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Abstract: Obtaining an accurate description of protein structure is a fundamental step toward under-
standing the underpinning of biology. Although recent advances in experimental approaches have
greatly enhanced our capabilities to experimentally determine protein structures, the gap between the
number of protein sequences and known protein structures is ever increasing. Computational protein
structure prediction is one of the ways to fill this gap. Recently, the protein structure prediction field
has witnessed a lot of advances due to Deep Learning (DL)-based approaches as evidenced by the suc-
cess of AlphaFold2 in the most recent Critical Assessment of protein Structure Prediction (CASP14).
In this article, we highlight important milestones and progresses in the field of protein structure
prediction due to DL-based methods as observed in CASP experiments. We describe advances in
various steps of protein structure prediction pipeline viz. protein contact map prediction, protein
distogram prediction, protein real-valued distance prediction, and Quality Assessment/refinement.
We also highlight some end-to-end DL-based approaches for protein structure prediction approaches.
Additionally, as there have been some recent DL-based advances in protein structure determination
using Cryo-Electron (Cryo-EM) microscopy based, we also highlight some of the important progress
in the field. Finally, we provide an outlook and possible future research directions for DL-based
approaches in the protein structure prediction arena.

Keywords: protein structure prediction; deep learning; protein contact map prediction; protein
distance prediction; protein quality assessment

1. Introduction

Obtaining accurate descriptions of protein structures is a fundamental step toward
understanding the underpinning of biology. Though there has been continuous improve-
ment in the experimental approaches (X-ray Crystallography, Nuclear Magnetic Resonance
(NMR) spectroscopy, Cryogenic Electron Microscopy (Cryo-EM), and others) for deter-
mining protein structures, the gap between the number of protein sequences and known
structures is ever increasing. As of March 2021, the total number of protein structures
deposited in Protein Data Bank (PDB) [1] is around 180 thousands, whereas the number of
protein sequences deposited at the end of 2020 in Uniport/TrEMBL [2] is ≈207 millions. In
that regard, protein structure prediction is one of the important problems in computational
structural biology.

On the other hand, Deep Learning (DL) is becoming one of the mainstream tech-
nologies for various scientific application domains, including computer vision [3], natural
language processing [4,5], speech recognition [6], and autonomous driving [5,7], among
others [7]. In that regard, with the recent advancements in DL algorithms and the expo-
nential growth in computational power, the field of protein structure prediction has also
witnessed tremendous advances.

The Critical Assessment of protein Structure Prediction (CASP) assesses the state of the
art in modeling protein structure from amino acid sequence. The first CASP competition,
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CASP1, was held in 1994. Fast forward, around the time of the CASP12 competition in
2016, contact prediction emerged as the key intermediate step toward accurate structure
prediction. For the first time, a deep learning-based method, Raptor-X [8], achieved
around 50% precision when evaluating top L/5 long-range predictions—almost twice
as much precision compared to the CASP11 competition. Here L represents the length
of the protein sequence. Soon after CASP12, a much improved version of the Raptor-X
method [9] was released, and a fully open-source deep learning method DNCON2 [10],
demonstrating a similar performance, was also released. After the results of the CASP13
competition were announced in 2018, the top performing methods including Raptor-X [11]
and AlphaFold [12] had upgraded their methods to predict ‘distograms’ instead of just
contacts. Different from an inter-residue contact, which only defines if a residue pair
is less than or more than 8 Å, a distogram can define if the same pair falls within a
smaller distance range. Hence, distogram predictions provide much richer information
for 3-dimensional (3D) modeling. In the same competition, an end-to-end method [13]
introduced by AlQuraishi [14] demonstrated a competitive performance and inspired the
development of end-to-end deep learning methods.

After the CASP13 competition, some groups continued the distogram prediction ef-
forts. Inspired by the success of AlphaFold [12] but frustrated with the fact that AlphaFold
was not fully open, Corte’s group developed and released an open-source implementation
of AlphaFold’s method called ProSPr [15]. The trRosetta method, in particular, showed
performance similar to AlphaFold and released an open-source method for distogram
prediction. However, many others focused on real-valued distance prediction and de-
veloped methods such as DeepDist [16], RealDist [17], and the Generative Adversarial
Network (GAN)-based method [18]. An open-source framework for distance prediction,
PDNET [19], was also released around the same time.

After the CASP13 competition, it was also evident that evolutionary information cap-
tured in multiple sequence alignments (MSAs) was the most important input for structure
prediction, and all research groups have their own in-house methods for generating MSAs.
Unfortunately, the problem of generating high-quality alignments, particularly for difficult
sequences, stands as a huge challenge. As an effort to build a single pipeline for generating
high-quality and deep alignments and also to find remotely homologous sequences in the
case of new (difficult) sequences, Zhang’s group developed and released DeepMSA [20].

There have been significant progresses in the field of protein structure prediction,
especially those related to free modeling methods that generate structure models without
homologous templates. Refer to some excellent reviews [21,22] for the details. Protein
structure prediction can be classified into various categories: (a) One-Dimensional (1D)
protein structure prediction, (b) Two-Dimensional (2D) protein structure prediction, and (c)
3D protein structure prediction.

1D structures of a protein are residue-wise quantities or symbols onto which some
features of the native 3D structure are projected. Some examples of 1D structures are
secondary structure assignment, solvent accessibility, etc. The 2D structures of a protein are
contact maps and distance maps. There have also been recent review articles highlighting
the DL methods in protein structure prediction [23,24]. Torrisi et al. [23] recently reviewed
DL-based approaches for 1D protein structural annotations and methods for 2D protein
structural annotations. Gao et al. [24] reviewed some advances in DL-based approaches for
the protein sequence–structure–function paradigm. Although these are excellent reviews
for some recent advances in some aspects of protein structure prediction, there is no
comprehensive review in advances of DL-based approaches for protein structure prediction
as observed in various CASP experiments. In addition, there is no comprehensive review
that focuses on the DL-based advances in various steps of the protein structure prediction
pipeline. This review aims to be useful to researchers who are interested in Deep Learning
and its application to protein structure prediction.

In this article, we will highlight the recent developments in the application of Deep
Learning for 3D protein structure prediction with a focus on various steps of the protein
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structure prediction pipeline. For template-free structure prediction approaches, the impor-
tant steps are as follows: (i) identification of sequence homologs and generation of multiple
sequence alignment, (ii) residue–residue contact prediction and/or residue–distance pre-
diction, (iii) iterative fragment assembly simulations guided by potential or ab initio 3D
modeling driven by contacts/distances, and (iv) atomic-level structure refinement and
ranking or Quality Assessment of models [22,25] as shown in Figure 1. Although there is
a little variation in steps in these prediction protocols, most successful protein structure
prediction pipelines such as I-TASSER [26] are hybrid (combination of template-based
structure prediction and template-free structure prediction); Rosetta [27] and RaptorX [28]
can be thought of as having these important common steps.

Figure 1. General schematic of template-free protein structure prediction pipeline. Most of the successful existing pipelines
for protein structure prediction have these important steps: (i) generation of multiple sequence alignment (MSA), (ii)
contact map prediction, distogram prediction or real-value distance prediction, (iii) structure/fragment assembly, and (iv)
QA/refinement.

In addition, recent advances in microscopy as well as algorithms for image processing
have helped Cryo-EM become one of the most widely used techniques for the determination
of protein structures and complexes. Figure 2 shows the cumulative number of electron
maps released in Electron Microscopy Data Bank (EMDB) [29]. Although the number of
these maps has significantly increased, there is an intermediate computational step that is
required to obtain molecular structures from these Cryo-EM maps. There have been some
remarkable DL-based advances for Cryo-EM-based protein structure prediction.

In this review, we highlight DL-based advances in each step of the protein structure
prediction pipeline viz. advances in MSA generation, contact map prediction, protein
residue–distance prediction, potentials to guide iterative fragment assembly, models, or
quality assessment (QA), advances in overall protein prediction pipelines, and advances
in Cryo-EM based protein structure determination and the future outlook for the protein
structure prediction field.
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Figure 2. Growth of EMD density maps in EMDB from 2002 to 2020.

2. Deep Learning-Based Advances in Various Steps of Protein Structure
Prediction Pipeline

In this section, we highlight DL-based advances in various steps (Figure 1) of the
protein structure prediction pipeline viz. multiple sequence alignment, contact map,
distogram or real-value distance prediction, model quality assessment (QA) and refinement.

2.1. Advances in Approaches for Multiple Sequence Alignment

The generation of multiple sequence alignment (MSA) for a query protein is the
first step in the majority of protein structure prediction pipelines [12,26,27,30]. Since
the subsequent steps of contact prediction, distogram prediction, or real-valued distance
prediction rely on the quality of the MSA, the generation of deep and high-quality MSA is
of paramount importance for protein structure pipeline. Even in the light of AlphaFold2
(an end-to-end protein structure pipeline using Deep Learning that takes MSA as the
input), the quality of MSA becomes increasingly important. Although not based on a
Deep Learning-based approach, DeepMSA [20] represents one of the significant recent
trends to improve the process of MSA creation. DeepMSA is a composite approach to
generate MSA with large alignment depth and diverse sequence sources by merging
sequences from whole-genome sequence databases and from metagenome databases. Since
DeepMSA is the only method that allows the integration of multiple sequence searching
tools (such as HHblits [30] and JackHMMER [31]) and multiple databases including the
large metagenomic sequence databases (often helpful for difficult prediction cases), it was
used by many CASP14 participants as well.

Next, we highlight DL-based advances in protein contact map prediction.

2.2. DL-Based Advances in Protein Contact Map Prediction

A pair of amino acids is said to be in contact if the distance between their carbon-beta
atoms (carbon-alpha in case of glycine) is less than or equal to 8 Å (i.e., Cβ-Cβ distance < 8 Å).
Residue pairs in contact capture the possible physical interactions between the two residues.
A true contact map for a protein with known structure is a 2D map of size “L × L” with
1 s at the locations where the distance is less than or equal to 8 Å and is 0s at all other
cells. Here, L is the length of the corresponding protein sequence. Hence, for a protein
sequence, predicting a protein contact map is predicting the contact probability for every
possible inter-residue pair. From the perspective of reconstruction (building 3D models),
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not all contacts are equally useful. One technique to classify contacts is to group them
into four categories based on how far apart the two residues are in the protein sequence:
local (separated by less than six residues in the sequence), short-range (separated by six
to 11), medium-range (separated by 12 to 23 residues), and long-range (24+ sequence
separation). While local contacts capture secondary structure information, medium-range
and long-range contacts are found to be useful for recovering the fold/shape accurately.
Hence, the main focus in contact prediction is to predict medium-range and long-range
contacts as accurately as possible. In addition, an entire contact map is not required for
reconstructing a 3D structure [32]. Hence, the performance of a method that predicts con-
tacts is evaluated based on the precision of top L or top 2 L most confident predictions. The
predicted contacts have a confidence score associated with each pair, and this confidence
score is used to rank the predicted contacts. From these top-ranked predicted contacts,
usually, local and short-range contacts are ignored and the top L, or L/2, or L/5 contacts
are evaluated by checking if these pairs are in contact or not in the true 3D structure.

From the perspective of machine learning, the contact prediction problem in protein
structure prediction may be compared to the image segmentation problem in computer
vision. In image segmentation, the input is an image of dimensions H ×W × Z, where H,
W, and Z are the height, width, and channels of the image respectively, and the output is a
2D matrix of size H ×W, where each pixel either belongs to the object or not. Similarly, in
the protein contact prediction problem, the input is the protein features of size L × L × N,
where L is the length of the protein sequence and N is the number of channels, and the
output is the probability values of the contacts as a 2D matrix of size L × L.

As mentioned in the Introduction section, a typical pipeline for 3D protein struc-
ture prediction consists of contact map prediction: predicting residue–residue distance
relationships (e.g., contacts) has become the key direction to advance protein structure
prediction since the CASP11 experiment. Most recently, Deep Learning has revolutionized
the technology for contact and distance prediction since its debut in the 2012 CASP10
experiment.

Protein contact map prediction has been deemed to be useful in predicting protein
structure for more than a quarter of a century [33]. Protein contact prediction can be broadly
classified into two categories [34]: correlated mutation-based methods and machine learn-
ing (ML)-based methods. For a review on protein residue contacts and prediction methods
and ML methods in contact map prediction, please refer to [34] and [35], respectively.
Adhikari and Cheng [34] summarize the protein residue contact map problem and out-
line some of the machine learning-based approaches for protein contact map prediction.
Xie et al. [35] provide details of neural network-based methods as well as other machine
learning-based methods for protein contact map prediction.

One of the earliest DL-based approaches for protein contact map prediction is
DNcon [36] developed by Cheng’s group, which used Restricted Boltzmann machines
(RBMs) trained to form Deep Neural Networks. It was the first method to use Deep Learn-
ing, and it was ranked at the top in the CASP11 competition in the contact prediction
category. Soon after, the convolutional neural network-based method was introduced by
Xu’s group, which demonstrated much higher accuracy [8].

After that, as contact map established itself as an intermediate step in most of the
successful protein prediction pipelines, a lot of advances have been made in contact
prediction using Deep Learning-based approaches. To summarize, some of the earlier
Deep Learning-based contact map predictors are DeepCDPred [37], RaptorX-Contact [9],
DNCON2 [10], PconsC4 [38], and SPOT-contact [39]. Readers are suggested to refer to
either Torissi et al. [23] for background and earlier Deep Learning methods for protein
contact map prediction. Here, we review some of the more recent Deep Learning-based
approaches.
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2.2.1. RaptorX-Contact

RaptorX-Contact [8] is a contact map prediction tool developed by Xu’s group based
on Deep Learning. RaptorX-contact uses deep layers and consists of two major residual
neural network modules. The first module conducts a series of 1D convolutional transfor-
mations of sequential features (sequence profile, predicted secondary structure, and solvent
accessibility). The output of the 1D network is converted to a 2D matrix and then fed into
the 2nd module combined with other pairwise features (co-evolution information, pairwise
contact etc.). The 2nd module is a 2D Residual Neural Network (ResNet) [40] module that
conducts a series of 2D convolutions. Finally, the output of 2D convolutional network is fed
into logistic regression. This technique of using 1D convolutions to learn 1D features and
2D convolutions to learn 2D features is an elegant way to learn feature representations and
save computational resources. When tested on CASP11 targets, RaptorX-Contact produced
better results compared to other existing approaches such as MetaPSICOV [41] and CCM-
Pred [42]. One of the salient features of RaptorX-contact is that it is one of the intermediate
steps of one of the most successful protein structure prediction pipeline, RaptorX. The
recent version of RaptorX-Contact [43] also predicts distance map. This method was ranked
top in CASP12 and CASP13 in the contact prediction category.

2.2.2. ResPre

Zhang’s group developed a deep residual convolutional neural network-based ap-
proach called ResPre [44] to predict residue–residue contacts multiple sequence alignment.
Initially, for a query sequence, MSA is created. Based on the MSA, the covariance matrix is
created, and this covariance matrix is converted to a precision matrix, which is then fed to
the residual convolutional neural network. It has to be noted here that the quality of MSA
will be critical for the eventual contact map prediction, and the authors also paid attention
to create deep MSA. One of the novelties of this work was the use of precision matrix.

2.2.3. MapPred

Yang’s group developed MapPred [45], which uses a metagenome sequence in a resid-
ual neural network framework. MapPred uses the vast amount of data from metagenome
sequencing projects to overcome limitations in protein sequence databases.

For each query sequence, MapPred first generates an MSA and then feeds the co-
variance features derived from MSA into a deep residual neural network. Essentially, a
contact map using CCMPred [42] and DeepMSA is constructed from the MSA and then
Position-specific scoring matrix (PSSM) is also created. In addition, the secondary structure
and relative solvent accessibility of the sequence are predicted using PSIPRED [46], and
these features are transformed into 2D by pairing. Finally, all the features are concatenated,
and the final contact map is predicted. One of the observations of this approach is that
the contribution from the metagenome sequence is statistically significant. In addition to
contact map, MapPred also predicts distance maps and the distance distribution.

2.2.4. DEEPCON

DEEPCON [47] discusses how deep convolutional neural network methods (Con-
vNets) may be best designed and developed to solve the distance prediction problem. With
publicly available datasets, the work designed and trained various ConvNet architectures,
including wide residual networks, dropouts, and dilated convolutions. In this work, they
have studied several deep learning architectures to improve the precision of medium-range
and long-range contact. Furthermore, they have highlighted the performance comparison
of the recently developed state-of-the-art methods by comparing them with their best
method. The ConvNet architectures discussed in this work—ConvNets with alternating
dilations and dropout—predict contacts with significantly more precision than the architec-
tures used in several state-of-the-art methods. They have reported that there was a 15%
improvement in the top L/2 long-range contacts precision on the 150 proteins PSICOV test
datasets when the network was trained with 3456 proteins from the DeepCov dataset. The
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work also discusses how popular architectures such as U-net are inappropriate for distance
prediction.

2.2.5. DeepECA

Fukuda et al. developed DeepECA [48], a Convolutional Neural Network (CNN)-
based approach on evolutionary coupling analysis, to predict contact map directly from
MSA in an end-to-end manner. Based on CASP results and other benchmarks, this approach
can use information derived from either deep or shallow MSAs. In addition, using multi-
task model to predict secondary structure and contact simultaneously, DeepECA shows
some improvement in the secondary structure prediction.

2.2.6. ContactGAN

Kihara’s group recently developed a Generative Adversarial Network (GAN) [49]
based approach for contact map prediction called ContactGAN [50]. This approach is quite
novel compared to the existing contact map prediction approaches as the task here is to
refine the predicted contact map.

As ContactGAN is a contact map refining tool, the input is a predicted contact map
(rather than an MSA) and the output is a refined contact map. Essentially, the DL archi-
tecture of ContactGAN uses a GAN framework, where generative and discriminative
networks are trained with sets of predicted (noisy) and corresponding native (correct)
contact maps. The generator network takes a noisy predicted contact map and outputs
a refined map, whereas the discriminator network discriminates a generated map and
the native map, so that the generator is trained to produce indistinguishable maps from
native maps by the discriminator. The generator network is based on ResNet blocks and
the Discriminator network is based on CNN. ContactGAN when applied to predict contact
maps of CCMPred [42], DeepCov [51], and DeepContact [52] a consistent improvement in
the protein contact map was obtained.

2.2.7. InterPretContactMap

As in other fields, the black-box nature of deep learning models has been one of the
major hesitation/roadblocks for more widespread implementation/usage of DL-based
approaches in Protein Structural bioinformatics. In that regard, the new trend in the field is
to develop xAI (explainable Artificial Intelligence) approaches. InterPretContactMap [53]
is one of the approaches toward xAI. Combining deep neural network with attention
mechanisms to enhance the explainability of protein contact prediction is one of the new
approaches in contact map prediction that gears toward the explainability of the predicted
contacts. Using two attention mechanisms (sequence and regional), in the CNN framework
for contact map prediction, InterPretContactMap improves the contact map prediction
results as well as provides some level of interpretability, providing some insights into the
key fold-determining residues in proteins.

2.2.8. TripletRes

TripletRes [54], also developed by Zhang’s group, is another DL-based approach to
predict protein contact maps. TripletRes consists of three steps: deep multiple-sequence
alignment generation, co-evolutionary feature extraction and Deep Neural Network mod-
eling. One of the important steps in TripleRes is the construction of deep MSA, which
is obtained by applying multiple iterations of HHblits [30]. Second, three sets of co-
evolutionary features viz. covariance features (COV), precision matrix features (PRE), and
a coupling parameter matrix approximated by pseudolikelihood maximization (PLM) are
extracted from the deep MSAs created in step 1—hence the name TripletRes. Finally, these
features are fed to a residual neural network.

The TripletRes contact pipeline performed quite well in two independent sets of test
targets that included 50 non-redundant Free Modeling (FM) targets from CASP11 and
CASP12. The major advantage of TripletRes is its ability to learn and directly fuse a triplet
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of co-evolutionary matrices extracted from the whole-genome and metagenome databases
and therefore minimize the information loss during the course of contact model training.
TripletRes also achieved the highest precision (71.6%) for the top-L/5 long-range contact
predictions in the CASP13 experiment in the contact prediction category.

2.2.9. Summary of Advances in DL-Based Approaches for Protein Contact Map Prediction

Overall, a wide range of features such as precision matrix, covariance matrix, sec-
ondary structure, PSSM, sequence profiles, and solvent accessibility have been proven to be
important for protein contact map prediction as observed in all contact prediction methods.
Similarly, a variety of Deep Learning architectures including ResNet, fully convolutional
neural networks (FCNs), GANs, and U-Nets have been implemented by different groups.
Among those architectures, we find that all accurate methods use ResNet and its variants.
CASP-winning methods such as TripletRes [54] and RaptorX [8] serve as examples. All of
these recent methods for contact prediction also discuss that the use of deeper multiple
sequence alignments (MSAs) as inputs is the key for accurate predictions. However, after
the CASP13 competition, it was evident that deep learning methods could predict more
richer information than mere binary contacts. Hence, most groups switched from contact
prediction to distogram prediction or real-valued distance prediction as they provide much
richer information for building models.

2.3. Deep Learning-Based Advances in ‘Distogram Prediction’

Inter-residue contact prediction has been widely used for over a decade in the field of
protein structure prediction. However, recently, the paradigm shifted toward predicting the
probability of distance intervals, also known as ‘distograms’ [12]. After the Xu group and
DeepMind’s AlphaFold demonstrated that predicting distograms can be more informative
than their binary counterparts (contacts) [55], many groups pursued similar approaches.
Notable methods such as trRosetta [56], the ResNet/Densenet-based method [57], and
DeepDist [16] showed results similar to or better than the top groups in the CASP13
competition.

The protein inter-residue distance prediction is the prediction of a pairwise distance
matrix (2D) from a protein sequence (1D amino acid sequence). It can be compared with
the monocular or stereo depth estimation problem in computer vision as shown in Figure 3.
In image depth prediction, an image matrix is provided as input and a depth matrix is
predicted as an output where each pixel has a predicted depth (distance from the camera
to the object). Similar to the depth prediction problem, the distance prediction takes a
three-dimensional input volume (height × width × channels) and outputs a distance map
with the same dimension as the input (height×width) but with a single channel. However,
the input channels in computer vision problems range from one to three, but there are
a few to few hundred channels in distance prediction problems depending on the input
features. Additionally, the distance map is symmetrical about the diagonal, and each pixel
on the map represents a distance between a pair of residues in the sequence.

Although there were a few previous studies [58,59] on predicting protein structure
based on protein distogram/distance, until AlphaFold [12] and Xu’s method [11], those
methods were not quite satisfactory. In that regard, AlphaFold, Xu’s method, and tr-
Rosetta [56] can be attributed the success of using distogram prediction in the protein
structure prediction pipeline.



Int. J. Mol. Sci. 2021, 22, 5553 9 of 30

Int. J. Mol. Sci. 2021, 22, x  9 of 31 
 

 

three-dimensional input volume (height × width × channels) and outputs a distance map 
with the same dimension as the input (height × width) but with a single channel. However, 
the input channels in computer vision problems range from one to three, but there are a 
few to few hundred channels in distance prediction problems depending on the input 
features. Additionally, the distance map is symmetrical about the diagonal, and each pixel 
on the map represents a distance between a pair of residues in the sequence. 

 
Figure 3. From the perspective of Deep Learning method development, the problem of protein distogram or real-valued 
distance prediction (bottom row) is similar to the ‘depth prediction problem’ in computer vision (top row). In all these 
problems, the input to the Deep Learning model is a volume (3D tensor). In case of computer vision, 2D images expand 
as a volume because of the RGB or HSV channels. Similarly, in the case of distance prediction, predicted 1D and 2D 
features are transformed and packed into 3D volume with many channels of inter-residue information. 

Although there were a few previous studies [58,59] on predicting protein structure 
based on protein distogram/distance, until AlphaFold [12] and Xu’s method [11], those 
methods were not quite satisfactory. In that regard, AlphaFold, Xu’s method, and 
trRosetta [56] can be attributed the success of using distogram prediction in the protein 
structure prediction pipeline. 

2.3.1. Distogram Prediction in Xu’s Approach 
Xu’s group during CASP13 implemented ‘distogram prediction’ [11] within their 

RaptorX pipeline. This method predicts the ‘distogram’ using a ResNet architecture that 
consists of one 1D deep ResNet, one 2D deep dilated ResNet, and a softmax layer. 
Essentially, discretizing the interatom distance Cβ-Cβ into 25 bins (<4.5 Å, 4.5 to 5 Å, 5 to 
5.5 Å, …, 15 to 15.5 Å, 15.5 to 16 Å, and >16 Å) and treating each bin as a classification 
label, this DL model predicts the distance matrix. It has to be noted here that a contact 
map can be obtained from this distance map by summing the predicted probability values 
corresponding to distance ≤8 Å. Finally, the RaptorX framework predicts the protein 
structure using this predicted interatom distance matrix, secondary structure, and 
backbone torsion angles using the Crystallography and NMR (CNS) [60] framework. The 
prediction accuracy of RaptorX using the distance matrix was quite better than that using 
contact matrix on a set of CASP targets. Along with AlphaFold, this approach helped 

Figure 3. From the perspective of Deep Learning method development, the problem of protein distogram or real-valued
distance prediction (bottom row) is similar to the ‘depth prediction problem’ in computer vision (top row). In all these
problems, the input to the Deep Learning model is a volume (3D tensor). In case of computer vision, 2D images expand as a
volume because of the RGB or HSV channels. Similarly, in the case of distance prediction, predicted 1D and 2D features are
transformed and packed into 3D volume with many channels of inter-residue information.

2.3.1. Distogram Prediction in Xu’s Approach

Xu’s group during CASP13 implemented ‘distogram prediction’ [11] within their
RaptorX pipeline. This method predicts the ‘distogram’ using a ResNet architecture
that consists of one 1D deep ResNet, one 2D deep dilated ResNet, and a softmax layer.
Essentially, discretizing the interatom distance Cβ-Cβ into 25 bins (<4.5 Å, 4.5 to 5 Å, 5 to
5.5 Å, . . . , 15 to 15.5 Å, 15.5 to 16 Å, and >16 Å) and treating each bin as a classification
label, this DL model predicts the distance matrix. It has to be noted here that a contact
map can be obtained from this distance map by summing the predicted probability values
corresponding to distance ≤8 Å. Finally, the RaptorX framework predicts the protein
structure using this predicted interatom distance matrix, secondary structure, and backbone
torsion angles using the Crystallography and NMR (CNS) [60] framework. The prediction
accuracy of RaptorX using the distance matrix was quite better than that using contact
matrix on a set of CASP targets. Along with AlphaFold, this approach helped establish
the fact that protein distogram can be predicted quite well and that predicted distogram is
better than the contact map for protein structure prediction.

2.3.2. Distogram Prediction in AlphaFold

AlphaFold [12] is a protein structure prediction method developed by DeepMind,
which had one of the best performances in CASP13. AlphaFold is the other approach
that championed the idea of using distogram for protein structure prediction. Essentially,
the distogram prediction component of AlphaFold uses a convolutional neural network
(CNN) that is trained on PDB structures to predict the Cβ–Cβ distances between any
pair of residues. Using the amino acid representation of the query sequence and features
generated from MSA, the CNN network predicts a discrete probability distribution for
every pair. This distribution is found to be similar to the true distances. Then, the predicted
backbone torsion angles and pair-wise distance between residues are combined to form
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a protein-specific potential. Finally, the gradient descent on protein-specific potential is
applied to obtain the final protein model.

2.3.3. ProSPr

ProSPr [15] is an unofficial and democratized (open-source) implementation of Al-
phaFold protein distance and structure prediction method. In this work, they have re-
implemented the Deep Learning part of AlphaFold for intramolecular distance prediction
and made the source code freely available. The Deep Learning method uses a residual
network with 220 residual blocks with batch normalization followed by exponential linear
unit (ELU) activation function, and a cycle of four different dilation filters of sizes 1, 2, 4,
and 8, respectively. The output of the network consists of distance and auxiliary predictions
where the auxiliaries predict eight classes of secondary structures as defined with Dictio-
nary of Secondary Structure of Proteins (DSSP) classifications. They tested their method
on the CASP13 dataset for a free and template-based model. They convert the distance
probabilities into contact probabilities and calculate the precision score. The precision
scores of their method are comparable to the winning group TripletRes [54]. ProSPr is 2%
better than TripletRes on average on the L/5 scores for the high confidence prediction (with
maximum <8 Å).

2.3.4. Distogram Prediction in trRosetta

Another seminal work that championed the use of distogram is trRosetta (transform-
restrained Rosetta) [56], which is a newer Rosetta-based method developed by Yang’s group
and Baker’s group. Similar to AlphaFold and Xu’s work, the distogram prediction compo-
nent within trRosetta takes MSA as an input and then uses a deep residual–convolutional
neural network (stack of dilated residual–convolutional blocks) to predict the relative
distances (distance prediction) along with orientations of all residue pairs in the protein.
The features used in the prediction include one-hot-encoded amino acid sequence (20 fea-
tures), position-specific frequency matrix (21 features) and positional entropy (1 features).
The distance range (2 to 20 Å) is binned into 36 equal segments of 0.5 Å each. The last
convolutional layer is followed by a softmax function that predicts the probability for
each of these bins given a residue pair. Subsequently, the protein structure model is built
based on restrained minimization using predicted distance and orientation restrains as
in AlphaFold [12]. One of the novel ideas in trRosetta is the prediction of inter-residue
geometry/orientations where orientations between two residues are represented by three
dihedral and two planar angles between the residues.

2.3.5. AttentiveDist

Kihara’s group developed a DL-based method called AttentiveDist [61] for protein
inter-residue distance prediction. The network is derived from residual network (ResNets)
with an added attention mechanism to determine the most relevant MSA for each residue
pair. There are 45 residual blocks in the network where the first five blocks are used
for feature encoding. Four different MSAs of different E-values are used to generate
four different inputs for the network to train. At the end of the last residual block, the
model branches out into five different paths to predict five different outputs, namely,
Cβ distance prediction, three side-chain orientation angles for each amino acid residue
pair, and backbone dihedral angles. The success of AttentiveDist shows that the use
of an attention-based approach on different MSA-based features is correlated to the co-
evolutionary information in the MSA. AttentiveDist has an average TM-score of 0.579 on
43 CASP13 targets, which is slightly better than the top CASP13 server model, which has
an average TM-score of 0.517.

2.3.6. Summary of Deep Learning-Based Advances in ‘Distogram Prediction’

All distogram prediction methods use ResNet as the core deep learning architecture.
The RaptorX method [11] was ranked as the top method for distance prediction in the
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CASP13 competition. Since the AlphaFold method did not participate in the contact
prediction category of the CASP13 competition, it is difficult to evaluate the distograms
generated by AlphaFold. The trRosetta method [56] and RealDist method [17] (discussed in
the next section) developed after the CASP13 competition are shown to outperform the top
CASP13 predictor. Both trRosetta and Alphafold predict inter-residue orientations, which
can help to improve the structure prediction. Although all of these methods are publicly
available, we found trRosetta to be the easiest to use because it is a fully TensorFlow-based
implementation and does not require any feature generation after MSAs are ready.

2.4. Deep Learning-Based Advances in ‘Real-Valued Distance Prediction’

An ideal distance prediction algorithm should predict exact physical distances on
the entire distance map accurately [18]. Although this is extremely difficult, many groups
focused on predicting real-valued distances i.e., predicting what the distances truly are
in nature. Real-valued distance prediction has many advantages over contact prediction.
First and foremost, a predicted distance map has much more detailed information about
the structure than contact prediction, which is just human-defined zero-one labels (binary
classification), whereas distance map is a real-valued physical metric. Secondly, because
of the binary nature of contact prediction, it causes imbalance in positive and negative
samples; i.e., there will be one contact to 50 non-contacts for a long-range residue pair with
sequence separation ≥24, which leads to undersampling of negative ones during model
training. As a result, there may be inconsistency between the real contacting probability
for a residue pair and prediction score [18]. Below, we summarize some of the successful
Deep Learning methods for real-valued distance prediction.

2.4.1. PDNET

In this work, the author has developed a framework called Protein Distance Net
(PDNET) [19] that consists of a small and representative protein dataset which can be used
for faster training and testing of Deep Learning methods for distance prediction. This is
one of the first methods that was made public to the scientific community as a protein
distance map prediction framework. A variant of residual network (ResNet) was used
in this work as the Deep Learning architecture for the training. They developed three
separate Deep Learning methods to predict contacts (PDNET-Contact), distance intervals
or distograms (PDNET-Binned), and real-valued distance (PDNET-Distance), respectively.
The Deep Learning architecture uses 128 residual blocks with dropouts added in between
the convolutional layers, which is described properly in DEEPCON [47] method. PDNET
uses a unique in-house loss function in its approach, which focuses on predicting shorter
distances more precisely than longer distances because from the perspective of structure
prediction and binding-site prediction, it is more meaningful to predict inter-residue
interactions than non-interactions.

2.4.2. GAN-Based Real-Valued Distance Prediction Method

Ding et al. [18] developed a new GAN-based Deep Learning method to predict real-
valued inter-residue distances. The method was developed by adding GAN on top of the
residual network (ResNet) to enforce global distance consistency. The method was trained
mainly by protoplasmic soluble proteins. The approach adopts a conditional GAN (cGAN)
where 40 layers of ResNet were used as the generator, which generates the output for the
discriminator of cGAN that was trained to detect the output as fake or real. Then, the
decision of the discriminator was used by the generator to learn and produce outputs to
fool the discriminator through an adversarial training procedure. In this way, the model
was trained to predict real-valued distances. This method produced structural models with
real-valued distance-based structure prediction with an average TM score of 0.620 and
0.786 for the FM targets and Template-Based Modelling (TBM) targets, respectively, which
are comparable with the top CASP13 groups. In addition, the method has an average TM



Int. J. Mol. Sci. 2021, 22, 5553 12 of 30

score of 0.712 for all available 42 CASP13 targets, which is higher than the top CASP13
groups.

2.4.3. Xu’s Real-Valued Distance Prediction Method

Xu’s group also developed a Deep Learning-based method [62] to predict real-valued
distances as well as inter-residue orientations. A deep residual network (ResNet) with
60 residual blocks which is described in [43] with detailed information has been used in
this work. In addition to predicting real value distance, the method also predicts the mean
and standard deviation of a distance. The predicted mean and standard deviations for
building the 3D structure models were built using PyRosetta [63]. To build the model, they
trained six deep ResNet models of the same architecture on the same training data in order
to predict real-valued and multi-class distances using ensemble methods. Validation results
show that the real-value distance prediction obtains 81% precision on top L/5 long-range
contact prediction, which is better than the best CASP13 results (70%), and it predicts folds
for the CASP13 FM targets as correctly as the best group in CASP13, outperforming the
DeepDist method mentioned above.

2.4.4. RealDist

RealDist [17] is a purely real-valued distance map prediction method, i.e., the method
only predicts distance map and does not predict distograms or orientations. For training
the ResNet-based model, a set of 43,000 protein chains was used—the largest dataset ever
used for training distance prediction methods. The network architecture is very deep and
consists of 256+ convolutional layers. The contacts derived from the real-valued distance
maps predicted by this method, on the most difficult CASP13 free-modeling protein
datasets, demonstrate a long-range top-L precision of 52%, which is 17% higher than the
top CASP13 predictor Raptor-X and slightly higher than the more recent trRosetta method.
Similar improvements were observed on the CAMEO ‘hard’ and ‘very hard’ datasets. 3D
structure prediction guided by real-valued distances showed that for short proteins, the
mean accuracy of the 3D models is slightly higher than the top human predictor AlphaFold
and server predictor Quark [64] in the CASP13 competition.

2.4.5. DeepDist

Cheng’s group developed DeepDist [16], which is a DL-based method where residual
convolution network architectures are used to simultaneously predict real-value inter-
residue distances as well as classify them into multiple distance intervals (such as bin
classification used in trRosetta and AlphaFold1). Validation results for DeepDist show
that predicting a real-value distance map has some added value on top of predicting a
multi-class distance map. When DeepDist was used to build 3D models for the 43 CASP13
hard domains, the obtained average TM-scores of the top model and the best model of the
top five models were of 0.487 and 0.522, respectively. In addition, in the comparison study
where the models were built from real-value distance prediction and multi-class distance
prediction, it was found that real-value predictions have higher scores.

2.4.6. DISTEVAL

Contact and distance predictions have been widely used as the intermediate steps
toward protein structure prediction. The quality of the 3D structure prediction depends
on the accuracy of such contact and distance predictions, which has been shown in the
recent 13th and 14th CASP experiments. Therefore, it is important to assess and evaluate
such predicted contacts and distances. To evaluate predicted contacts, web servers such
as EVAcon [65] and ConEva [66] are freely accessible. However, there are currently no
methods to evaluate predicted distograms and real-valued distance maps. DISTEVAL
was developed to fill this void. DISTEVAL can evaluate predicted contacts, multi-class
distance prediction (distograms), as well as real-value distance predictions. It performs
both qualitative assessments using heatmaps, chord diagram, and 3D model visualization
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(if true structure is provided) as well as quantitative assessment using metrics such as
mean absolute error (MAE) of long-range distance, root mean square error (RMSE), local
distance difference test (lDDT) score, and precision of medium and long-range contacts.
All features offered by DISTEVAL collectively serve as a powerful tool to compare and
assess predicted contacts, distograms, and distances even in the absence of a true 3D
structure. Since methods such as AlphaFold2 still use distance prediction (distogram) in
their end-to-end pipeline for interpretation while predicting protein structure, DISTEVAL
could be used further to investigate what these deep learning models are learning.

2.4.7. Summary of Deep Learning-Based Advances in ‘Real-Valued Distance Prediction’

The methods discussed above represent the recent developments in real-valued pro-
tein distance prediction. While most of them use deep residual networks (ResNets),
methods based on generative adversarial networks (GANs) and Attention Networks have
also been proposed. The results of the methods such as REALDIST [17], DeepDist [16],
and the Xu group’s work [62] show that real-valued distance prediction is as promising as
distogram prediction. These methods propose various novel and complementary methods
to predict real-valued distances, suggesting that merging these ideas would lead to more
accurate real-valued distance predictions.

2.5. DL-Based Advances in Ranking of Models, Quality Assessment (QA), and Refinement

Ranking of models, Quality Assessment (QA), and refinement are some of the integral
steps in the protein structure prediction pipeline. For example, in I-TASSER [26], once the
models are generated using Replica Exchange Monte-Carlo Simulation, the best model
is obtained by performing clustering of the decoys and subsequent refinement. In recent
years, there have been significant improvements in the performance of estimating model
accuracy (EMA) algorithms partly due to the application of Machine Learning, and EMA
methods based on ML have been consistently ranked among better predictors. Please see
Chen and Siu [67] for details about machine learning approaches (and a few Deep Learning
approaches) published until 2019 for quality assessment of protein structures. Here, we
summarize some recent DL-based advances for QA and EMA. In addition, QA methods can
be divided into two types: consensus methods (multi-model) and single-model methods.
Mainly, consensus methods depend on comparison of models of a protein target and are
performed when a protein has many models generated by different predictors and a single
model depends on predicting quality of a model using only its own information.

2.5.1. QDeep

Bhattacharya’s group recently developed a distance-based model quality estimation
method called QDeep [68]. One of the salient features of this approach is that the model
is trained on an ensemble of stacked deep ResNets that can perform residue-level error
classification at multiple error thresholds. Finally, the individual error classifiers are then
combined to estimate the quality of a protein model. Essentially, QDeep consists of four
steps: (i) multiple sequence alignment generation, (ii) feature extraction from distance-
based alignment, sequence and structure, and ROSETTA centroid energy-terms, (iii) residue
level classifiers at 1, 2, 4, and 8 Å error thresholds, and (iv) ensemble error classifier for
protein model. Benchmarking results on CASP12 and CASP13 targets showed that QDeep
performs pretty well in comparison to other state-of-the-art algorithms. One of the novel
features in this approach is the use of distance-based features. This is also one of the
DL-based approaches where a large ResNet model [40] is used as the DL architecture for
protein EMA.

2.5.2. ResNetQA

Xu’s group developed ResNetQA [69] (a ResNet-based QA method for both local and
global quality assessment of a protein model. ResNetQA is a single-model method. In
ResNetQA, an MSA is built using HHblits, and then, three types of features viz. sequential,
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co-evolution, and predicted distance potentials are passed to the Deep Neural Network
(DNN). The sequential feature includes the one-hot-encoding of primary sequence, PSSM
matrix derived from MSA, three-state secondary structure, and solvent accessibility. The co-
evolutionary based feature included the output of CCMPred, and the distance potential is
obtained from distance distribution predicted by RaptorX-Contact. Then, these features are
passed to a Deep Model that consists of 1D and 2D dilated residual neural network based on
ResNet. The final ResNetQA model has 21 2D convolutional layers and 16 1D convolutional
layers. ResNetQA predicts a residue-wise S-score for local QA. The ResNetQA model
when tested on CASP12 and CASP13 datasets performed better than methods such as
QDeep [68].

2.5.3. MULTICOM EMA Predictors

Similarly, Cheng’s group developed six EMA predictors (MULTICOM) using Deep
Learning [70] with features from inter-residue distance/contact prediction, other exist-
ing single-model features, and multi-model quality features. Given a protein target se-
quence and a pool of structural models for the target, a MULTICOM EMA predictor
first invokes an inter-residue distance predictor (DeepDist [16]) and or/an inter-residue
contact predictor (DNCON2 [10]). Finally, several distance/contact-based features and
other non-distance/contact features used in DeepRank [71] are generated, and different
combinations of features are used in a Deep Learning framework to predict the Global
Distance Test—Total Score (GDT-TS) score of a model. Among these six EMA predictors,
based on the convention in the field, MULTICOM-CLUSTER, MULTICOM-CONSTRUCT,
MULTICOM-AI, and MULTICOM-HYBRID can be classified as multi-model methods and
MULTICOM-DEEP and MULTICOM-DIST can be classified as single model methods based
on whether the features are based on comparison between multiple models as input or just
from a single model, respectively. The MULTICOM EMA family of methods performed
quite well in CASP14; especially, MULTICOM-CONSTRUCT had a GDT-TS Loss of 0.07356
and was ranked among the top among all the methods for EMA in CASP14.

2.5.4. DeepAccNEt

Baker’s group recently developed a DL framework called DeepAccNEt [72] that
estimates the error in every residue–residue distance along with the local residue contact
error. DeepAccNEt consists of a series of 3D and 2D convolutional layers and predicts
(i) error histogram (Cβ–Cβ distance error distribution), (ii) mask (native Cβ contact map
with a threshold of 15 Å, (iii) and per residue Cβ local distance difference score (Cβ I-DDT)
score. The input features to the networks are distance maps, amino acid identities, local
atomic environments scanned with 3D convolutions, backbone angles, residue angular
orientations, Rosetta energy terms, and secondary structure information. In addition, MSA
information in the form of inter-residue distance prediction by the trRosetta and sequence
embeddings from the ProtBert-BFD100 model are also optionally provided as 2D features.
DeepAccNEt incorporates 1D, 2D, and 3D features. Initially, the network performs a 3D
convolution operation on local atomic grids, and as a result, features describing the local
3D environments of each of the N residues are generated. The 1D features (local torsional
angles and individual residue energies) are also combined with the 2D residue–residue
input features, and the resulting combined 2D feature is input to a series of 2D convolutional
layers using the ResNet architecture. DeepAccNEt performed well in comparison to other
methods, and the incorporation of DeepAccNEt in Rosetta refinement protocol helped
achieve better results.

2.5.5. Summary

The necessity for mitigating error and increasing the accuracy of the predicted 3D
protein structure has led to the development of methods for the refinement of 3D models.
The methods discussed here represent the most recent developments in the field of quality
assessment in the estimation of model accuracy (EMA). QDeep [68] uses ResNet for estimat-
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ing the quality of a protein structural model. Similarly, ResNetQA [69] is a local and global
quality assessment method composed of both 1D and 2D convolutional residual neural
networks (ResNet). DeepAccNet [72] estimates per-residue accuracy and residue–residue
distance signed error in protein models and uses these predictions to guide Rosetta protein
structure refinement using a convolutional neural network.

3. Deep Learning-Based Advances in Overall Protein Structure Prediction Pipelines

In this section, we highlight the recent advances in overall protein structure predic-
tion pipeline using Deep Learning. Mainly, we will discuss recent Deep Learning-based
improvements in some of the most successful protein structure prediction pipelines as
evidenced by CASP13 and CASP14 and some end-to-end DL-based approaches for protein
structure prediction.

3.1. DL-Based Advances in Protein Structure Prediction Pipeline

Here, we highlight DL-based advances in some of the most successful protein structure
prediction pipelines.

3.1.1. AlphaFold

AlphaFold [12] is a protein structure prediction method developed by DeepMind,
which had one of the best performances in CASP13. AlphaFold works on the premise that
given a protein sequence, it is possible to construct a learned, protein-specific potential by
training a Deep Neural Network (DNN) to make accurate predictions about the structure
and to predict the structure itself by minimizing the potential by gradient descent. The fea-
tures used in the DNN are MSA features generated by running HHblits and PSI-BLAST [73]
on sequence databases. The DNN predicts backbone torsion angles and pair-wise distance
between residues. Then, the predicted distance and torsion probability distributions along
with Van Der Walls are combined to form a protein-specific potential. Finally, gradient
descent on protein-specific potential is performed to obtain the final protein model. The
training data for the model is extracted from PDB and more specifically CATH domains
where 29,427 proteins were used for training and 1820 proteins are used for testing. The
good performance of AlphaFold is attributed to the accuracy of distance predictions. The
most recent version of AlphaFold which is termed as AlphaFold2 produces even remark-
able results, and it will be interesting to see the overall aspects of AlpahFold2. The notion
of minimizing the potential by gradient descent rather than using Fragment Assembly and
subsequent model refining is quite novel.

3.1.2. trRosetta

Similar to AlphaFold, trRosetta (transform-restrained Rosetta) [45] is a new Rosetta-
based method for protein structure prediction given a protein sequence developed by
Ying’s group and David Baker’s group. Essentially, trRosetta takes the amino acid sequence
of a query protein and then computes MSA from the input. Taking MSA and homol-
ogous templates obtained used HHsearch, the combined features are then passed to a
ResNet-based deep residual–convolutional neural network to predict the relative distances
(distance prediction) and orientations (represented by maps of ϕ (phi),ω (omega), and θ
(theta), of all residue pairs in the protein. Subsequently, the protein structure model is built
based on restrained/constrained minimization using predicted distance and orientation
restraints as in AlphaFold [12]. This is also quite unique in that the fragment assembly
approach was not utilized as in original Rosetta; rather, folded structures satisfying the
restraints were generated starting from conformations with randomly selected backbone
dihedral angles. One of the novel ideas in trRosetta is the prediction of inter-residue
geometry/orientations where orientations between two residues are represented by three
dihedral and two planar angles between the residues.

Using similar ideas as trRosetta, Gray’s group expanded the ideas to predict antibody
structure prediction and developed DeepH3 [74], which is a deep residual network-based
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model that predicts inter-residue distance and orientations from antibody heavy and light
chain sequence. Subsequently, these distributions are converted to geometric potentials and
used to discriminate between decoy structures produced by RosettaAntibody and predict
new CDR H3 loop structures de novo. DeepH3 did better than the vanilla Rosetta energy
function model as well as inter-residue orientations were more effective than inter-residue
distances for discriminating near-native H3 loops.

3.1.3. RaptorX

RaptorX is also one of the successful protein structure prediction pipelines developed
by Xu’s group. The most recent version of RaptorX [43] also incorporated the notion of
distance prediction. The Deep Learning network used in RaptorX to predict distance
matrix consists of one 1D Deep ResNet, one 2D deep dilated ResNet, and one softmax layer.
Xu’s distance prediction approach is also described briefly in Sections 2.3 and 2.4. Given
a protein sequence, initially, RaptorX-Contact predicts the predicted interatom distance
matrix, secondary structure (three-state), and backbone torsion angles, and then, these
predictions are converted into CNS restraints for 3D model building using CNS [60]. Finally,
for each protein, 200 possibly decoys are generated by CNS, and then then models with the
least violation of distance restraints are chosen as the final models. The prediction accuracy
of Raptor-X contact predicts the interatom distance matrix, secondary structures using the
distance matrix was quite better than that using contact matrix on a set of CASP targets.
RaptorX was successful in folding 17 of 32 hard targets in CASP13.

3.1.4. MULTICOM

Cheng’s group, the primary developer of MULTICOM (another protein structure
prediction pipeline), has also incorporated recent advances in DL-based approaches to
improve the MULTICOM [75] protein structure prediction system. The recent version of
MULTICOM protein structure prediction pipeline added three main improvements: (a) a
new Deep Learning-based protein inter-residue distance predictor DeepDist [16] to predict
protein inter-residue distance, (b) an enhanced template-based tertiary structure prediction
method, and (c) a DL-based framework for assessing model quality using predicted residue
distance.

Given a target protein sequence, initially, for the template-free modeling, MULTICOM
generates MSA and then the MSA is used to calculate residue–residue co-evolution features
that are passed to the DNN of DeepDist to predict the inter-residue distance map. Then,
the MSA and predicted distance map are used to generate ab initio models tools (e.g.,
trRosetta). Finally, MULTICOM EMA predictors are used to rank the models. The new
MULTICOM was ranked 7th out of all the predictors in protein 3D structure prediction.

3.1.5. C-QUARK/C-I-TASSER

Yang Zhang’s group also has been incorporating DL-based advances in the I-TASSER
pipeline. Especially, during CASP13, the group released C-I-TASSER and C-QUARK pro-
grams [64], based on I-TASSER and QUARK, C meaning contact. The new incorporations
in I-TASSER pipelines are (1) the incorporation of DeepMSA [20], a novel multiple sequence
alignment (MSA) generation protocol to construct deep sequence profiles for contact predic-
tion; (2) an improved meta method, NeBcon, which combines multiple contact predictors,
including ResPRE that predicts contact maps by coupling precision matrices with deep
residual convolutional neural networks; and (3) an optimized contact potential to guide
structure assembly simulations.

Essentially, as in previous iterations of I-TASSER, the C-ITASSER pipeline consists of
the following steps. (a) Given a protein sequence, the sequence is threaded using LOMETS,
and at the same time, MSA is generated using DeepMSA. (b) Template fragments are
created from the threading templates, which are then subjected to structure assembly
using Replica-Exchange Monte Carlo (REMC) guided by the potential calculated from the
improved contact map created using NeBcon (that incorporates other DL-based contact



Int. J. Mol. Sci. 2021, 22, 5553 17 of 30

prediction approaches). Finally, the models are clustered using SPICKER, and the cluster
centroid is chosen and subjected to structure re-assembly and finally, Fragment-Guided
Molecular Dynamics (FG-MD)-based refinement is applied to obtain the final model.

In CASP13, the average TM scores of the first models produced by C-I-TASSER and
C-QUARK were 28% and 56% higher than those constructed by I-TASSER and QUARK,
respectively. Detailed data analyses showed that the success of C-I-TASSER and C-QUARK
was mainly due to the increased accuracy of Deep Learning-based contact maps, as well as
the careful balance between sequence-based contact restraints, threading templates, and
generic knowledge-based potentials. In CASP14, I-TASSER also incorporated a distance
matrix, but the details are yet to be released.

3.1.6. Summary

There have been some advances in some of the most successful protein structure
prediction pipelines such as RaptorX, I-TASSER, Rosetta, MULTICOM, and AlphaFold.
These advances can be mostly attributed to the improvement in one or more stages of
the prediction pipeline due to the use of DL-based approaches. Especially, for all of these
pipelines, these advancements have been integrated into the original pipeline and are
available as web servers or a standalone version of the tools provided in Github.

3.2. Advances in End-To-End Deep Learning-Based Approaches for Protein Structure Prediction

As in other scientific fields, there have been some attempts to get rid of human-
engineered steps in the protein structure prediction pipeline. It has to be noted here that the
existing approaches contained a number of modules, which were each trained separately
even though they were using DL, whereas an end-to-end deep learning system would be
trained as a single integrated structure with a system of sub-networks coupled together.
In that regard, end-to-end DL approaches use sequence as an input and map to protein
structures end-to-end. In this section, we review a few end-to-end DL-based approaches
for protein structure prediction.

3.2.1. NEMO

NEMO [76], which stands for Neural Energy Modeling and Optimization, is one of
the first end-to-end differentiable DL-based approaches for protein structure prediction.
NEMO takes the protein sequence as an input and generates a 3D protein structure directly
from sequence information. NEMO consists of three components: (i) a neural energy
function for a coarse-grained structure given sequence, (ii) an unrolled simulator that
generates an approximate sample from energy function, and (iii) an imputation network
that generates an atomic model from the final coarse-grained sample. It has to be noted that
all these components are trained simultaneously via backpropagation. Protein sequences
are represented/conditioned using one-hot encoding and a profile of evolutionary related
sequences. Since NEMO has not participated in CASP competition, its comparative per-
formance is not quite known. However, it is one of the seminal works for the end-to-end
Deep Learning approach for protein structure prediction.

3.2.2. AlQuraishi’s Recurrent Geometric Network

Another seminal work for the end-to-end Deep Learning approach for protein struc-
ture prediction is based on AlQuraishi’s work [14]. Based on the idea that end-to-end
differentiable DL has revolutionized various fields such as computer vision and speech
recognition, AlQuraishi attempted to get rid of many human-engineered steps/stages in
the protein structure prediction. Essentially, acknowledging the fact that the advances in
DL-based approaches so far were mainly focused on each step of the protein structure
prediction pipeline (please see Figure 1) such as contact map prediction, distance map
prediction, QA, etc., AlQuraishi proposed an end-to-end differentiable model to predict
the overall structure pipeline. The model termed as recurrent geometric network (RGN)
predicts the structure of one segment of a protein partly on the basis of what comes before
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and next. The framework that takes the amino acid of the target sequence as input and out-
puts a 3D structure of the target sequence is based on four core ideas: (i) encoding protein
sequence using a recurrent neural network, (ii) parameterizing (local) protein structure by
torsional angles, (iii) coupling the local protein structure to its global counterpart using
recurrent geometrical units, and (iv) capture deviations between predicted and native
structures using a loss function. Essentially, the model predicts the most likely angle of the
chemical bonds that connect the amino acid with its neighbors for each amino acid. It also
predicts the angle of rotation around these peptide bonds. This process is repeated where
each calculation is informed and refined by the relative positions of other amino acids.
Finally, the model accuracy is checked by comparing it to the native structure of the protein.
The approach is trained using known PDB structures. The approach was able to build
with reasonable accuracy novel folds as well as predict known folds without templates.
Although rigorous benchmarking still needs to be done, the approach seems to be much
faster for prediction compared to traditional approaches. It will not be an overstatement to
say that this approach probably inspired AlphaFold2.

3.2.3. AlphaFold2

Although the details of AlphaFold2 (recent version of AlphaFold [12]) have not yet
been released, some aspects of AlphaFold2 have been made clear during the CASP14
meeting. AlphaFold2 (AF2) is an end-to-end deep learning-based method trained using a
dataset of around 170,000 proteins (which is almost the entire Protein Data Bank). One key
innovation of AF2 with respect to its previous predecessor AlphaFold and other methods
is the use of an iterative attention-based neural network architecture, which is also known
as a transformer network. AF2 encodes the target protein sequence, the generated multiple
sequence alignment, and structural templates as inputs to an iterative attention-based deep
learning module that learns residue–residue graph edges and the sequence-residue graph
edges. The residue–residue edges represent pairwise information between all residues,
which can be used to predict pairwise distances or distograms. The sequence-residue
edges capture the sequence evolutionary information. The system constantly updates these
two representations (sequence–residue and residue–residue) by repeating this process
multiple times. These representations are fed into a structure module, which also uses a
transformer, that has 3D geometry built into it to produce the 3D structure and a confidence
score (similar to the GDT-TS score). In the CASP14 competition, AF2 had a median GDT
score of 92.4 and an approximate Root-Mean-Square Deviation (RMSD) of 1.6 Å across all
targets. On the most challenging free-modeling targets, AF2′s median GDT score was 87. It
has to be noted here that while AlphaFold contained a number of modules, each trained
separately, whereas AlphaFold2 replaced this with a system of sub-networks coupled
together into an end-to-end deep learning system trained as a single integrated structure.

In CASP14, AlphaFold2 outperformed other methods and produced remarkably
accurate models that compelled organizers to declare the protein structure prediction
problem for single-domain proteins to be solved and that there seems to a be a lot of
enthusiasm about the possibility of solving the protein structure prediction problem to
some extent in the community.

3.2.4. Summary

Although existing approaches were using DL, these approaches contained a number
of modules, each trained separately, whereas an end-to-end deep learning system is trained
as a single integrated structure with a system of sub-networks coupled together. In that
regard, end-to-end DL approaches use sequence as an input and map to protein structures
end-to-end. Recent developments of end-to-end deep learning systems such as NEMO,
AlQuraishi’s Recurrent Geometric Network, and AlphaFold2 for protein structure predic-
tion represent the most remarkable advancements in the field. Co-evolutionary-related
sequences, primary sequences, and PSSMs are used to predict contact map and eventually
protein structure. AlQuraishi’s end-to-end model [14] predicted novel folds using primary
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sequences and PSSMs viz. Recurrent geometric network. AlphFold2 was very successful in
the CASP14 competition by integrating the notion of attention, where the MSA matrix and
primary sequence are encoded with positional embedding, which are passed to multi-head
attention transformer networks to produce the protein structure. We can expect to see more
end-to-end DL approaches for protein structure prediction.

4. Advances in Deep Learning-Based Approaches for Cryo-EM Protein
Structure Determination

Owing to the significant progresses in the past decades for protein structure deter-
mination by Cryo-electron microscopy (Cryo-EM), it has evolved into one of the effective
tools in structural biology. Cryo-EM is a Nobel prize-awarded technology that provides
3D maps of protein structures. The number of Cryo-EM maps deposited in EMDB as of
March 2021 is ≈15 K [29], and the number of maps released is growing quite significantly
(Figure 2). The fundamental computational step in this process is the interpretation of
EM data to obtain protein structure information. Esquivel-Rodriguez [77] summarized
advances in computational methods to model protein three-dimensional structures from a
3D EM density map that is constructed from two-dimensional maps. Based on the reso-
lution of a Cryo-EM map, the structure information of proteins determined by Cryo-EM
may not have sufficient atomic details. Generally, if the resolution of the map is less than
3 Å, atomic details can be built easily, and when the resolution is 5–10 Å (also termed as
intermediate resolution), it is quite hard to get detailed structural information.

For a recent review on modeling molecular structures from density maps of different
resolutions, please refer to Alnabati et al. [78] and Malhotra et al. [79]. Alnabati et al. also
reviews some of the recent approaches for single particle picking and secondary structure
prediction. To derive the protein structure based on its 3D Cryo-EM map, researchers
either have to manually fit the atoms or resort to existing template-based or homology
modeling methods. Some of the existing tools such as Rosetta, MAINMAST [80], and
Phenix [81] determine only fragments of a protein complex or require extensive manual
processing steps.

There are intermediate steps (viz. secondary structure prediction, backbone structure
prediction, single particle picking) involved in the construction of high-resolution 3D Cryo-
EM maps. Among them, single particle picking is a critical step that involves the picking of
single-particle two-dimensional projections from thousands of 2D micrographs. Here, we
will describe some advances in DL-based approaches for various steps in Cryo-EM based
protein structure determination mainly: single-particle picking, back-bone prediction,
secondary structure prediction, all-atom prediction for protein complex, and EM density
map generation/refinement.

4.1. Deep Learning Approaches for Single Particle Picking

Cryo-EM micrographs contain 2D projections of the particles in different orientations.
As a large number of single-particle images must be extracted from Cryo-EM micrographs
to form a reliable 3D reconstruction of the underlying structure, particle picking is one of the
critical steps and is often regarded as a bottleneck for automated structure determination
from a Cryo-EM map. Recently, Deep Learning-based approaches have been emerging for
single particle picking. We summarize briefly some of the existing DL-based approaches
for single particle picking.

DeepPicker [82] is one of the first DL-based approaches for particle picking in Cryo-EM
density maps. Tools such as DeepEM [83] and Deep Consensus [84] have been developed
for single particle picking from Cryo-EM maps. Below, we describe some recent DL-based
approaches for single particle picking.

4.1.1. PIXER

PIXER [85] is a particle-picking method based on Deep Neural Network. One of the
significant challenges in particle picking is the low signal to noise ratio. In that regard,
PIXER (pixel-wise classification) uses Deep Learning-based segmentation for particle
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picking. Essentially, the micrographs are first converted into probability density maps
using a segmentation network where probability represents the likelihood of one pixel
belonging to a particle. Using a training dataset, the approach then uses the local-maximum
method to identify the particles from the probability density maps. This is one of the earlier
approaches that uses a segmentation network for particle selection. Comparative analysis
showed that PIXER performs on par with other approaches.

4.1.2. CASSPER

CASSPER [86] is another DL-based approach for particle picking. CASSPER is a
semantic segmentation (SS)-based method that does pixel-level classification. CASSPER
uses InceptionV4 for feature extraction and Full Resolution Residual Network architecture
for semantic segmentation. Additionally, CASSPER has a Graphical User Interface (GUI)
with slide bars that can be adjusted to label all particles, and this is one of the feature that
distinguishes CASSPER from other existing methods. When compared with other existing
tools using common datasets in the community, CASSPER was shown to achieve good
performance.

4.1.3. MicroGraphCleaner

MicroGraphCleaner [87] is another DL-based approach for Cryo-EM cleaning that
discriminates between regions of micrographs that are suitable for particle picking and
regions that are not. Essentially, it computes binary segmentation of micrographs so
that the regions for particle picking can be isolated from areas containing high-contrast
contaminants and other artifacts. MicroGraphCleaner is based on U-net architecture [88]
and was trained on a dataset of 539 manually segmented micrographs. Benchmarking
results showed that MicroGraphCleaner is a useful tool for cryo-EM cleaning. One of the
salient features of MicroGraphCleaner is that it is easy to install.

4.1.4. AutoCryoPicker

Although not based on DL-based approaches, it is worthwhile to mention AutoCry-
oPicker here. Based on three stages: image processing, particle clustering, and particle
picking, AutoCryoPicker is an automated, unsupervised approach for single particle pick-
ing in Cryo-EM micrographs. One of the salient features of AutoCryoPicker is that this
approach is based on an unsupervised ML algorithm: no labeled training data is required,
which is sometimes hard to create in case of Cryo-EM [89].

4.2. Deep Learning-Based Approaches for Prediction of Backbone in Cryo-EM

For Cryo-EM images at lower resolutions such as 5–10 Å, one of the significant
challenges in determining protein structures in Cryo-EM is the prediction of (location of)
backbone. In this regard, recently, Si et al. developed a C-CNN (Cascaded)-based approach
that comprises multiple CNNs, each predicting a specific aspect of a protein’s backbone
structure viz. secondary structure elements, backbone structure, and c-alpha atoms and
then combining the results to predict complete map [90]. On a benchmark set, this method
performed equally well as Rosetta de novo, MAINMAST, and Phenix-based methods.

4.3. Deep Learning-Based Approaches for Prediction of Secondary Structures in Cryo-EM

It is still challenging to detect the secondary structure of a protein using Cryo-EM
images when the spatial resolution of Cryo-EM images is at the medium level (5–10 Å).
Li et al. [91] proposed a CNN-based classifier to predict the probability of labeling for
every individual voxel in a 3D Cryo-EM image with respect to the a-helix, B-sheet, and
background.

Recently, Kihara’s group at Purdue developed a DL-based approach called Emap2Sec [92]
for detecting secondary structures of a protein in Cryo-EM maps of 5–10 Å. Emap2sec [92]
first scans a Cryo-EM map with a voxel of size 11 Å. Similar to Li et al. [91], Emap2sec also
uses a 3D deep-convolutional neural network that consists of a two-phase stacked network
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architecture. The first phase outputs probability values for an input voxel to belong to
alpha-helix, Beta-sheet, or other structures, through a network with convolutional layers, a
maximum-pooling layer, fully connected layers, and a SoftMax layer. The second phase
network takes the probability values from the first phase as an input and outputs the final
refined probabilities through a series of fully connected layers followed by a SoftMax layer.
When tested on experimental Cryo-EM maps, Emap2sec showed a performance accuracy
of around 64.4% on average at each amino acid level.

4.4. Deep Learning Approaches for All-Atom Structure of a PROTEIN COMPLEX

Here, we briefly explain the DeepTracer approach for the all-atom structure of a
protein complex.

DeepTracer

One of the challenges in deriving the structure of a protein based on its 3D Cryo-
EM map is to be able to fit the atoms to the EM map, which has to be done manually
or performed using template-based or homology modeling methods. In that regard,
automatically and accurately determining the molecular structure from a Cryo-EM map is
an important problem.

Information about the macromolecular structure of protein complexes and related
cellular and molecular mechanisms can assist the search for vaccines and drug develop-
ment processes especially in the current scenario of the COVID-19 pandemic. To obtain
such structural information, the authors developed DeepTracer [93], which is a fully auto-
mated deep learning-based method for fast de novo multi-chain protein complex structure
determination from high-resolution Cryo-EM maps.

DeepTracer has a Deep Convolutional Neural Network, specifically U-Net, at its heart
to allow for fast and accurate structure prediction and predicts four pieces of information:
the location of amino acids, location of the backbone, secondary structure prediction, and
amino acid types. The modified U-Net architecture in DeepTracer has four separate U-
Nets, one for each structural aspect of the molecule (atoms, backbone, secondary structure
elements, and amino acid types). The pre-processing step that prepares the Cryo-EM maps
to be fed into the neural network primarily consists of obtaining the voxel.

Researchers applied DeepTracer on a previously published set of 476 raw experimental
Cryo-EM maps and compared the results with a current state-of-the-art method. The
residue coverage increased by over 30% using DeepTracer, and the RMSD value improved
from 1.29 to 1.18 Å. DeepTracer determines the all-atom structure of a protein complex
based solely on its Cryo-EM map and an amino acid sequence with improved accuracy
and efficiency compared to previous methods.

4.5. Deep Learning-Based Approach for Protein Dynamics Information from Cryo-EM

Although understanding of physiological processes that proteins are involved in
requires the exploration of conformational landscapes of protein complexes, structural
biology until recently has been strongly driven by a static-centered view of protein archi-
tecture [94]. One of the major reasons for a lot of interest in Cryo-EM is the possibility
to more broadly explore the conformational landscape of protein and protein complexes
rather than a static-centered view of protein architecture.

To understand the mechanisms underlying the biological function of protein, it is
essential to elucidate the 3D structure and dynamics properties of the protein. Various
studies have been performed to understand/characterize dynamics of proteins. Cryo-EM
is a powerful tool for the investigation of protein structures including analysis of their
dynamics [95].

As protein adopts variable conformations in the specimens in Cryo-EM single-particle
analysis, it can be inferred that the dynamics properties of the proteins are ‘hidden’ in
the reconstructed Cryo-EM maps. Based on this hypothesis, Okuno’s group at Kyoto
University developed DEFMap (Dynamics Extraction From cryo-EM Map) [96], which



Int. J. Mol. Sci. 2021, 22, 5553 22 of 30

is a DL-based approach to extract the dynamics information of proteins from the Cryo-
EM density map associated with the atomic fluctuations that are hidden in Cryo-EM
density maps. The neural network used in DEFMap consists of three 3D convolutional
layers with Leaky Rectified Linear Unit (ReLU) activation, max pooling, and dropout. The
training data consist of a PDB model on which Molecular Dynamics (MD) simulation is
performed to calculate dynamic properties (Root Mean Squared Fluctuation (RMSF) value)
and the corresponding Cryo-EM data. Simultaneously, the 3D-CNN model learns the
relationship between Cryo-EM map (density data) and the MD-derived RMSF. In the test
phase, the trained model predicts protein dynamics values given the Cryo-EM density map.
Essentially, the DEFMap using cryo-EM density data provides dynamics that correlate well
with MD simulations and experimental data. DEFMap may help researchers access the
dynamic properties of biological molecules.

4.6. Tools for Generation/Refinement of EM Map

Here, we briefly describe two tools for the generation/refinement of an EM map.

4.6.1. EMRefiner

Zhang’s group recently developed EMRefiner [97], a Monte Carlo-based method for
protein structure refinement and determination from Cryo-EM density maps. Although
this is not a DL-based approach, this tool could be quite useful for the community. The
pipeline consists of three consecutive steps of structure-to-density map superposition,
rigid-body fragment adjustments, and atomic-level structure refinement. During the
refinement simulations, the backbone structures are kept flexible with movements guided
by a composite of physics- and knowledge-based force field, integrated with Cryo-EM
density map data. The pipeline is fully automated and suitable for the protein targets with
low-to-medium resolution Cryo-EM density map data.

In addition, Zhang’s group also developed DEMO-EM [98], an automatic tool to
construct multi-domain structures from cryo-EM maps. As in a traditional protein structure
prediction problem, the field is moving toward the determination/prediction of a multi-
domain protein structure.

4.6.2. SuperEm

Kihara’s group at Purdue recently developed a GAN (Generative Adversarial Net-
work) [49]-based approach called SuperEM [99] to generate (or refine) an experimental
EM Map in the resolution range of 3 to 6 Å. Owing to the success of GANs for improving
other image resolution problems [100], SuperEm uses GANs to improve the resolution
of experimental EM maps. The input to SuperEM is the low-resolution map, and the
output is a higher-resolution map. SuperEM consists of two simultaneously trained NNs, a
generator and discriminator. As in other GANs, the task here is to make the generator of
SuperEM able to output high-resolution EM maps that are indistinguishable from actual
high-resolution maps by the discriminator network. Simultaneously, the discriminator is
trained to distinguish between the generated and real high-resolution maps. An average
of 1 A resolution improvement was observed by SuperEM on a test dataset of 36 exper-
imental EM maps. The training dataset is a low-resolution experimental EM map and a
corresponding high-resolution EM map that was simulated from the associated atomic
detail of the proteins. The inputs to GAN are a pair of cubes of volume (length = 25 Å)
that are extracted from the EM maps. The generator network consists of a series of ResNet
blocks and Discriminator consists of a series of CNN network.

4.6.3. Summary

With the recent advancements in the Cryo-EM technology, Cryo-EM is becoming a
leading technology for determining the protein structure. There are intermediate steps
(viz. secondary structure prediction, backbone structure prediction, single particle picking)
involved in the construction of a high resolution 3D Cryo-EM maps. Here, we described
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some DL-based advances in various steps such as single-particle picking, back-bone predic-
tion, secondary structure prediction, EM density map refinement, and all-atom prediction
for protein complex for Cryo-EM based protein structure determination.

We summarize all the methods described in the article in Table 1, highlighting the Deep
Learning architecture used, the strength/uniqueness of the approach, and the availability
of source code (in Github)/web server.

Table 1. Summary of tools: category, architecture, strength/uniqueness, and availability of the tools described in this article.

Category Tool Architecture Strength Code/Web Server
(Last Accessed on 10 May 2021)

End-to-end
structure

prediction

AlQuarishi’s
end-to-end
model [14]

Recurrent
geometric

network (RGN)

Predicted novel folds without co-evolutionary
data, it achieved state-of-the-art accuracy

https:
//github.com/aqlaboratory/rgn

NEMO [76] DL First end-to-end Deep Learning-based
approach NA

AlphaFold 2
Transformers

(attention
mechanism)

Evolutionary related sequences and MSA are
fetched into transformers to accurately predict

protein 3D structure
NA

Real-valued
distance

prediction

PDNET [19] ResNet A fully open-source and light framework for
distance, contact, and distogram prediction

https:
//github.com/ba-lab/pdnet/

GAN-based
method [18] GAN+ ResNet

One of the initial efforts to predict real-valued
distance maps; GANs developed to predict

real-valued distance maps

https://github.com/Wenze-
Codebase/DistancePrediction-

Protein-GAN.git
http://structpred.life.tsinghua.
edu.cn/continental.html [W]

Xu’s method [62] ResNet Predicts not only real-valued distance but also
mean and deviation of a distance for folding NA

REALDIST [17] ResNet
Highly accurate distance prediction method
focusing only on real-valued distance map

predictions and distance-guided 3D modeling

https:
//github.com/ba-lab/realdist

DeepDist [16] ResNet
Predicts both distograms and real-valued

distances and delivers high-accuracy
distance maps

https://github.com/multicom-
toolbox/deepdist

RaptorX [11,43] ResNet The original RaptorX method upgraded to
predict distograms

http://raptorx.uchicago.edu/
AbInitioFolding/ [W],

https://github.com/j3xugit/
RaptorX-Contact

ProSPr [15] ResNet
An open-source protein distance prediction

network inspired from the AlphaFold
implementation

https://github.com/
dellacortelab/prospr

Distogram
(Smaller
Distance

range)
prediction

trRosetta [56] ResNet
A fully Tensorflow-based open-source
implementation to predict distograms;

demonstrated to outperform AlphaFold

https:
//github.com/gjoni/trRosetta
https://yanglab.nankai.edu.cn/

trRosetta/ [W]

DeepH3 [74] ResNet
It predicts inter-residue distances and

orientation from antibody heavy and light
chain sequences

https://github.com/Graylab/
deepH3-distances-orientations

AttentiveDist [61] RestNet with
Attention

It uses MSAs generated with different E-values
to increase the co-evolutionary information

provided to the model

https://github.com/kiharalab/
AttentiveDist

DISTEVAL [101] A tool and web server for evaluating predicted
real-values distances, distograms, and contacts

https:
//github.com/ba-lab/disteval

QDeep [68] ResNets
Distance-based single-model protein quality

estimation method based on residue-level
ensemble error classifications.

https://github.com/
Bhattacharya-Lab/QDeep

ResPRE [44]
Deep residual
convolutional

neural network

ResPRE is better than the methods that are built
on co-evolution coupling analyses or a

meta-server based neural network

https://zhanglab.ccmb.med.
umich.edu/ResPRE [W],

https:
//github.com/leeyang/ResPRE.

Contact map
prediction MapPred [45] Deep ResNet

Covariance features derived from MSA are
used to predict contact maps, distance maps,

and distance distribution

http://yanglab.nankai.edu.cn/
mappred/ [W]

DEEPCON [47] ResNet, U-Net,
and FCN

Compares various deep learning architectures
for protein contact prediction

https://github.com/
badriadhikari/DEEPCON/

DeepECA [48] CNN with ResNet
Structures predicted by DeepECA, based on

contacts and SS, are more accurate than existing
evolutionary coupling analysis methods

https://github.com/tomiilab/
DeepECA

https://github.com/aqlaboratory/rgn
https://github.com/aqlaboratory/rgn
https://github.com/ba-lab/pdnet/
https://github.com/ba-lab/pdnet/
https://github.com/Wenze-Codebase/DistancePrediction-Protein-GAN.git
https://github.com/Wenze-Codebase/DistancePrediction-Protein-GAN.git
https://github.com/Wenze-Codebase/DistancePrediction-Protein-GAN.git
http://structpred.life.tsinghua.edu.cn/continental.html
http://structpred.life.tsinghua.edu.cn/continental.html
https://github.com/ba-lab/realdist
https://github.com/ba-lab/realdist
https://github.com/multicom-toolbox/deepdist
https://github.com/multicom-toolbox/deepdist
http://raptorx.uchicago.edu/AbInitioFolding/
http://raptorx.uchicago.edu/AbInitioFolding/
https://github.com/j3xugit/RaptorX-Contact
https://github.com/j3xugit/RaptorX-Contact
https://github.com/dellacortelab/prospr
https://github.com/dellacortelab/prospr
https://github.com/gjoni/trRosetta
https://github.com/gjoni/trRosetta
https://yanglab.nankai.edu.cn/trRosetta/
https://yanglab.nankai.edu.cn/trRosetta/
https://github.com/Graylab/deepH3-distances-orientations
https://github.com/Graylab/deepH3-distances-orientations
https://github.com/kiharalab/AttentiveDist
https://github.com/kiharalab/AttentiveDist
https://github.com/ba-lab/disteval
https://github.com/ba-lab/disteval
https://github.com/Bhattacharya-Lab/QDeep
https://github.com/Bhattacharya-Lab/QDeep
https://zhanglab.ccmb.med.umich.edu/ResPRE
https://zhanglab.ccmb.med.umich.edu/ResPRE
https://github.com/leeyang/ResPRE
https://github.com/leeyang/ResPRE
http://yanglab.nankai.edu.cn/mappred/
http://yanglab.nankai.edu.cn/mappred/
https://github.com/badriadhikari/DEEPCON/
https://github.com/badriadhikari/DEEPCON/
https://github.com/tomiilab/
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Table 1. Cont.

Category Tool Architecture Strength Code/Web Server
(Last Accessed on 10 May 2021)

ContactGAN [50] GAN GAN-based denoising framework to push the
limit of protein contact prediction

https://github.com/largelymfs/
deepcontact

InterPretContactMap
[70]

Attention based
CNN

Attention mechanisms was used to improve the
interpretability of deep learning contact

prediction models.

https://github.com/jianlin-
cheng/InterpretContactMap

TripletRes [54] ResNet
TripletRes model inputs are raw

co-evolutionary features, and it predicts
high-accuracy contact maps

https://zhanglab.ccmb.med.
umich.edu/TripletRes/ [W]

Overall
protein

structure
prediction
pipeline

AlphaFold [12] Deep Neural
Network

Accurate predictions of the distances between
pairs of residues, which convey more

information about the structure than contact
predictions

https://github.com/deepmind/
deepmind-research/tree/master/

alphafold_casp13

trRosetta [56] ResNet
A fully Tensorflow-based open-source
implementation to predict distograms;

demonstrated to outperform AlphaFold

https:
//github.com/gjoni/trRosetta
https://yanglab.nankai.edu.cn/

trRosetta/
[W]

RaptorX [11,43] ResNet The original RaptorX method upgraded to
predict distograms

http://raptorx.uchicago.edu/
AbInitioFolding/ [W],

https://github.com/j3xugit/
RaptorX-Contact

MULTICOM [75]
Deep

Convolutional
neural network

Predicts protein structure, secondary structure,
solvent accessibility, disorder region, as well as

contact map

http://sysbio.rnet.missouri.edu/
multicom_cluster/ [W]

C-I-TASSER and
C-QUARK [64]

Deep residual
CNN

C-I-TASSER is derived from I-TASSER for
high-accuracy protein structure and function

predictions.

https://zhanglab.ccmb.med.
umich.edu/C-I-TASSER/ [W]

Quality
Assessment

(QA) and
refinements

QDeep [68] ResNets
QDeep is a new distance-based single-model
protein quality estimation method based on
residue-level ensemble error classifications.

https://github.com/
Bhattacharya-Lab/QDeep

ResNetQA [69] ResNet It is a new single-model-based QA method for
both local and global quality assessment.

https://github.com/AndersJing/
ResNetQA

DeepAccNet [72] 3D Convolution,
2D convolutions

DeepAccNet estimates per-residue accuracy
and residue–residue distance signed error in
protein models and uses these predictions to
guide Rosetta protein structure refinement.

https://github.com/hiranumn/
DeepAccNet

Single Particle
picking

or
cryo-EM
cleaning

PIXER [85] Deep Neural
Network

PIXER is a fully automated particle-selection
method, it can acquire accurate results under

low-SNR conditions within minutes.

https://github.com/
ZhangJingrong/PIXER

AutoCryoPicker
[89]

Unsupervised ML
algorithm

AutoCryoPicker can recognize particle-like
objects from noisy Cryo-EM micrographs

without the need of labeled training data, it is a
useful tool for Cryo-EM protein structure

determination

https://github.com/jianlin-
cheng/AutoCryoPicker

MicroGraphCleaner
[87] U-net architecture

MicrographCleaner is a tool that automatically
discriminates between regions of micrographs

which are suitable for particle picking, and
those that are not.

https:
//github.com/rsanchezgarc/

micrograph_cleaner_em

CASSPER [86] InceptionV4,
Residual Network

CASSPER is the first particle picking tool
implementing the Residual Network
architecture for efficient pixel-wise

classification.

https:
//github.com/airis4d/CASSPER

Structure
Prediction in
Cryo-EM etc.

Dong Si Method
[90] Cascade CNN

It predicts secondary structure elements,
backbone structure, and Cα atoms, combining

the results of each to produce a complete
prediction map.

https://github.com/DrDongSi/
Ca-Backbone-Prediction

Emap2sec [92] CNN
Emap2sec identifies the secondary structures of

proteins in Electron Microscopy maps at
resolutions of between 5 and 10 Å.

https://github.com/kiharalab/
Emap2sec

DeepTracer [93]
Convolutional

Network
Architecture

DeepTracer determines the all-atom structure
of a protein complex based on a Cryo-EM map

and amino acid sequence.
https://deeptracer.uw.edu/home

DEFMap [96] 3D convolution
DEFMap directly extracts the dynamics

associated with the atomic fluctuations that are
hidden in Cryo-EM density maps.

https:
//github.com/clinfo/DEFMap

https://github.com/largelymfs/deepcontact
https://github.com/largelymfs/deepcontact
https://github.com/jianlin-cheng/InterpretContactMap
https://github.com/jianlin-cheng/InterpretContactMap
https://zhanglab.ccmb.med.umich.edu/TripletRes/
https://zhanglab.ccmb.med.umich.edu/TripletRes/
https://github.com/deepmind/deepmind-research/tree/master/alphafold_casp13
https://github.com/deepmind/deepmind-research/tree/master/alphafold_casp13
https://github.com/deepmind/deepmind-research/tree/master/alphafold_casp13
https://github.com/gjoni/trRosetta
https://github.com/gjoni/trRosetta
https://yanglab.nankai.edu.cn/trRosetta/
https://yanglab.nankai.edu.cn/trRosetta/
http://raptorx.uchicago.edu/AbInitioFolding/
http://raptorx.uchicago.edu/AbInitioFolding/
https://github.com/j3xugit/RaptorX-Contact
https://github.com/j3xugit/RaptorX-Contact
http://sysbio.rnet.missouri.edu/multicom_cluster/
http://sysbio.rnet.missouri.edu/multicom_cluster/
https://zhanglab.ccmb.med.umich.edu/C-I-TASSER/
https://zhanglab.ccmb.med.umich.edu/C-I-TASSER/
https://github.com/Bhattacharya-Lab/QDeep
https://github.com/Bhattacharya-Lab/QDeep
https://github.com/AndersJing/ResNetQA
https://github.com/AndersJing/ResNetQA
https://github.com/hiranumn/DeepAccNet
https://github.com/hiranumn/DeepAccNet
https://github.com/ZhangJingrong/PIXER
https://github.com/ZhangJingrong/PIXER
https://github.com/jianlin-cheng/AutoCryoPicker
https://github.com/jianlin-cheng/AutoCryoPicker
https://github.com/rsanchezgarc/micrograph_cleaner_em
https://github.com/rsanchezgarc/micrograph_cleaner_em
https://github.com/rsanchezgarc/micrograph_cleaner_em
https://github.com/airis4d/CASSPER
https://github.com/airis4d/CASSPER
https://github.com/DrDongSi/Ca-Backbone-Prediction
https://github.com/DrDongSi/Ca-Backbone-Prediction
https://github.com/kiharalab/Emap2sec
https://github.com/kiharalab/Emap2sec
https://deeptracer.uw.edu/home
https://github.com/clinfo/DEFMap
https://github.com/clinfo/DEFMap
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Table 1. Cont.

Category Tool Architecture Strength Code/Web Server
(Last Accessed on 10 May 2021)

Cryo-EM

EMRefiner [97] Monte Carlo
It is a Monte Carlo-based method for protein

structure refinement and determination using a
Cryo-EM density map

https://zhanglab.ccmb.med.
umich.edu/EM-Refiner/

DEMO -
EM [98]

Deep Neural
Network

DEMO-EM, does structure assembly of
multi-domain proteins from Cryo-EM density

maps.

https://zhanglab.ccmb.med.
umich.edu/DEMO-EM/ [W]

SuperEM [99] GAN
SuperEM captures protein structure

information from Cryo-EM maps more
effectively than raw maps.

https://github.com/kiharalab/
SuperEM

Multi Domain
Protein

Structures
FUpred [102] ResNet

FUpred has better ability of domain boundary
prediction than threading-based and machine

learning-based methods.

https://zhanglab.ccmb.med.
umich.edu/FUpred/ [W]

W: web server.

5. Future Outlook and Conclusions

We are at an exciting era in terms of protein structure prediction approaches especially
due to the advancement in the field made possible by using Deep Learning. As discussed
earlier, especially end-to-end Deep Learning approaches are probably going to be some of
the more exciting developments in the future. Although we are likely to see advances in
every aspects of protein structure pipelines over the next decade or so, we envision that
the most advances will be in the following arena.

5.1. Better Deep Learning-Based Algorithms for MSA Generation

All protein structure prediction methods use multiple sequence alignments (MSAs)
as input, and it is what seems to be driving the improvement in the accuracy of the
predicted structures. Zhang’s group developed and released DeepMSA [20] as an effort to
build a single pipeline for generating high-quality and deep alignments and also to find
remotely homologous sequences in the case of new (difficult) sequences. Searching for
homologous sequences using tools such as HHblits [30] and JackHMMER [31] against large
metagenomic sequences will soon become the bottleneck in the future structure prediction
methods. This is one area that we are yet to experience the vast potential of DL-based
approaches. If the vast amount of sequence information in various sequence databases can
be captured in a DL model, multiple sequence alignments could be generated fast, opening
up a new set of possibilities to further accelerate the progress in the field.

5.2. Transformer Based Open-Source Approaches for Protein Structure Prediction

During the CASP14 conference in 2020, after DeepMind presented that AlphaFold2
does not use distograms or real-valued distance maps as intermediate steps for structure
prediction, many researchers questioned if contact/distogram/real-valued distance maps
were a wrong direction in the first place. However, since DeepMind extracted distance
map predictions to investigate and explain what their models were learning, many others
suggest that distogram prediction real-valued distance prediction can be extremely useful
to ‘explain’ what the deep learning models have learned. During the conference, some also
suggested that the distogram/distance predictions could be useful when predicted between
domains. In the future, if distograms/distance maps are gradually understood to be a
passage to understand what deep learning models learn, methods such as DISTEVAL [101]
will also be found useful for qualitatively assessing distance maps to study the potential
and limitations of structure prediction methods. A big quest in the field is to develop
open-source implementations of methods that are the same or similar to AlphaFold2. With
open-source and free methods, anyone can advance the research or develop commercial
applications. Another quest is to learn how these advances in structure prediction can
be exploited to solve other problems in the domain of protein modeling such as domain–
domain docking and interaction prediction.

https://zhanglab.ccmb.med.umich.edu/EM-Refiner/
https://zhanglab.ccmb.med.umich.edu/EM-Refiner/
https://zhanglab.ccmb.med.umich.edu/DEMO-EM/
https://zhanglab.ccmb.med.umich.edu/DEMO-EM/
https://github.com/kiharalab/SuperEM
https://github.com/kiharalab/SuperEM
https://zhanglab.ccmb.med.umich.edu/FUpred/
https://zhanglab.ccmb.med.umich.edu/FUpred/
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5.3. Development of DL-Based Approaches for Multi-Domain Protein Structure Prediction

As stated by the organizers of CASP, the single-domain protein structure prediction
problem is solved to some extent. In this new scenario, we are likely to see new trends in
DL-based approaches for the prediction of multi-domain protein structures. In that regard,
correct domain boundary assignment from sequence is a critical step toward accurate multi-
domain protein structure prediction. Recently, Zhang’s group developed FUpred [102] to
predict domain boundaries using contact maps and co-evolutionary precision matrices in a
deep residual neural network framework. In the heart of this algorithm is the notion that
domain boundaries are the locations that maximize the number of intra-domain contacts
and minimize the number of inter-domain contacts. We are likely to see more methods
that use DL to predict domain boundaries as well as modeling of multi-domain protein
structures.

5.4. Explainable AI Approaches

As in other fields, the black-box nature of deep learning models has been one of the
major hesitation/roadblocks for more widespread implementation/usage of DL-based
approaches in Protein Structural bioinformatics. In that regard, the new trend in the field is
to develop xAI (explainable AI) [103] approaches. In that regard, Cheng’s group recently
developed InterPretContactMap [53] that combines deep neural network with an attention
mechanism to enhance the explainability of the protein contact prediction. Not only is it
very important to be able to harness the advances the power of DL algorithms to fill the
existing protein sequence–structure gap, it is equally important to advance the knowledge
base about the protein sequence–structure–evolution relationship. xAI may turn to be one
of the approaches to arrive there.
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