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ABSTRACT Pollution from nutrients in aquatic habitats has been linked to in-
creases in disease vectors, including mosquitoes and other pestiferous insects. One
possibility is that changes in mosquito microbiomes are impacted by nutrient en-
richments and that these changes affect various traits, including larval development,
susceptibility to larval control agents, and susceptibility of the adult mosquitoes to
pathogens. We tested this hypothesis using field mesocosms supplemented with
low- and high-organic-nutrient regimens and then sampled microbial communities
associated with the naturally colonizing Culex nigripalpus mosquito vector. By high-
throughput sequencing of 16S rRNA gene sequences, we found no significant differ-
ences in overall microbial communities associated with sampled mosquitoes, despite
detecting discernible differences in environmental variables, including pH, dissolved
oxygen, and nutrient amendments. Nevertheless, indicator species analysis revealed
that members of the Clostridiales were significantly associated with mosquitoes that
originated from high-nutrient enrichments. In contrast, members of the Burkholderia-
les were associated with mosquitoes from the low-nutrient enrichment. High bacte-
rial variability associated with the life stages of the C. nigripalpus was largely unaf-
fected by levels of nutrient enrichments that impacted larval microbial resources,
including bacteria, ciliates, and flagellates in the larval environments.

IMPORTANCE Mosquito microbiota provide important physiological and ecological
attributes to mosquitoes, including an impact on their susceptibility to pathogens,
fitness, and sensitivity to mosquito control agents. Culex nigripalpus mosquito popu-
lations transmit various pathogens, including the Saint Louis and West Nile viruses,
and proliferate in nutrient-rich environments, such as in wastewater treatment wet-
lands. Our study examined whether increases in nutrients within larval mosquito de-
velopmental habitats impact microbial communities associated with C. nigripalpus
mosquitoes. We characterized the effects of organic enrichments on microbiomes as-
sociated with C. nigripalpus mosquitoes and identified potential bacterial microbiota
that will be further investigated for whether they alter mosquito life history traits
and for their potential role in the development of microbial-based control strategies.

KEYWORDS aquatic chemistry, bacteria, disease vectors, food web, life stages,
microbiome, mosquito, pollution

Nutrient pollution due to excess use of nitrogen and phosphorus can lead to an
increased risk of vector-borne diseases (1–5). Previous field studies reported an

increase in the abundance of mosquito vectors with an increase in nutrients in
mosquito larval developmental sites (6–11). Moreover, increases in nutrient enrich-
ments in mosquito larval developmental sites have been known to reduce the efficacy
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and persistence of larval control agents (12–15). Higher doses of mosquito larvicides are
often required to have a significant reduction in mosquito larval population in organic-
rich environments, suggesting a higher economic cost of mosquito control in polluted
environments than in less polluted environments.

Nutrient enrichments are generally thought to cause changes in microbial commu-
nities, including bacteria, ciliates, flagellates, microalgae, and rotifers that are consid-
ered essential for larval mosquito development (9, 10, 16), and could alter aquatic food
webs in an unpredictable manner. For example, elevation of nutrients in freshwater
streams altered invertebrate predator-prey relationships from linear to curvilinear (17,
18). However, the underlying mechanisms of nutrients and mosquito vector interac-
tions are not fully understood.

Culex nigripalpus Theobald is a major vector of Saint Louis encephalitis virus and is
responsible for transmitting other pathogens in the southeastern United States, includ-
ing West Nile virus (19, 20). Culex nigripalpus is among the dominant mosquito species
found during early succession stages of newly developed aquatic habitats, including
following rainfall and in polluted treatment wetlands (21–24). Significant genetic
variations are known to exist among various populations of C. nigripalpus (25). Varia-
tions in abundance among larval developmental sites (21), susceptibility to infection
and transmission of pathogens among geographic populations (26), and susceptibility
to organophosphate-based pesticides (27) have also been documented. However, little
is known about whether nutrient-mediated changes, including water quality variables
and microbial consortia found in larval developmental habitats, can influence the
mosquito-associated microbiomes for C. nigripalpus developing in different environ-
ments.

Bacteria associated with mosquitoes are found to be crucial sources of nutrition for
successful larval development (28–31), affect mosquito susceptibility by various patho-
gens (32–35), impact resistance to pesticides (36, 37), and influence mosquito ovipo-
sition (38). As a result, understanding the effects of nutrients on microbial communities
associated with mosquitoes is critical for disentangling the underlying causes of
variability in disease transmission, variations in mosquito production among various
aquatic habitats, and lack of susceptibility to pesticides. In addition, this knowledge is
important for the development of novel microbial (e.g., Wolbachia) mosquito control
strategies. We hypothesized that different nutrient regimens in larval habitats impact
microbial communities associated with mosquitoes developing during the succession
of these habitats. In order to test this hypothesis, we characterized microbiota associ-
ated with C. nigripalpus developing in two different resource (nutrient) regimens under
natural field conditions. In addition, we characterized microbial communities in differ-
ent life stages of C. nigripalpus to identify potential symbionts associated with all life
stages.

RESULTS
Environmental variables in the water column. The water quality indicators dif-

fered significantly between two contrasting larval environments (i.e., high and low
nutrients) in outdoor experimental mesocosms (Fig. 1). Significantly lower pH values
(Fig. 1A [F1, 4 � 55, P � 0.002]) and dissolved oxygen concentrations (Fig. 1B [F1, 4 �

25, P � 0.007]) were found in high-nutrient mesocosms. In contrast, higher chemical
oxygen demand (COD) was found in the high-nutrient mesocosms (mean � standard
error [SE], 239 � 45.8 mg/liter) compared to the low-nutrient mesocosms (143 �

8 mg/liter) on day 7, although the difference was not statistically significant (P � 0.107).
A similar trend but lower concentration was observed on day 9, with 195 � 19.8
mg/liter and 150 � 18.6 mg/liter in the high- and low-nutrient treatments, respectively.

A higher concentration of total nitrogen (significance tested after Bonferroni cor-
rection) was also found in high-nutrient treatments than in the low-nutrient treatments
and was variable across time (Fig. 1C [F1, 4 � 5.8, P � 0.07]). Similarly, a higher total
phosphorus concentration was found in the high- than in the low-nutrient-treated
mesocosms (Fig. 1D [F1, 4 � 4.7, P � 0.12]). Temperature and light intensity in the water
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column varied temporally but were relatively uniform among mesocosms and were not
significantly affected by nutrient enrichments (data not shown).

The abundances of small (0.2- to 1.999-�m equivalent spherical diameter [ESD]) and
large (2- to 60-�m ESD) organic particles differed significantly between the two
treatments on the first day that the mesocosms were exposed to egg-laying female
mosquitoes (Fig. 2). Mean total abundance of small particles was significantly greater in
high-nutrient treatments than low-nutrient treatments (Fig. 2A and B [F1, 15 � 10.5,
P � 0.005]). Similarly, the mean abundance of large particles was approximately 5-fold
greater in the high-nutrient treatments than in the low-nutrient treatments (Fig. 2C and
D [F1, 15 � 14.6, P � 0.002]).

Microeukaryote abundance. Microscopic examination of water samples for mi-
croeukaryotes (i.e., ciliates, flagellates, and rotifers) revealed a significant difference in
the combined abundance of these microorganisms between the two treatments (Fig. 3

FIG 1 Water quality parameters. Mean � SE (n � 3) pH, dissolved oxygen, total nitrogen, and total
phosphorus in water of the low (Œ)- and high (�)-nutrient treatments of differentially treated larval
habitats (mesocosms). The x axis represents time in days after mesocosms were uncovered and Culex
mosquitoes laid egg rafts on water. The y axis denotes the concentration or values of water quality
parameters. For example, the mesocosms were exposed to egg-laying female mosquitoes on 2 Novem-
ber 2015.

FIG 2 Heterotrophic and autotrophic particle (cell) abundance in water column. Small (0.2- to 1.999-�m
equivalent spherical diameter [ESD]) (A) and large (2- to 60-�m ESD) (C) particle size distribution in high
(solid lines)- and low (dashed lines)-organic-nutrient-enriched mesocosms, and mean � SE total particle
abundance (n � 3) of small (B) and large (D) particle sizes in water of low- and high-nutrient treatments
on day 0.
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[F1, 16 � 24.1, P � 0.0002]) and varied across time (F2, 15 � 4.3, P � 0.04). Significantly
greater numbers of microeukaryotes were found in high-nutrient treatments on days 0
and 7, but that difference decreased by day 9.

Mosquito larva abundance. Microscopic examination of the dipper samples re-
vealed no significant differences in total Culex larval abundance between the two
treatments at either 5 days or 7 days after the mesocosms were exposed to naturally
occurring mosquitoes (F1, 4 � 0.006, P � 0.9). The mean � SE number of C. nigripalpus
larvae found in the low-nutrient treatments was 41 � 10, compared with the high-
nutrient treatments, with 32 � 27 larvae per dip sample. Very few individuals of the
southern house mosquito Culex quinquefasciatus Say were observed on this sampling
date in the low (average; �1 larvae)- and high (~4 larvae per dipper sample)-nutrient
treatments. A similar trend was observed a week after uncovering the mesocosms (data
not shown).

Diversity of bacterial communities in mosquitoes from different nutrient treat-
ments. A total of 4,859,297 sequences in 1,751 operational taxonomic units (OTUs)
were generated from 48 mosquito samples, including 6 half-egg rafts, 9 early and 12
late instar larvae, 7 pupae, and 14 newly (�1 day after eclosion) emerged non-blood-
fed female adults of C. nigripalpus. Assembled and quality-checked sequences had a
mean length of 416 bases with a mean overlap of 49.8 bases. On average, 83,408
sequences from egg rafts, 106,809 from early instar larvae, and 116,281 from late instar
larvae, 89,430 from pupae, and 83,107 from female adults per sample were obtained.
These were classified into 28 bacterial phyla with Proteobacteria, Firmicutes, Bacte-
roidetes, Tenericutes, Actinobacteria, and Acidobacteria dominating the bacterial phyla
found associated with this mosquito species (Fig. 4). Proteobacteria accounted for
nearly 70% of sequences, followed by Firmicutes, with 15% of all sequences. Approxi-
mately 56% of the sequences were identified as 240 genera, with Arcobacter (Epsilon-
proteobacteria: Campylobacteraceae) being the most abundant (29%) genus, followed
by Thorsellia (7%). Few archaeal sequences (0.002%) were recovered from this mosquito
species, and those were primarily from female adults.

The principle coordinate (PCoA) ordinations based on weighted UniFrac measures
revealed no significant differences in bacterial community composition found among
mosquitoes developing in low- and high-nutrient treatments (Fig. 5A [multiresponse
permutation procedure [MRPP; A � 0.005; P � 0.081]). The greatest variation (indicated
by principal coordinate 1 [PC1]) detected among samples was attributed to the higher
abundance of OTUs corresponding to Arcobacter (OTU 0) and an unidentified species of
Comamonadaceae (OTU 2). Arcobacter (Epsilonproteobacteria) was mostly associated
with larvae of C. nigripalpus, whereas the unidentified species in Comamonadaceae
(Betaproteobacteria) was found associated with all life stages of C. nigripalpus, including
egg rafts. Differences in bacterial communities among larval samples from low- and
high-nutrient treatments were not significant (MRPP; A � 0.018; P � 0.084).

FIG 3 Microeukaryote abundance in water column. Mean � SE (n � 3) abundance of ciliate protists,
flagellates, and rotifers in the mesocosms with high (�)- and low (Œ)-nutrient treatments on days 0, 4,
and 9 after egg laying by mosquitoes. Error bars not seen are contained within the symbols.
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Indicator species analysis revealed that members of Clostridiales dominated bacterial
communities associated with mosquitoes developing in high-nutrient regimens (indi-
cator values � 0.5 to 0.8; P � 0.01), whereas mosquitoes from low-nutrient treatments
were enriched with Burkholderiales (see Table S1 in the supplemental material [indicator
value � 0.48; P � 0.01]). Although differences among stages were apparent, indicator
species analysis by life stages revealed that Comamonadaceae OTUs were strongly

FIG 4 Dominant bacterial phyla found in different stages. Shown are bacterial phyla in eggs, early and late larval
instars, pupae, and newly emerged female adults of Culex nigripalpus developed under the field conditions. Only
phyla with an average abundance of �0.1% were included. Other unclassified sequences accounted for 0.3%.
Archaea and an additional 16 phyla accounted for �0.1%. Egg samples 1, 4, and 5, early instar samples 7, 10, 11,
and 18, late instar samples 14, 18, 20, 41, 42, 46, and 47, pupa samples 20 and 38, and female adult samples 32
to 36 were taken from high-nutrient regimens. The remaining 27 samples were derived from low-nutrient
regimens.

FIG 5 PCoA ordination based on the weighted UniFrac distance metric. Shown is ordination of microbial communities associated with
Culex nigripalpus mosquitoes colored by either nutrient treatment level (A) or life stage (B). The effects of nutrients on microbial
communities associated with the mosquitoes were not substantial (MRPP; A � 0.005, P � 0.08) between the two treatments. However,
the microbiota in the different life stages differed weakly but significantly (MRPP; A � 0.08, P � 0.001). Large open circles indicate the
10 most abundant bacterial taxa associated with samples.
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associated with all life stages, except pupal samples (see Table S1 and Fig. S1 in the
supplemental material).

Nonmetric multidimensional scaling (NMDS) analysis based on Bray-Curtis distance
measures revealed significant differences between microbiota samples that originated
from different life stages of mosquitoes (Fig. 5B; see Fig. S2 in the supplemental
material [MRPP; A � 0.08; P � 0.001]). Microbial samples from female adults were
significantly separated from the immature stages and egg rafts of C. nigripalpus.

Nine core taxa were found in all samples of all life stages of C. nigripalpus, including
Thorsellia anophelis OTU 4, Oleomanas OTU 7, two unidentified species (OTUs 1 and 2)
of Comamonadaceae, two Hydrogenophaga species (OTUs 18 and 1537), an unidentified
species (OTU 71) of Cyanobacteria, an unidentified species (OTU 8) of Firmicutes, and an
unidentified species (OTU 3) of Tenericutes (see Fig. S3 in the supplemental material).

Bacterial communities in egg rafts of Culex nigripalpus. Bacterial sequences from
egg rafts of C. nigripalpus grouped into 530 OTUs that were dominated by an unknown
species (OTU 2) of Comamondaceae (35%), followed by Agrobacterium OTU 10 (12%)
(see Table S2 and Fig. S3 in the supplemental material).

Bacterial communities in immature stages of Culex nigripalpus. An Epsilonpro-
teobacteria member, Arcobacter (31%), and two OTUs corresponding to species in
Betaproteobacteria (an unknown species in Comamondaceae [14%] and Vogesella [Neis-
seriaceae]) dominated bacterial communities associated with early larval instars. Thor-
sellia anophelis was also recovered from the early instar stage but in a much lower
(�1%) proportion (see Table S3 in the supplemental material). Bacteria in late instar
larvae were also dominated by Arcobacter (27%), Thorsellia anophelis (10.5%), and an
unknown genus of Mollicutes (10%). Hydrogenophaga (14%), Thorsellia (11%), and an
unknown species of Comamondaceae (10%) dominated bacterial communities in pupal
samples.

Bacterial communities in newly emerged Culex nigripalpus female adults.
Bacteria in newly emerged (�12 h after eclosion) non-blood-fed female adults reared
from egg to adults outdoors were enriched with an unknown species (OTU 2) of
Comamondaceae (20%), Oleomonas (7%), and Arcobacter (4.6%) (Table S3). Wolbachia
was also found in 2 of the 14 adult samples, constituting 91% and �1% of their
respective sequences but was absent in 12 other samples. These results suggest a likely
inclusion of Culex quinquefasciatus, which is a known host of Wolbachia in those
samples during DNA extraction. Other notable species were recovered at lower pro-
portions (�1%) and include Thorsellia anophelis.

DISCUSSION
Effects of organic enrichments on microbial communities associated with Culex

nigripalpus. We tested the hypothesis that organic nutrient enrichment, a primary
factor for eutrophication and pollution, would alter the microbial larval resources and
thereby impact microbial communities associated with Culex disease vectors in repli-
cated outdoor mesocosm experiments. Results of our study revealed that a significant
increase in abundance of sestonic particles and planktonic microeukaryotes (i.e., cili-
ates, flagellates, and rotifers) in treatments with high-nutrient enrichments were in
agreement with the bottom-up resource hypothesis: i.e., increasing nutrients will
increase the abundance of both autotrophic and heterotrophic microorganisms (39,
40). This was further corroborated with the increase in chemical oxygen demand, a
predictor of the amount of organic material available for oxidation, and microbial
consumption in the high-nutrient treatments compared to low-nutrient treatments in
this study. Total concentrations of nutrients increased immediately following the
uncovering of the mesocosms, suggesting autotrophic and aerobic microbial coloni-
zation of the mesocosms.

Despite the apparent differences in microbiota and chemical variables in the water
column (Fig. 1 to 3), microbial communities associated with mosquitoes developing in
these two larval environments were not affected significantly. This could be due to a
combination of factors, including food web-mediated factors, such as differences in the
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abundance of planktonic bacteriovores (i.e., flagellates, ciliates, and rotifers), and the
remarkable variability in microbial communities among samples within each treatment
group. Predation of bacteria by planktonic bacteriovores has been known to be intense
(41), and these groups might have affected the bacterial diversity in the water column,
a feeding zone of Culex mosquitoes. Alternatively, Culex larvae are considered omni-
vores, feeding on a variety of lower trophic microorganisms, including bacteria (16), and
therefore the impact on bacterial diversity in the mosquitoes may not necessarily be
affected by increases in bottom-up resources. A previous study of microbiota in other
Culex mosquitoes sampled from different habitats with different nutrient concentra-
tions (influenced by larval control treatments) also did not reveal significant differences
in the bacterial communities in the larvae sampled from the different larval habitats
(42–44).

Increases in nutrients such as nitrogen and phosphorus in aquatic habitats, as a
result of runoff from agricultural practices and other nonpoint sources, have been
reported to influence the abundance of disease vectors, particularly Culex mosquitoes
that are more adapted to polluted environments (6, 8, 45, 46). In addition, organic
enrichments have been shown to influence mosquito control strategies. For example,
under high-organic-rich environments, the efficacy of a fungal biological control agent,
Lagenidium giganteum, was significantly reduced (12). Other studies reported that
increase in organic or inorganic mater in the water column negatively influenced the
efficacy of the commonly used Bacillus-based larval control agents (13, 47). It is likely
that the diverse microbial communities and sestonic particles ingested by mosquito
larvae might provide immunity or protection of midgut epithelium that is considered
a primary target of Bacillus thuringiensis serovar israelensis (Bti) toxins in polluted
environments (13).

Mosquitoes, in general, and Culex mosquito vectors, in particular, are considered
primary colonizers of newly created freshwater aquatic habitats and are well adapted
to polluted environments (42, 46, 48). The difference in abundances of C. nigripalpus
between treatments was not significant, suggesting that mosquito abundance was not
influenced by water column nutrient concentrations, especially during the initial col-
onization of newly formed aquatic habitats. This study and others have shown that
C. nigripalpus mosquitoes prefer to lay their eggs and develop in highly eutrophic
habitats than their C. quinquefasciatus congeners (21, 23). Culex quinquefasciatus was
considered to be the dominant species colonizer of eutrophic habitats (9, 24), but its
abundance during the succession in our mesocosms was negligible compared to that
of C. nigripalpus.

Bacterial communities associated with different life stages of Culex nigripalpus.
Microbial communities associated with C. nigripalpus sampled during the autumn
varied significantly among life stages from the same cohort. Bacterial communities from
female adults, eggs, and pupae were dominated by Alphabacteria and Betaproteobac-
teria, whereas bacteria from larvae were dominated by Arcobacter (Epsilonproteobacteria),
Hydrogenophaga, and Agrobacterium (Alphaproteobacteria), Thorsellia (Gammaproteobacte-
ria), and Clostridium (Firmicutes). Arcobacter is ubiquitous in aquatic environments and, as
a member of Epsilonproteobacteria, might be associated with sulfur cycling (49, 50). The
mesocosms used in this study were filled with well water, which contains a relatively
high sulfur concentration (~100 mg sulfate/liter [D. Duguma, unpublished data]). Nearly
92% Arcobacter sequences were from larvae, whereas very few were found associated
with eggs (0.4%), pupae (2.8%), and adults (4.6%), suggesting that Arcobacter found
associated with the mosquitoes in this study might be waterborne and thus ingested
by the mosquito larvae. Several Arcobacter spp. are known to be pathogenic to humans
and animals (51) and associated with polluted environments (52). Although we have
not ruled out experimentally that this bacterium can be transstadially transmitted
across life stages or is a pathogen, Arcobacter found associated with pupae and adult
C. nigripalpus mosquitoes was likely ingested by the larvae from the water and passed
down to pupae and adults. Considering that members of this genus of bacteria are
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recognized as emerging pathogens to humans and animals (51), the recovery of a
relatively small proportion (e.g., 4.6%) of Arcobacter sequences in female adults sug-
gests further study, including a possibility that these bacteria might be harbored in
salivary glands, with a direct implication for pathogen transmission (53). Salivary glands
have been shown to harbor diverse bacterial communities (53).

Agrobacterium OTUs were found in all samples, from egg to adult stages of C. ni-
gripalpus, with the highest abundance found associated with the eggs. Members of this
genus are known to transfer genetic materials between themselves and other eu-
karyotes, such as plants (54), and this genus was among the dominant genera recov-
ered from Aedes mosquitoes (55). Although we rinsed the egg rafts multiple times with
distilled water, it is possible that some of the communities found associated with eggs
might have been unintentionally cosampled from the water surface during the sam-
pling of the egg rafts. Future studies will investigate whether some of the communities
found associated with eggs are obligate symbionts.

Thorsellia anophelis was also found in C. nigripalpus, with the greatest abundance of
this bacterium found in pupae (11.0%) and in late instar larvae (10.5%). The abundance
of this species was considerably lower in eggs (0.02%), early instars (0.5%), and adults
(0.14%), corroborating previous studies that this symbiont is likely ingested by larvae
and transferred to the subsequent developmental stages (43, 56–58). The dominance
and persistence of Thorsellia spp. in life stages of Culex mosquitoes in this study and in
previous studies (43, 44) and Anopheles (56) mosquitoes suggest a strong consideration
for the development of paratransgenic mosquito control (59).

In conclusion, differences in environmental habitat variations might not affect the
internal bacterial communities associated with Culex mosquito vectors, which instead
may be influenced by seasonal variations. For the first time, we identified microbial
communities associated with C. nigripalpus across developmental stages and identified
potential candidates that will be further investigated for their role in bionomics and
control of this mosquito species.

MATERIALS AND METHODS
Mesocosm experiment. Our experimental design involved two contrasting larval environments in

outdoor experimental mesocosms during autumn 2015. Two different larval environmental conditions
were created on 27 October 2015 by adding two nutrient regimens: 0.2 and 1% (wt/vol) (low and high,
respectively) rabbit food (alfalfa pellets) to three replicated outdoor mesocosms filled with 378 liters of
well water at the University of Florida, Florida Medical Entomology Laboratory (see Fig. S4 in the
supplemental material). The surface area and depth of water were 0.85 m2 and 0.5 m, respectively.
Outdoor mesocosms can be used to examine various ecological hypotheses, including the effects of
nutrients and climate change on aquatic food webs (18, 42, 43, 60, 61). Alfalfa-based organic matter is
commonly used to attract egg-laying female mosquitoes and supports the production of Culex mosqui-
toes for longer periods of time (9, 38, 43, 62). The organic matter was allowed to ferment in the
mesocosms for ~1 week while covered with a tarp. Natural oviposition by Culex mosquitoes occurred in
all mesocosms �24 h after uncovering the mesocosms (i.e., on 2 November 2015). Two egg rafts likely
laid by two female Culex nigripalpus mosquitoes from each of the six mesocosms were sampled on day
1 (3 November 2015). One egg raft laid by an individual mosquito sampled from each of the mesocosms
was placed in modified BioQuip mosquito-rearing chambers (see Fig. S5 in the supplemental material)
and then submerged in each of the six mesocosms to allow access to larval microbial food resources and
development of these mosquitoes under the field conditions. The submerged portion of the device has
screen meshes (300 nylon) built into each mosquito breeder (BioQuip, Inc., Rancho Dominguez, CA, USA)
to allow access to larval resources in the water column, whereas the above water portion of the device
captures adults emerging from the same cohort of eggs. The second egg raft taken from each of the
mesocosms was taken to the laboratory, triple rinsed with distilled water, and aseptically cut into two
halves. One-half of the rafts from each of the containers were preserved in 95% ethanol for DNA
extraction, while the remaining halves were placed in 200 ml of distilled water in sterile plastic cups and
then allowed to hatch in an environmental chamber at a temperature of 27°C for positive morphological
identification of the larvae to Culex nigripalpus.

Mosquito and water sampling. Samples of two (early and late instars) Culex nigripalpus larval stages,
pupae, and adult mosquitoes developed from the same egg rafts in the BioQuip rearing chambers were
taken on different days (see Table S4 in the supplemental material), preserved in 95% ethanol, and stored
at �20°C until DNA extraction. In addition, mosquito larval samples were taken in five 350-ml standard
dips from each of the mesocosms at days 7 and 9 after the mesocosms were exposed to egg-laying
female mosquitoes to determine the identity and abundance of mosquitoes found in the mesocosms.

Water samples were taken in 250-ml amber plastic bottles on days 2, 7, and 9 after mosquitoes
colonized the mesocosms to determine total nitrogen, phosphorus, and chemical oxygen demand (COD)
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in the water column using a Hach DR3900 spectrophotometer (Hach Company, Loveland, CO). The water
samples integrated both the surface water and ~10 cm below the surface of the water and were collected
from the center of the mesocosm. Dissolved oxygen and pH in the water column were determined in situ
using a YSI Professional Plus multiparameter instrument (YSI, Inc., Yellow Spring, OH). Temperature and
light intensity in the mesocosms were monitored continuously using a Hobo Pendant temperature/light
data logger (Onset Computer Corp., Bourne, MA).

Water samples were collected in duplicate 50-ml sterile centrifuge tubes on days 0, 4, and 9 after the
mesocosms were opened and preserved with 1% Lugol’s iodine solution to quantify the abundance of
microeukaryotes (i.e., ciliates, flagellates, and rotifers) found in the water column. The microeukaryotes
were counted by direct microscopy on a hemocytometer using a Leica inverted microscope (Leica
Microsystems, Inc., Buffalo Grove, IL). Particle size distributions for small (0.2- to 1.999-�m ESD) and large
(2- to 60-�m ESD) particles that include both heterotrophic and autotrophic communities were deter-
mined using a Multisizer 4E Coulter Counter particle size analyzer (Beckman Coulter, Inc., Miami, FL) by
a previously published procedure (42).

DNA extraction, PCR, and MiSeq Illumina library preparation. The general scheme of this study
followed procedures described in previous studies (43, 63). Briefly, pooled DNA samples from 1 to 3
individuals from each of the life stages of C. nigripalpus were extracted using the DNeasy blood and
tissue kit following the manufacturer’s protocol (Qiagen, Valencia, CA) in a laminar flow hood. Prior to
DNA extraction, mosquitoes were surface sterilized with 95% ethanol and rinsed three times using
molecular biology-grade UltraPure water (Quality Biological, Inc., Gaithersburg, MD). The samples were
gently vortexed for 10 s in between rinsing. The mosquitoes were left to air dry under a laminar flow
hood before extraction. Pooling of individual insects for microbial analyses have been used routinely in
characterization of community profiles in insects (43, 44, 64). Pooling of individuals may have several
advantages, including maximizing the sequence yield per sample (above negative controls) to discern
microbial community differences between treatment samples in insects (64). We also extracted DNA from
egg rafts to determine if there were maternally transmitted symbionts (e.g., Wolbachia) or unknown
symbionts were present in this species. DNA from adult males was not extracted in this study because
males have no known significance in transmitting pathogens.

The PCR procedures, sequence assembly, and analyses followed previous procedures described in
other studies (65–67). Briefly, ~460-bp amplicons were generated using PCR from the V3 and V4 regions
of 16S rRNA genes using Pro341F and Pro805R, which target both bacteria and archaea (68). Amplicons
from each of the samples and replicate no-template controls were tagged with unique 6-base barcodes,
amplified using Illumina-specific primers, and sequenced according to a previously established protocol
(67) with some modification. The modification included a second round of PCR with 15 cycles for samples
with low amplification on the first round of PCR. In brief all PCR products were combined and subjected
to 250-bp end sequencing (Reagent kit v2, 500) on a MiSeq (Illumina, San Diego, CA).

Data analysis. Using AXIOME to manage sequences analysis (69), 16S rRNA gene reads were
assembled by PANDAseq version 2.10 (70), with a quality threshold of 0.9 (which rejects sequences with
low-quality scores), a minimum overlap of 10 bases, and a minimum assembled length of 100 bases, and
sequences with ambiguous nucleotides were rejected. Operational taxonomic units (OTUs) were picked
at 97% identity using the UPARSE algorithm USEARCH version 7.0.1090 (71) with de novo chimera
checking. Taxonomic classification was performed on the representative sequence of each OTU using
RDP version 2.2 (72) via QIIME (73), trained against the Greengenes (August 2013 revision) (74) reference
set with a minimum posterior probability of 80%. Sequences were rarefied to the lowest number of
sequences per sample (i.e., 43,611) for alpha and beta diversity analyses. To determine microbial
community differences among mosquito samples originating from high- and low-nutrient treatments,
principal coordinate analysis (PCoA) and nonmetric multidimensional scaling (NMDS) ordinations, based
on the Bray-Curtis dissimilarity measures, were conducted using the vegan R package version 2.2-0 (75).
In addition, a PCoA ordination based on UniFrac distance measures was carried out with QIIME to
determine bacterial community differences among samples of multiple treatments and life stages.
Multiresponse permutation procedures (MRPP) were used to test differences among sample groups
based on distance measures. Core bacterial taxa were determined based on OTUs represented by at least
one sequence per sample in all samples (76).

Repeated-measures analysis of variance (ANOVA) using JMP (77) was conducted to assess differences
in environmental variables (e.g., nutrients, pH, dissolved oxygen, and microeukaryotes) and larval
mosquito abundance in the water column between the two treatments. One-way ANOVA was performed
to assess differences in mean abundance of total counts of small and large sestonic particles. Means were
separated by Tukey’s test at P � 0.05, after performing Bonferroni correction on calculated P values.

Accession number(s). All sequence data for this study were submitted to the European Bioinfor-
matics Institute under accession no. PRJEB17885.
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