessive 
mitochondrial fission in all tissues where excessive fission 
occurs without altering basal (physiological) fission even when 
used long term in vivo (Joshi et al., 2017). 

Restoration of mitochondrial membrane potential 
For more than three decades ursodeoxycholic acid (UDCA) 
has been used in the treatment of primary biliary sclerosis. 
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It is a relatively safe drug with a limited side effect profile 
(Paumgartner and Beuers, 2002).  UDCA and related 
compound tauroursodeoxycholic acid have also been tested 
in cell and animal AD models (Viana et al., 2009; Nũnes et 
al., 2012; Lo et al., 2013) and showed a putative protective 
effect (Ramalho et al., 2006; Viana et al., 2009; Lo et al., 
2013; Dionísio et al., 2015). It has been shown that UDCA 
restores mitochondrial membrane potential in both sporadic 
AD and presenilin 1 (PSEN1) mutant fibroblasts via its actions 
on Drp1 while having no significant effect on mitochondrial 
morphology paving way for potential neuroprotective therapy 
for AD (Bell et al., 2018).

Ketogenic diet to shift heteroplasmy
Ketogenic treatment (i.e., low glucose, high ketone bodies) 
was shown to shift heteroplasmy in cybrid cell lines carrying 
deleted mtDNA. Although the mechanism of this shift is 
unclear, a selective stimulation of wild-type vs. mutant mtDNA 
replication has been proposed (Santra et al., 2004). While the 
neuroprotective mechanism has not been fully elucidated, 
several studies show that it increases the number and 
performance of mitochondria in neurons (Rho and Rogawski, 
2007; Hughes et al., 2014). J147 is an experimental drug with 
reported effects against both AD and aging in mouse models 
of accelerated aging (Chen et al., 2011; Prior et al., 2013) 
and is in Phase 1 clinical trial as of January 2019. Enhanced 
neurogenic activity over J147 in human neural precursor 
cells has its derivative called CAD-31. CAD-31 enhances the 
use of free fatty acids for energy production by shifting of 
the metabolic profile of fatty acids toward the production of 
ketone bodies, a potent source of energy in the brain when 
glucose levels are low (Daugherty et al., 2017). The target 
molecule is a protein called ATP synthase, which is found in 
the mitochondria. 

Endurance exercise to enhance mitochondria function 
Endurance exercise is neuroprotective against NDDs. Exercise 
activates continuous oxidative stress that induces a series 
of counteractive mechanisms that enhance mitochondrial 
function and mitigate ROS-induced neurotoxicity, i.e. 
mitohormesis (Onyango et al., 2010; Radak et al., 2016), 
and this is especially important in the hippocampus, which 
is particularly sensitive to oxidative stress (Intlekofer and 
Cotman, 2013). In animal models of AD, physical exercise 
reduces the noxious effects of oxidative stress, the production 
of total cholesterol, and insulin resistance, while increasing 
vascularization and angiogenesis, improving glucose 
metabolism as well as neurotrophic functions, thereby 
facilitating neurogenesis and synaptogenesis, and as a 
consequence improving memory and cognitive functions (Koo 
et al., 2015; Paillard et al., 2015; Chen et al., 2016). 

Targeting the inflammasome	
The small molecule inhibitors of the NLRP3 inflammasome 
ameliorate AD pathology in animal models of AD (Dempsey 
et al., 2017; Yin et al., 2018). Further, CAD-31, a safe, orally 
active and brain-penetrant neurotrophic drug that targets 
inflammation has been shown to reduce synaptic loss, 
normalize cognitive skills and enhance brain bioenergetics in 
genetic mouse models of AD (Daugherty et al., 2017).

Cellular therapy
Cell-based therapies are a promising alternative currently 
being developed to enable the reversal of neurodegeneration 
either directly by replacing injured neurons or indirectly by 
stimulating neuronal repair via paracrine signaling at the 
injury site (Baraniak and McDevitt, 2010). Neurons and glial 
cells have successfully been generated from embryonic stem 
cells, neural stem cells, neural progenitor cells, mesenchymal 
stem cells, induced pluripotent stem cells, induced neuronal 
cells, and induced neuronal progenitor cells. Mesenchymal 

stem cells which are non-hematopoietic stem cells capable of 
differentiating into a multitude of cell lineages (Maijenburg 
et al., 2012), are the most commonly used cells in tissue 
engineering and regenerative medicine because they 
can promote host tissue repair through several different 
mechanisms including donor cell engraftment, release of cell 
signaling factors, and the transfer of healthy organelles to the 
host. Their transplantation into animal models of NDD have 
resulted in enhanced mitochondrial biogenesis, reversal of 
cognitive defects, clinical improvement and life extension of 
these animals (Kim et al., 2013; Zhang et al., 2015; Mendivil-
Perez et al., 2017). It has been shown that human embryonic 
dopamine-neuron transplants survive in patients with severe 
PD and result in some clinical benefit in younger but not in 
older patients (Freed et al., 2001). While still in its formative 
phase, this new field shows great therapeutic promise for 
NDDs (Newell et al., 2018).

Intercellular mitochondrial transplantation
A novel approach for combating mitochondrial dysfunction is 
to supplement freshly isolated mitochondria (mitochondrial 
transplantation) to injury sites. This new paradigm of therapy 
delivers a supplement of healthy mitochondria into cells 
containing damaged mitochondria to enhance bioenergetics, 
reverse ROS production and restore mitochondrial function. 
A mechanism by which stroke induced activated astrocytes 
release mitochondria containing particles into damaged 
neurons through actin-dependent endocytosis to prevent 
neuronal death was recently discovered (Babenko et al., 2015; 
Hayakawa et al., 2016). 

In stroke cases, astrocytes have been activated to release 
mitochondria-containing particles for intercellular transfer 
of mitochondria (to neurons) and it has been shown that 
supplement of freshly isolated mitochondria promotes 
neurite re-growth and restored the membrane potential of 
injured hippocampal neurons (Chien et al., 2018). In vivo 
PD models utilized a novel strategy of peptide-mediated 
allogeneic mitochondrial delivery (PMD) to improve functional 
incorporation of supplemented mitochondria into neurotoxin-
induced PD rats. Direct microinjection of Pep-1-modified 
allogeneic mitochondria into medial forebrain bundle 
promoted cellular uptake of mitochondria compared to the 
injection of naïve mitochondria or xenogeneic PMD. The PMD 
successfully rescued impaired mitochondrial respiration, 
attenuated oxidative damage, sustained neuron survival, and 
restored locomotor activity of PD rats (Chang et al., 2016). 
The successful uptake of mitochondria by target tissues will 
depend upon the amount, quality of mitochondria and route 
of organelle delivery. 

Using xenopeptides to bypass respiratory complexes defects 
Single-peptide enzymes derived from yeast or low eukaryotes 
(xenopeptides) have been shown to bypass the block of 
the respiratory complexes (RC) due to defects in specific 
complexes in cellular and Drosophila models. The rationale 
for using these non-proton-pumping enzymes is that they re-
establish the electron flow, thus reducing the accumulation of 
reduced intermediates and ROS production, while increasing 
ATP production by allowing proton pumping at the non-
affected complexes. The NADH reductase (Ndi1), which in the 
yeast Saccharomyces cerevisiae transfers electrons from NADH 
to coenzyme Q, has been used to bypass complex I defects 
(Perales-Clemente et al., 2008; Sanz et al., 2010). Alternate 
oxidases, which in various organisms transfers electrons from 
coenzyme Q to molecular oxygen, have similarly been used 
to bypass complex III and complex IV defects. It is possible to 
safely use alternate oxidases to bypass OxPHOS defects in vivo 
in mammalian systems without affecting major physiological 
parameters (El-Khoury et al., 2013; Dhandapani et al., 2019 ).
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Alternate energy sources 
In NDDs the activity of several mitochondrial enzymes is 
reduced (Golpich et al., 2017). Acetyl-CoA is necessary for 
the TCA cycle and the production of NADH and FADH2, 
which donate electrons to the ETC. Introduction of alternate 
energy sources (“biofuels”) could potentially alleviate 
mitochondrial dysfunction in AD. Acetyl-L-carnitine (ALC) 
being an endogenous component of the inner mitochondrial 
membrane capable of readily crossing the blood-brain 
barrier and providing acetyl groups to facilitate the synthesis 
of acetyl-CoA would bypass the need for PDH (Pettegrew 
et al., 2000). Additionally, ALC increases the production of 
glutathione, giving it a bipartite effect and further increasing 
its therapeutic appeal (Pettegrew et al., 2000). ALC is shown 
to have beneficial effects for a number of NDDs, including AD 
(Pettegrew et al., 2000). Chronic ALC administration reduces 
neuronal degeneration after spinal cord injury (SCI) in rats 
(Karalija et al., 2012) and maintains mitochondrial function, 
improves functional recovery while protecting both white 
and gray matter within the spinal cord from further injury 
(Patel et al., 2010, 2012). ALC administration also reduces the 
number of damaged mitochondria, improves mitochondrial 
membrane potential, and decreases SCI-induced apoptosis in 
rats (Zhang et al., 2015). 

Photobiomodulation 
Transcranial photobiomodulation/low level laser therapy) uses 
red/near infra-red light to stimulate, preserve and regenerate 
cells and tissues. Light stimulation of mitochondrial 
cytochrome c oxidase and ion channels in neurons leads 
to the activation of signaling pathways, up-regulation of 
transcription factors, and increased expression of protective 
genes and has been shown to provides neuroprotection in 
animal models of various NDDs (Hennessy and Hamblin, 
2017; Salehpour et al., 2018). “Remote photobiomodulation”, 
which involves targeting light at peripheral tissues, provides 
protection of the brain in an MPTP mouse model of PD, 
indicating that this may be a viable alternative strategy for 
overcoming penetration issues associated with transcranial 
photobiomodulation in humans where the scalp and skull 
may limit the utility of transcranial PBM in clinical contexts 
(Ganeshan et al., 2019).

Conclusion
NDDs comprise complex, mostly sporadic age-dependent 
diseases that are becoming increasingly prevalent, partly 
because the global population and average lifespan continue 
to increase. With only symptomatic treatments currently 
available, they represent a major threat to human health 
and are of great concern socioeconomically. Mitochondrial 
dysfunction is central in these diseases as impaired 
mitochondrial bioenergetics and dynamics likely are major 
etiological factors in their pathogeneses of and have many 
potential origins. Addressing these multiple mitochondrial 
deficiencies is a major challenge of mitochondrial systems 
biology. We have reviewed evidence for mitochondrial 
impairments ranging from mitochondrial DNA (mtDNA) 
mutations, to oxidative stress, altered gene expression, 
impaired mitobiogenesis, altered protein turnover and 
changed organelle dynamics (fission and fusion) and discussed 
potential approaches targeting each level of deficiency that 
might lead to the development of more effective, evidence 
based therapy (Figure 2).
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