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Abstract: For imaging events of extremely short duration, like shock waves or explosions, it is
necessary to be able to image the object with a single-shot exposure. A suitable setup is given
by a laser-induced X-ray source such as the one that can be found at GSI (Helmholtzzentrum für
Schwerionenforschung GmbH) in Darmstadt (Society for Heavy Ion Research), Germany. There,
it is possible to direct a pulse from the high-energy laser Petawatt High Energy Laser for Heavy
Ion eXperiments (PHELIX) on a tungsten wire to generate a picosecond polychromatic X-ray pulse,
called backlighter. For grating-based single-shot phase-contrast imaging of shock waves or exploding
wires, it is important to know the weighted mean energy of the X-ray spectrum for choosing a
suitable setup. In propagation-based phase-contrast imaging the knowledge of the weighted mean
energy is necessary to be able to reconstruct quantitative phase images of unknown objects. Hence,
we developed a method to evaluate the weighted mean energy of the X-ray backlighter spectrum
using propagation-based phase-contrast images. In a first step wave-field simulations are performed
to verify the results. Furthermore, our evaluation is cross-checked with monochromatic synchrotron
measurements with known energy at Diamond Light Source (DLS, Didcot, UK) for proof of concepts.

Keywords: X-ray backlighter spectrum; propagation-based phase-contrast; single-shot X-ray
phase-contrast imaging; models and simulations; X-ray generators and sources

1. Introduction

Ultra-intense laser pulses focused onto solid targets produce powerful pulses of X-ray
radiation, suitable for backlighting short-lived events such as strong shock propagation [1] or rapid
hydrodynamic expansion [2] at Megabar pressures. Bremsstrahlung radiation generated by the
energetic electrons from the relativistic laser-matter interaction reaches into the MeV spectral range [3].
However, a detailed knowledge of the emitted X-ray spectrum over a wide spectral range is elusive,
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as the propagation and fast relaxation of the hot electrons within the target is non-trivial. Nevertheless,
the knowledge of at least the weighted mean energy of the spectrum would be of great interest for many
applications. The weighted mean energy is the weighted sum of all contributing energies of a spectrum
divided by the number of energy bins. The weight of each energy is given by the spectral distribution
contributing to the image. The knowledge of the weighted mean energy is necessary to reconstruct
high-quality phase-contrast images, which is e.g., interesting in imaging shock propagation in matter,
plasmas or exploding wires. The sensitivity in the phase-contrast images of low Z materials is orders
of magnitudes higher than in the attenuation images [4,5]. There are several techniques to measure the
phase-contrast. One of them is Talbot–Lau interferometry. To set up a Talbot–Lau grating interferometer
knowledge about the spectrum is necessary to design the gratings and the distances between the
gratings correctly [6]. For phase-contrast computed tomography reconstructions, other groups [7]
evaluated a so-called effective energy to be able to obtain quantitative analysis. Another technique to
measure the phase-contrast is the propagation-based phase-contrast. To reconstruct propagation-based
phase-contrast images of an object the weighted mean energy has to be known [8,9]. This method
allows the reconstruction of the absolute phase-shift induced by an object without any optical elements,
only with the help of the fringes due to the propagation of a phase-shifted wave [10].

For this purpose, we present a method to evaluate the weighted mean energy of an imaging
system consisting of the X-ray backlighter Petawatt High Energy Laser for heavy Ion eXperiments
(PHELIX) at Gesellschaft für Schwerionenforschung (GSI, Society for Heavy Ion Research), Darmstadt,
Germany and an imaging plate Fuji BAS type SR (further specifications see Meadowcroft et al. [11]).
It has to be taken into account that the weighted mean energy of the imaging system in general is not
the same as the weighted mean energy of the source spectrum due to optical elements, the detector
response function, etc. The presented method aims to determine the weighted mean energy of the
whole imaging system including the imaging plates with a sensitivity of ±1 keV. It can be used as a
calibration for further measurements. It is based on the reconstruction [12] of a propagation-based
phase-contrast image of a titanium wire of known thickness. The reconstructed phase is compared
to the expected theoretical phase for different energies. We call the energy which leads to the best
agreement of reconstructed phase and theoretical phase the dominant energy. Further, the result for
the dominant energy of the imaging system is validated by wave-field simulations, simulating the
propagation effects of the wire for different energies and comparing it to the measurement. The best
fitting energy of the simulation should correspond to the dominant energy which can be gained by the
presented method, reconstructing the phase images of the measurement. The method itself is validated
by applying it at a synchrotron radiation source with a known energy of 10 keV.

2. Materials and Methods

2.1. Measurement Setup at GSI

At GSI in Darmstadt, Germany, PHELIX [13] can be used to generate a short-lived X-ray source
and to simultaneously generate short-living events like shock waves or explosions which are imaged
by the X-ray source [14,15]. The laser system can be shot every 1.5 h and delivers two beams, namely
the backlighter and the heater (see Figure 1). The backlighter targets a tungsten wire to produce X-rays.
The tungsten wire is destroyed during this procedure and X-rays are emitted radially, which can be
used to image an object. The heater optionally can be shot at an object for generating shock waves
or explosions. This shocked or exploding object can be imaged by the radiation emitted from the
tungsten wire. A tunable delay between backlighter and heater can be installed. The duration of the
laser pulse is around 500 fs with a pulse energy of about 50 J. The whole setup is mounted in a vacuum
chamber. The object is imaged by Fuji BAS imaging plates of type SR [11]. The resolution of these
imaging plates was measured to be 109µm [16].

In the presented measurement the heater is not shot onto the object, instead the “cold” wire is
imaged. The energy spectrum of X-rays cannot be identified by common methods because of the
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electron shower inside the vacuum chamber that is caused by the backlighter hitting the tungsten wire.
This causes high electron noise in measurement devices such as dosimeters. Additionally, it has to be
mentioned that the spectrum always differs a bit between two shots. It depends among others on the
position of the tungsten target and the quality of the laser beam. Nevertheless, the estimation of the
weighted mean energy is of great interest.
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Figure 1. Measurement setup at Gesellschaft für Schwerionenforschung (GSI). The laser beam is split
into backlighter and heater. The backlighter is shot at a tungsten wire for generating X-rays. The heater
can optionally be shot at an object for generating shock waves or explosions. The inset shows a zoom-in
on the tungsten backlighter wire (B) and the titanium wire (T) positions, depicted as green circles. In the
presented measurement the heater is not shot at the titanium wire and the cold titanium wire is imaged.
The images are obtained with imaging plates. The magnet is used to divert electrons, which occur due
to the explosion of the wire and cause noise in the acquired images.

2.2. Measurement Setup at DLS

At DLS, Didcot, United Kingdom, propagation-based phase-contrast synchrotron measurements
are performed. The X-ray beam was monochromated using a Si111 double crystal monochromator
(bandwidth 10−4). A monochromatic energy of 10 keV is set. The synchrotron beam is focused using
a Fresnel zone plate with a focal length of 85 mm. Three carbon fibres are placed in the cone beam
at a distance of 0.105 m from the focal spot. The distance of the detector to the focal spot is 14.565 m.
The Hamamatsu X-ray sCMOS cameraC12849 series with 6.5µm pixel size and an active zone of
around 13.3× 13.3 mm2 is used as a detector.

2.3. Propagation-Based Phase-Contrast

Propagation-based phase-contrast imaging makes use of Fresnel diffraction. There, X-rays are
diffracted by an object in such a way, that intensity enhancements, also called propagation signatures,
at the edges of the object in the near-field can be measured [10]. To prove whether the assumption
of Fresnel diffraction is correct, the Fresnel number can be calculated. To fulfill the assumptions of
Fresnel diffraction, the so called Fresnel number should be around 1. The Fresnel number (FN) can be
calculated as following:

FN =
d2

λL
, (1)
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with d the smallest feature size of the object, λ the wavelength and L the distance between object and
detector. d can be assumed to be twice the projected pixel size in the object plane (e.g., [17,18]). For the
following setup with the assumed weighted mean energy the Fresnel number can be calculated as 0.1.
Thus, it can be assumed to be in the Fresnel regime and iterative reconstruction algorithms that are
based on the Fresnel approximation can be applied [19,20].

For reconstructing the phase image of an object different phase retrieval algorithms [12,15,21–27]
can be used. Propagation of a wave Ψ(x, y, z) in Fresnel diffraction can be modelled by the Fresnel
propagator [23]

F(Ψ(x, y, z0), z) =

exp(ikz) · F−1

{
exp

[
−iz(k2

x + k2
y)

2k

]
· F{Ψ(x, y, z0)}

}
, (2)

using the plane wave approximation. Here, F denotes the Fourier transform and F−1 its inverse. k is
the wave number according to the weighted mean energy of the X-ray spectrum [8,9] and (kx, ky) the
Fourier coordinates of (x, y). The back-propagation can be computed using the inverse of F. If the
object is placed into a cone beam, it will be magnified by the magnification M in the detector plane.
To be able to apply the above mentioned reconstruction algorithms which hold true for plane wave
approximation, the propagation distance and the detector pixel width are divided by the magnification,
like in Schropp et al. [15].

In this work, the iterative phase retrieval algorithm by Clark et al. [12] is used. There, for a given
energy, the wave is propagated back and forth in 1000 iterations. In each iteration the wave’s amplitude
in the detector plane is replaced by the square-root of the measured intensity image. Furthermore,
three constraints are applied in the image plane. First, the negativity constraint, where all phase-shifts
greater than zero are set to zero. Second, the complex constraint, where the amplitude A is replaced by

A = exp
(

β

δ
· ϕ
)

. (3)

Here, β and δ are the imaginary and real part of the complex refractive index, respectively,
depending on energy and material properties of the object. ϕ is the phase of the object retrieved in
the corresponding iteration. This constraint presumes that a single-material object is imaged. Finally,
the wave in the image plane is restricted to the object by a mask. Thus, all wave values outside the
object are set to one. The binary mask is obtained by a pre-reconstruction of the phase image by
using only 100 iterations and no mask. In this pre-reconstructed image, the mask is set by hand in the
image plane.

2.4. Computer Simulation

For the computer simulations numerical calculations are performed. An object in the beam
path is represented by its transfer function. It includes the corresponding β and δ values, which are
taken from Henke database [28]. The impact of the object on the wavefront is calculated using the
projection approximation [29]. The propagation between the different subsystems is calculated by the
band-limited angular spectrum method for numerical simulations [30]. The sampling is of the size of
the detector pixel in the object plane.

2.5. Energy Evaluation for GSI Data

For evaluating the dominant energy of the laser induced X-ray spectrum a propagation-based
method is proposed in this study. For this purpose, the image of a titanium wire which shows edge
enhancement due to propagation is used (see Figure 2). The propagation effects cannot be seen in
this representation as the edge enhancement is low compared to the attenuation properties of the
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wire. A 5µm tungsten wire serves as X-ray source. The 50µm titanium wire is placed 20 mm from
the source. The imaging plates are placed outside the vacuum chamber in a distance of 81.9 cm to
the source. The response function of the plates has been published by Meadowcroft et al. [11]. There,
it can be seen that the response does not vary substantially over an energy range of 0 keV to 100 keV.
A maximal response of 4.5 mPSL is reached at an energy of about 17 keV. Nevertheless, the response
between 5 keV and 40 keV varies between 3 mPSL and 4.5 mPSL. PSL is the unit of photostimulated
luminiscence and describes the amount of photons which are released by the imaging plate during
read-out. (Further information see Meadowcroft et al. [11].) Towards higher energies the response
function decreases uniformly towards 1.5 mPSL at 90 keV and 1 mPSL at 100 keV, meaning that low
energies are weighted slightly more than higher energies. Still, the response function of the imaging
plates does not shift the spectrum for the evaluated energies severely.

For reconstructing the phase image of the wire in the image plane, a free-field measurement (also
known as flat-field image) is needed for the reconstruction process [12] (see Section 2.3). The free-field
image is determined by setting it to the mean value of a square region in the background (see Figure 2
red square). The position of this square is chosen in a rather uniform area with a certain distance to
the wire and to the boundaries of the image. Multiple positions are possible which yield mean values
with differences of up to 2%. However, the noise induced standard deviation is on the order of 2 to 3%
of the mean value. Furthermore the alternative to choosing a background region would be to use an
object-free measurement from the same detector area taken at another backlighter shot. Due to the
large shot-to-shot fluctuations of the backlighter source, using a background region is preferable. In a
pre-processing step, a dark-frame of the detector has to be subtracted from the object and the free-field
measurement. For the imaging plates this dark-frame can assumed to be zero.
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Figure 2. Measurement of a titanium wire with regions of interest (ROI). Green Rectangle: ROI that is
used to reconstruct the wire. Red Rectangle: background.

The dominant energy is evaluated in the green region of interest (ROI) shown in Figure 2.
Pre-examinations have shown that the results do not change by reducing the whole image to a
smaller ROI. Hence, only the ROI is evaluated in favor of computational time. The phase image is
reconstructed assuming energies between 2 keV and 22 keV. Then, for each energy the mean phase-shift
ϕreco along the wire is calculated and compared to the theoretical phase-shift ϕtheo, which is given
by [23]:

ϕtheo(E) = −d · k(E) · δ(E). (4)
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where, E is the energy, d the diameter of the titanium wire, k the wave number and δ the decrement of
the complex refractive index of titanium, which is obtained from the Henke database [28]. Since ϕreco

is reconstructed using the energy-dependent refractive index, the energy dependent absorption is
already regarded in this step. However the reconstruction algorithm assumes mono energetic radiation.
Beam-hardening or strong absorption-edges close to the weighted mean energy of the imaging system
could influence the result, but this is neglected in the evaluation.

Figure 3 shows the retrieved phase images of the green ROI for four different energies,
E = [2.7; 4.7; 11.8; 22.0] keV. On the left, the reconstructed phase images of the green ROI are
shown. The energy assumed for the phase retrieval increases from top to bottom. On the right a
horizontal lineplot of the wire is shown in blue for the different energies. The red line shows the
theoretically calculated phase-shift for the center of the wire. At the energy, which corresponds to the
dominant energy, the difference between the mean reconstructed and the theoretical phase should
be zero. For E = 2.6 keV (first row) the phase-shifts deviate significantly from the theoretical value.
With increasing energy the shape of the profile becomes rounder and the values get closer to the
theoretical value. For E = 11.8 keV (third row) the profile is round-shaped and fits the theoretical
value. For E = 22 keV (fourth row) the phase profile is round-shaped as well, but the phase-shift at the
centre of the wire differs strongly from theory.

width

Figure 3. Left: phase reconstructions for the green marked region of interest in Figure 2 retrieved with
the following energies (from top to bottom): E = [2.7; 4.7; 11.8; 22.0] keV. Right: lineplots (blue) of the
retrieved phase, which is shown in the Left images, and theoretical phase at the centre of the wire (red).

Performing the proposed method, the mean over the phase along the titanium wire is calculated.
The minimum value of the mean is compared to the theoretically assumed phase value for the given
energy. The minimum of the difference of those phase-shifts (the computed one and the theoretical one)
is searched. According to our definition it is the dominant energy of the imaging system. The error
is calculated by dividing the standard deviation of all reconstructed lines by the square root of the
number of the averaged lines.
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3. Results

3.1. Evaluation of the Dominant X-ray Energy

Figure 4a shows the absolute value of the difference between the reconstructed phase of the
titanium wire and the theoretical value over an energy range from 2 keV to 22 keV. The minimum
at E = 4.965 keV is due to the k-edge of titanium [31]. A second minimum with an absolute phase
difference close to zero can be observed for an energy around 12 keV. Around this minimum the
absolute phase difference is again examined with a finer step-size. The result is shown in Figure 4b
(dark violet). The dark violet curve is minimal at approximately 12 keV. In blue an enlarged view
of Figure 4a is shown. Thus, we conclude that the dominant energy of the imaging system is
around 12 keV.
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Figure 4. Evaluation of the dominant energy. (a) Absolute phase difference between theoretical phase
and retrieved mean phase in dependence of the energy. The calculated energy range is between 2 keV
and 22 keV. (b) Detailed view on the minimum with a finer step-size (purple). For the finer step-size
the evaluated energy range is between 11.5 keV and 12.5 keV. In blue a section of the plot shown in (a)
can be seen. The error is in the regime of 0.08 rad.

In the following, several studies are performed to show that the resulting energy is independent of
initial guesses. For this purpose, the assumed uniform reference image is modified by noise. The noise
level (NL) of the free-field ROI (red square in Figure 2) can be calculated as NL = 31.81 dB. It is added
as white Gaussian noise to the uniform free-field image. Like one can see in Figure 5a the resulting
phase differences (orange) of the large ROI around the minimum differs only slightly from the result
acquired with a uniform reference image (grey).

The diameter of the titanium wire is specified as 50µm. The actual diameter lies roughly in
the range of 45µm to 60µm. The image of the wire in the detector plane has a width of 2.25 mm.
Regarding only geometric magnification, this calculates to a diameter of 53.6µm in the object plane.
An uncertainty of 2.6µm in the object plane stems from the detector pixel size of 109µm. Further,
the X-ray source size leads to about 2µm (sigma) blurring in the object plane. In order to determine the
theoretical phase-shift, the wire diameter is examined more closely in the following. For this purpose,
the absolute phase difference of the green region of interest (ROI) is calculated again for three further
diameters (d = [45; 55; 60]µm). In Figure 5b the resulting curves change slightly in direction of the
energy between 11.8 keV and 13.0 keV by varying the diameter. The minimum of the absolute phase
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difference between the theoretically calculated phase and the reconstructed phase is even smaller for a
diameter of 55µm than for 50µm. For a diameter of 45µm the minimal difference is 0.8 rad, for 50µm
it is around 1.0 rad, for 55µm it is around 0.3 rad and for 60µm it increases again to 1.1 rad. Hence,
it can be assumed that the correct diameter of the wire is around 55µm. That results in an energy of
approximately 12.4 keV. As the variation of the energy due to the changes of the diameter is smaller
than the assumed sensitivity of ±1 keV, for further evaluations still a diameter of 50µm is assumed.
The determined weighted mean energy is still around 12 keV. This result is identical to the variation
of the assumed titanium density because a lower density is comparable to a thinner wire with the
initial density. Thus, the energy evaluation is robust within the defined range of ±1 keV with regard to
variations of the free-field image and the wire diameter.
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Figure 5. Absolute difference between the mean phase-shift of the green region of interest and the
theoretical value depending on the energy. (a) The grey curve results from the reconstruction process
with a uniform reference and the orange curve from a noisy reference with NL = 31.81 dB. (b) Results
for different assumed diameters of the titanium wire. The blue curve presents the result shown in
Figure 4 for the given value of the diameter of 50µm. In green, red and yellow the absolute phase
difference for a theoretical phase-shift of a 45µm, a 55µm and a 60µm wire is shown, respectively. The
error is in the regime of 0.08 rad.

3.2. Validation of the Evaluated Dominant X-ray Energy

In order to validate the result for the dominant X-ray energy, the raw image of the wire is regarded
again and compared to simulation results. For this, monochromatic simulations for different energies of
the propagation signature of the titanium wire have been performed. The results can be compared with
the measured signatures. All simulation results are compared with a lineplot of this measurement. In a
first step it is assumed that the given diameter of 50µm of the titanium wire is correct and simulations
are conducted for such a wire. The simulation is performed for energies between 2 keV and 22 keV.
It was found that the best correspondence of the simulation and the lineplot of the measurement can
be found for an energy of 11 keV (Figure 6, orange dotted line). The yellow dashed and the red dashed
dotted line depict the results for a slightly too low energy of 10 keV and a slightly too high energy of
12 keV, respectively. In blue the lineplot of the measurement is shown.

For simplicity, the influence of the finite source size is not regarded in the simulations. The 5µm
source causes a blurring that can be seen best in the propagation signatures of the measurement data
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(blue line) in Figure 6. The edge enhancement at the boundaries of the wire are flatter but wider in
comparison to the propagation signatures of the three simulated curves. Since the following evaluation
is focused on the central region of the titanium wire, blurring can be neglected here.

To examine the influence of the variation of the wire’s diameter, simulations with ±10% variation
of the given diameter of 50µm are performed. In Figure 7 the simulation results in comparison with
a lineplot of the measurement are shown for 45µm (yellow dashed line), for 50µm (orange dotted
line) and for 55µm (red dashed dotted line). The best fitting energies are 10.5 keV for 45µm, 11 keV
for 50µm and 11.5 keV for 55µm. In contrast to the evaluation shown in Figure 6, here the blurring
stemming from the source size of 5µm is implemented in the simulation, so that the width of the
simulated wires can be compared to the measured line plot. The propagation signatures are not
regarded here. It can be seen that a wire of 45µm is definitely too small. The correct diameter is
between 50µm and 55µm, because the blue lineplot is between the orange lineplot of the 50µm wire
and the red lineplot of the 55µm wire. Hence, the correct monochromatic energy for this method is
between 11 keV and 11.5 keV. The deviation of the energy due to the diameter is within the range
of the aimed sensitivity of ±1 keV compared to the evaluated energy of about 12 keV, which was
calculated with the help of the phase image.

width

Figure 6. Monochromatic simulations of the propagation signature of a 50µm titanium wire for
different energies. Source-blurring is neglected in the simulations. A lineplot of the measurement
shown in Figure 2 is plotted in blue for comparative reasons. In yellow the simulation for 10 keV,
in orange the simulation for 11 keV and in red the simulation for 12 keV is shown. The simulation in
orange for 11 keV yields the best fit for the measured values at the centre of the wire.

With the concept of the dominant energy the image signatures are reconstructed assuming a
single energy and not a spectrum. In the following we want to investigate how far the dominant
energy can be taken as an estimate for the weighted mean of the spectrum. To simulate the influence
of a spectral distribution, we assume a toy spectrum with several monochromatic lines. We perform
the simulation for each energy and sum up the related images. The reconstructed dominant energy of
such a summed image is compared to the weighted mean of the toy spectrum. In Figure 8 assumptions
for three different spectra with a weighted mean energy of 11 keV (a/b and e/f) and of 13 keV (c/d)
are shown. Three monochromatic lines are chosen to represent the spectra with different weighted
mean energies. The maximal contributing energy bin of the spectrum in (a/b) is 11 keV, and the one
of the spectra in (c/d) and in (e/f) is 15 keV. (a), (c) and (e) in Figure 8 show the assumed spectra.
(b), (d) and (f) depict the corresponding simulated propagation signatures (orange lines) and a lineplot
of the measurement (blue line). It can be seen that the spectra with a weighted mean energy of 11 keV
(a/b and e/f of Figure 8) fit the measurement comparably well. The spectrum with a weighted mean
energy of 11 keV and with more influence of the low energies (e/f) shows slightly more smooth fringes
at the edge of the wire due to the propagation. This corresponds better to the measurement results.
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The shape of the signatures depends on the X-ray spectrum. If the high energies have a great
impact on the spectrum, the fringes will be sharper as it can be seen in Figure 8 top and middle. For a
wide spread energy distribution with low weights of the high energies and high weights of the low
energies the fringes are blurred out (Figure 8 bottom). The angle of the deviation of the wavefront
passing an object is proportional to 1

E (with E the energy) [23]. Thus, low energies lead to a larger
deviation of the wavefront at the object’s edges than higher energies. Consequently, for low energies
the edge enhancement is more widely spread.

20 40 60 80 100 120
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 7. Monochromatic simulation of the propagation signature of titanium wires with varying
diameter of ±10% of the supposed diameter of 50µm. The results for the best fitting energies are
shown for each diameter. Source-blurring is included in the simulations. A lineplot of the measurement
shown in Figure 2 is plotted in blue for comparative reasons. In yellow the simulation of a wire with
45µm diameter for 10.5 keV, in orange the simulation of a wire with 50µm diameter for 11 keV and in
red the simulation of a wire with 55µm diameter for 11.5 keV is shown.
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(a) (b)

(c) (d)

(e) (f)

widthenergy

Figure 8. Simulation of the propagation signature of a titanium wire of 50µm diameter. On the left
(a,c,e), three toy spectra with different weighted mean energies (red line) and with different energy
distributions are assumed. Three monochromatic lines (green) at 5 keV, 11 keV and 20 keV ((b)) or
5 keV, 15 keV and 20 keV (c/d and e/f), respectively, are used to illustrate the spectra. On the right
(b,d,f), the corresponding simulated propagation signatures of a 50µm titanium wire are shown
in orange. Source-blurring is neglected in the simulations. The blue line shows a lineplot of the
measurement of the wire. From top to bottom the weighted mean energy of the spectra is 11 keV (a/b),
13 keV (c/d) and 11 keV (e/f). The maximal contributing energy bin of the spectra is 11 keV (a/b),
15 keV (c/d) and 15 keV (e/f).

Blurring due to the finite source size of 5µm is neglected in the simulation data. In the presented
comparison between measurement and simulation, this leads to an overestimation of the lower energies
in the spectra.

With our method we determine the dominant energy of the imaging system to be 11 keV. Figure 8
indicates that for an energy range of a factor 2 lower and a factor 2 higher than the dominant energy the
image signatures can be reproduced by a spectrum with a weighted mean energy close to the dominant
energy. This indicates that the dominant energy is a good estimate of the weighted mean energy.

3.3. Validation of the Evaluation Method with Monochromatic Images

Finally, the method was tested by applying it for a measurement, which is obtained with a
well-known monochromatic energy. For this purpose, a measurement acquired at Diamond Light
Source (DLS), Didcot, UK, beamline I13-1 is used. The image (Figure 9a) shows the detector read-out
of the propagation signature of three crossing carbon fibres. For the evaluation, the phase image is
reconstructed (see Figure 9b). The mean reconstructed phase-shift is calculated along the red line
at the single fibre part (see Figure 9a). The correct diameter of the carbon fibre can be calculated by
reconstructing it with the correct energy of 10 keV as d = 6.14µm. This diameter has to be known
to calculate the theoretical phase-shift. For the free-field image and the dark-frame appropriate
measurements have been taken.



J. Imaging 2020, 6, 63 12 of 15

10μm

0.5

1.0

1.5

2.0

in
te

n
si

ty
 [

a
.u

.]

(a)

3

6

9

12

re
co

ns
tr

uc
te

d 
th

ic
kn

es
s 

[µ
m

]

(b)

0 5 10 15 20 25
energy [keV]

0

2

4

6

ab
so

lu
te

ph
as

e 
di

ffe
re

nc
e 

[r
ad

]

(c)

8.5 9 9.5 10 10.5 11 11.5
energy [keV]

0

0.1

0.2

0.3

ab
so

lu
te

ph
as

e 
di

ffe
re

nc
e 

[r
ad

]

(d)

Figure 9. (a) Detector read-out of the propagation signatures of three carbon wires acquired at Diamond
Light Source (DLS). (b) Reconstructed thickness of the carbon wires at the correct energy of 10 keV.
(c,d) Absolute difference between mean phase-shift of the region marked with the red line in (a)
and theoretical value depending on the energy. (c) Whole energy range between 2 keV and 22 keV.
(d) Energy range around the minimum between 9.5 keV and 10.5 keV in finer steps (purple). In blue
the corresponding section of the plot in (c) is shown. The error is in the range of 0.01 rad.

In Figure 9c,d the energy evaluation, which is done for the same energy range as before for the
GSI measurement (compare Figure 4), is shown. The absolute phase difference curve in (c) is minimal
around 10 keV as expected. The detailed evaluation with a finer energy step-size in (d) shows, that the
minimum is not as sharp as the one of the measurements at GSI shown in Figure 4. The value range of
the phase difference on the y-axis is much smaller. Thus, the minimum is not as pronounced as for the
GSI measurements. Overall the minimum fits the known energy of 10 keV. Hence, this shows that the
energy detection works well for a monochromatic beam.

4. Discussion and Conclusions

We were able to evaluate the dominant energy of the used imaging system at the PHELIX
backlighter at GSI, Darmstadt, Germany. For this purpose, the theoretical phase-shift of a titanium wire
was compared to the reconstructed phase of a propagation-based phase-contrast image for different
energies. The best comparison of the phase-shifts of the theoretical value and the reconstruction
was found for an energy of 12 keV. This result could be confirmed by monochromatic simulations,
which give a dominant energy of about 11 keV for the imaging system. Hence, the combination
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of both examinations results in an estimation of the dominant energy of 11 keV to 12 keV. This is
within the aimed sensitivity of ±1 keV. It has to be emphasized that the result does probably not
correspond to the weighted mean energy of the source spectrum, as only the spectrum convolved with
the response function of the imaging system can be measured. As it can be seen in the publication
of Meadowcroft et al. [11], the response function is broadly distributed over an energy range from
0 keV to 100 keV. The maximum of the response function is at about 17 keV. It varies by not more than
50% in the energy range of 5 keV to 40 keV and decreases uniformly towards higher energies. Thus,
we expect a small difference between the estimated weighted mean energy of the imaging system
and the actual weighted mean energy of the X-ray source. Although no details about the spectral
distribution are gained by the phase evaluation, the weighted mean energy of the imaging system can
be estimated from the determined dominant energy. This has been qualitatively demonstrated by our
toy spectra in Figure 8. Further we were able to show that the phase signatures imaged at an X-ray
source with broad spectrum like PHELIX at GSI can be well reconstructed employing the concept of
dominant energy.

In addition, the method was tested for monochromatic measurements which were acquired at
DLS. Here, the correct energy was previously known, which could be confirmed with the presented
method. This shows, that the method works properly at least for monochromatic measurements.

The knowledge of the dominant energy of the spectrum is very important for further setup
designs and simulations. Additionally, to reconstruct propagation-based phase-contrast images
of unknown materials, it is important to know the dominant energy of the spectrum. With the
presented method a type of calibration can be performed for unknown X-ray sources in preparation of
further measurements.
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