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Abstract

In order to develop precision or personalized medicine, identifying new quantitative imaging markers and building
machine learning models to predict cancer risk and prognosis has been attracting broad research interest recently.
Most of these research approaches use the similar concepts of the conventional computer-aided detection
schemes of medical images, which include steps in detecting and segmenting suspicious regions or tumors,
followed by training machine learning models based on the fusion of multiple image features computed from the
segmented regions or tumors. However, due to the heterogeneity and boundary fuzziness of the suspicious regions
or tumors, segmenting subtle regions is often difficult and unreliable. Additionally, ignoring global and/or
background parenchymal tissue characteristics may also be a limitation of the conventional approaches. In our
recent studies, we investigated the feasibility of developing new computer-aided schemes implemented with the
machine learning models that are trained by global image features to predict cancer risk and prognosis. We trained
and tested several models using images obtained from full-field digital mammography, magnetic resonance
imaging, and computed tomography of breast, lung, and ovarian cancers. Study results showed that many of these
new models yielded higher performance than other approaches used in current clinical practice. Furthermore, the
computed global image features also contain complementary information from the features computed from the
segmented regions or tumors in predicting cancer prognosis. Therefore, the global image features can be used
alone to develop new case-based prediction models or can be added to current tumor-based models to increase
their discriminatory power.

Keywords: Machine learning models of medical images, Global medial image feature analysis, Cancer risk
prediction, Cancer prognosis prediction, Quantitative imaging markers

Introduction
Medical imaging is commonly used in the clinical prac-
tice for cancer screening, early detection and diagnosis
of tumors, prediction of cancer prognosis, and assess-
ment of tumor response to treatment [1]. However, due
to the lack of quantitative assessment tools, subjective
reading and interpreting medical images by radiologists
are often difficult and generate large intra- and inter-
reader variability [2]. As a result, the efficacy of applying
medical imaging in cancer screening and prognosis as-
sessment is suboptimal and not robust. For example,

although mammography is the most popular imaging
technology used in breast cancer screening, its perform-
ance is unsatisfactory in terms of both cancer detection
sensitivity and specificity [3]. Studies have shown that
sensitivity of screening mammography is lower among
younger women (i.e., ≤ 50 years old) [4], those who have
dense breasts [5], undergo hormone replacement therapy
[6], and carry certain breast cancer susceptibility genes
[7]. For example, one study reported that mammography
sensitivity decreased from 87.0% in women with almost
entirely fatty breasts to 62.9% in women with extremely
dense breasts or from 83.3% in women aged > 80 years
to 68.6% in women aged < 50 years [8]. Thus, a high per-
centage of mammography-occult breast cancer is missed
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or overlooked by radiologists in reading screening mam-
mograms. Moreover, mammographic screening gener-
ates high recall rates, and the majority of the biopsies
are benign [9], resulting in potential long-term psycho-
social consequences in women participating in breast
cancer screening [10]. In predicting cancer prognosis or
assessing tumor response to treatment, the guideline de-
termined by the response evaluation criteria in solid tu-
mors (RECIST) [11] used in current clinical practice
often does not correlate well to the clinical outcome
[12], which can generate overtreatment resulting in in-
creased mortality and morbidity rates of the cancer pa-
tients due to unnecessary toxic side effects or aggressive
surgeries [13].
To improve the accuracy and consistency in reading

and interpreting medical images for cancer detection,
diagnosis, and prognosis assessment, researchers have
been actively working to develop and test computer-
aided detection or diagnosis (CAD) schemes since the
1980s, which aim to serve as “the second reader” or pro-
vide radiologists new decision-making supporting tools
[14]. Most CAD schemes include three steps: (1) detect
suspicious regions that may depict tumors, (2) segment
the targeted regions, and (3) train a machine learning
model that fuses multiple image features computed from
the segmented regions [15]. Despite great research en-
thusiasm and effort, false-positive detection rates of
CAD schemes remain high [16], and whether using
CAD can add values in clinical practice to help improve
radiologists’ performance in reading and interpreting
mammograms remains controversial [17]. The technical
challenges and limitations in developing CAD schemes
may include but not limited to (1) difficulty in accurate
segmentation of the targeted tumors from the images
due to tissue overlap, connection, and fuzzy boundary,
which reduce the accuracy and reproducibility of the
computed image features to build robust machine learn-
ing models [18]; (2) high false-positive cues in the detec-
tion schemes, which can mislead radiologists and reduce
their performance [19]; (3) use of small or biased train-
ing datasets, which causes overfitting and reduces ro-
bustness of CAD schemes when applied to new testing
cases [20]; (4) higher correlation of the detection results
between CAD and radiologists, which reduces the clin-
ical utility of CAD as “the second reader” [21]; and (5)
difficulty in developing multi-image-based CAD schemes
[22] to fuse and compare variation of the image features
in the longitudinal images [23] or different views of im-
ages [24]. Thus, exploring new approaches in developing
CAD schemes or machine learning models remains an
unsolved but important research topic in the field of
CAD-related medical imaging informatics.
Due to the difficulty in accurate tumor segmentation

and identification of optimal handcrafted image features,

great research effort has recently been made to apply
deep learning models in developing CAD schemes [25].
Although developing deep learning models can avoid
tumor segmentation, it requires “big data” (availability of
large training datasets). Thus, besides working to investi-
gate how to optimally apply the deep learning method to
develop robust CAD schemes using the small image
datasets [26–28], we also investigate a different conven-
tional machine learning approach that uses global image
features computed from the entire imaged organs (i.e.,
breast, lung, and abdominal region) to train prediction
models without suspicious region or tumor segmenta-
tion (as used in the conventional tumor-based schemes)
or predefine the regions of interests with a fixed size (as
used in many deep learning-based schemes). The new
global image feature analysis-based models can be either
implemented to build new case-based CAD schemes or
fused with the existing tumor-based CAD schemes. The
hypothesis of this new approach is based on the scien-
tific premise and preliminary study results reported in
the literature, which show that image features computed
from background parenchymal or specific non-tumor re-
gions also contain high discriminatory information to
help predict cancer risk [29] and prognosis [30].
To test our hypothesis, we conducted several studies

to develop and test a variety of new machine learning
models using or adding global image features to predict
cancer risk and cancer prognosis after surgery or chemo-
therapy. This study reviews several CAD schemes imple-
mented with the global image feature analysis-based
machine learning models developed in our recent stud-
ies. These models were built using different types of
medical images including full-field digital mammography
(FFDM), magnetic resonance imaging (MRI) and com-
puted tomography (CT) images for breast, lung, and
ovarian cancers. Moreover, to demonstrate the robust-
ness of this new concept and the developed models, new
experiments and data analysis results are also included
in this study. Specifically, the basic concept or structure
of the models is presented in Section 2, the new experi-
ments and data analysis results are reported in Section
3, and the unique characteristics of this new approach
and future research directions are discussed in Section 4
of this paper.

New quantitative imaging models
Prediction of short-term breast cancer risk
Breast cancer is the most prevalent cancer in women.
Detection of invasive cancer at an early stage plays an
important role in cancer treatment and reduction of pa-
tients’ mortality rates. However, due to the extremely
low cancer detection yield (i.e., ≤ 0.3–0.5%) and higher
false-positive recall rate (i.e., ≥ 10%), the efficacy of
current population-based breast cancer screening using
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medical imaging (i.e., mammography with or without ad-
junction of ultrasound or MRI [31]) is quite low. To ad-
dress and overcome this issue, developing a new risk-
based breast cancer screening paradigm has been
attracting research interest [32]. The objective of the
new approach is to develop a new model to predict
short-term cancer risk, which enables to stratify the gen-
eral screening population into two groups. Women
assigned to the higher-risk group should be screened in
a short interval (i.e., annual screening) after the negative
screening of interest, while women assigned to the low-
risk group can be screened in a longer interval until
their short-term risk is significantly increased in the fu-
ture reassessment. However, the current breast cancer
risk factor or prediction models based on the epidemi-
ology studies do not have discriminatory power to pre-
dict short-term risk in a woman developing breast
cancer after a negative screening of interest and help a
woman or her physician decide the optimal screening
interval and/or method [33].
In our studies, we developed and tested a new risk

prediction model based on the following scientific evi-
dence or experimental observations: (1) humans natur-
ally show bilateral symmetry in paired morphological
traits, including the breasts; (2) bilateral asymmetry of
breast tissue patterns is an important imaging pheno-
type or marker associated to biological processes; (3)
bilateral mammographic tissue asymmetry and its
change over time are commonly assessed by the
radiologists in their decision-making process of cancer
detection; and (4) CAD schemes can yield more con-
sistent results in quantifying mammographic density
and their bilateral asymmetry by avoiding inter-reader
variability [34]. Thus, we build a new model to predict
short-term breast cancer risk based on the computa-
tion and analysis of bilateral mammographic density
and tissue asymmetry of the negative images between
the left and right breast. The goal is to predict the like-
lihood of a woman developing detectable cancer in the
short term (i.e., the next subsequent annual mammo-
graphic screening).
Figure 1 shows a graphic user interface (GUI) of the

prediction model. Once two bilateral negative mammo-
grams of either cranio caudal (CC) or mediolateral ob-
lique (MLO) view are loaded into the GUI, a user can
click the button on the top-left corner of the GUI to
order the scheme processing the images and computing
features ( FL

i and FR
i ) between the left and right mam-

mograms and their difference (ΔFi ¼ jFL
i −F

R
i j; i ¼ 1;⋯;

n ). Once the required features are computed and dis-
played, the user can view several asymmetrical patterns
or maps (Fig. 1b) and click the “Risk Score” button on
the top-right corner of the GUI (Fig. 1a). A short-term
cancer risk score (ranging from 0 to 1) of the case is

displayed. In the example case (Fig. 1), the model-
generated risk score is 0.79. The higher score indicates
a higher risk of having or developing breast cancer in
the short term. The details of developing this model to
predict short-term breast cancer risk have been reported
in our previous study [34].

Prediction of lung cancer recurrence risk
Recently, promoting and implementing lung cancer
screening programs using low-dose CT imaging and
other incident findings in detecting or diagnosing chro-
matic lung diseases have resulted in detecting more
early-stage lung cancers. Most of the cases are non-
small-cell lung cancers (NSCLCs). Although early cancer
detection and surgical treatment help reduce the mortal-
ity rate of patients diagnosed with early-stage NSCLC,
lung cancer recurrence rates after surgery of tumor re-
section is still high (i.e., ranging from 30% to 60% as re-
ported in the literature [35]). To more accurately stratify
patients into two groups of having a high and low risk of
cancer recurrence, researchers have investigated many
genomic biomarkers to predict the risk of cancer recur-
rence in patients with early-stage NSCLC [36]. Patients
with high cancer recurrence risk need to be continuously
treated after surgery using other methods (i.e., radiation
therapy or chemotherapy) to reduce the risk of cancer
recurrence and increase the cancer-free survival.
In addition to the genomic biomarkers, CT images

also contain useful information in predicting the prog-
nosis of patients with NSCLC. For example, chronic ob-
structive pulmonary disease (COPD) is another well-
recognized higher risk factor of developing lung cancer,
and emphysema is one of the most important symptoms
of COPD. In our study, we investigated whether the glo-
bal emphysema-related image features include useful in-
formation or discriminatory power to predict the risk of
lung cancer recurrence. We developed and tested a new
CAD scheme implemented with a machine learning
model to combine tumor-related image features com-
puted from the segmented lung tumors and global
emphysema-related image features computed from the
entire lung volume depicted on CT images. In tumor
segmentation, the scheme applied a modified region
growing algorithm controlled by a convex hull function
to stop the leakage of the segmented tumor region to
the normal lung tissues and smooth the segmented
tumor boundary [37]. The CAD model using tumor-
based image features have been trained and tested in our
previous studies [37, 38]. In the recent study, the new
scheme applies a density mask (using the threshold of ≤
− 950 HU) to automatically segment and quantify the
percentage of emphysema blobs or regions. Figure 2 pre-
sents an example of the segmentation of lung tumor and
emphysema blobs in one CT image slide. From the
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image processing results, a set of both tumor-based and
global emphysema-based image features are computed
and then used to train machine learning models to pre-
dict lung cancer recurrence risk. The details of testing
this new model will be described in subsection 3.2 of
this paper.

Prediction of breast cancer response to neoadjuvant
chemotherapy
Currently, neoadjuvant chemotherapy has been increas-
ingly used as first-line therapy in patients diagnosed with
locally advanced breast cancer. Previous studies have
demonstrated long-term prognosis among the high pro-
portion of patients who have good post-treatment im-
aging responses, such as those who have a pathologic
complete response (pCR) at the time of surgery. How-
ever, due to the lack of accurate prognostic markers, a
higher percentage of patients with pCR still undergo

unnecessary and aggressive surgery. Additionally, other
patients who do not respond to chemotherapy suffer
from unnecessary toxic side effects. Such overtreatment
increases patients’ morbidity and mortality rates [39]. As
a result, many research groups have attempted to de-
velop CAD schemes of breast MRI in assessing tumor
response to chemotherapies by comparing the changes
of the contrast-enhanced kinetic image features com-
puted from the tumors segmented from the MR images
obtained before and after chemotherapy.
In our study, we found that many cases include tu-

mors with diffused enhancement (Fig. 3). Accurately de-
fining and segmenting the diffused tumors are difficult
and often unreliable. Thus, we built a new model based
on the analysis of globally kinetic breast MRI features to
predict tumor response (i.e., complete response based on
the RECIST guidelines) to neoadjuvant chemotherapy
using breast MRI acquired before chemotherapy only.

Fig. 1 The GUI of a CAD-based short-term breast cancer risk model (a) and bilateral asymmetry of dense tissue regions, local focal regions, and
local pixel value fluctuation maps from the left to right (b)
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From the MR image, a CAD scheme is applied to seg-
ment breast area by removing all pixels in the air back-
ground and behind pectoralis muscle (Fig. 4). Then, the
CAD scheme performs image registration and subtrac-
tion of two sets of the matched breast MRI slices ac-
quired in two MRI sequence scans performed before
and after injection of gadopentetate dimeglumine con-
trast agent. After generating the contrast enhancement
maps of the breast area, the CAD scheme computes a
set of global kinetic image features. Specifically, the fea-
tures include the mean, standard deviation, and skew-
ness of the contrast enhancement values computed from
all pixels inside the segmented breast volume, which

represent the magnitude and heterogeneity of contrast
enhancement of the global area. Next, the CAD scheme
sorts the contrast enhancement values from the max-
imum to the minimum and computes two new features
representing the average contrast enhancement value
among the pixels listed in the top 1% and top 5% of the
sorting list. Lastly, to overcome the impact of heterogen-
eity of background parenchymal enhancement in differ-
ent patients, the scheme also computes asymmetrical
image features that represent the bilateral differences of
two kinetic image feature values, which are computed
from MRI of the left and right breasts. As a result, with-
out tumor segmentation, this new model trained using

Fig. 2 Illustration of segmenting lung tumor marked by red color and bright boundary (a) and segmenting emphysema regions marked by
yellow color using a density mask (b)

Fig. 3 Diffused tumors enhanced in breast MRI performed before (left image) and after (right image) neoadjuvant chemotherapy
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global image features is applied to process all breast
MRI depicting either solid or diffused tumors and pre-
dict their response to neoadjuvant chemotherapies. The
details of developing and testing this model have been
presented in our previous study [40].

Prediction of chemotherapy efficacy in patients with
ovarian cancer
Ovarian cancer has the highest mortality rate in gyneco-
logic malignancy. Most ovarian cancers detected in the
clinical practice (> 85%) are epithelial ovarian cancers
(EOCs) and they are typically diagnosed in the advanced
stage with metastatic tumors spreading to other organs
of the body. In these patients, angiogenesis plays a fun-
damental role in the pathogenesis of EOC, which results
in higher vascular endothelial growth factor expression
and promotes tumor growth, ascites, and metastases.
Thus, new chemotherapies (i.e., bevacizumab) that target
the angiogenesis-specific pathways were developed and
tested in many clinical trials. However, studies have
shown that some patients received benefits with the in-
creased progression-free survival (PFS) or overall sur-
vival (OS), while others did not receive benefits due to
the high toxicity and other serious side-effects [41]. How
to effectively identify patients with EOC who are most
likely to benefit from receiving bevacizumab or other

antiangiogenic therapies remains an unsolved clinical
issue in the treatment of patients with EOC. Thus, iden-
tifying effective imaging markers and/or developing pre-
diction models can help address or solve this clinical
issue.
In addition to developing CAD schemes with machine

learning models trained using image features computed
from the targeted tumors based on the RECIST guide-
lines [42], we also investigated and built CAD models
and GUI to process abdominal CT images acquired from
patients with EOC before performing chemotherapy,
segment the targeted non-tumor regions, compute
image features, and train the machine learning model to
predict PFS or OS in patients receiving bevacizumab-
based chemotherapy. The first set of image features is
computed to quantify the adiposity of patients [43]. As
shown in Fig. 5, a convolution neural network is applied
to identify CT image slices within the abdominal region.
Then, the CAD scheme is applied to process all selected
CT slices and segment pixels inside the abdominal re-
gion into three groups using a fat threshold range of −
140 to 40 HU, which represents visceral fat area (VFA),
subcutaneous fat area (SFA), and other human organs
depicted on CT images. From the segmented VFA and
SFA, the scheme computes image features to quantify
the volume and heterogeneity of the adiposity

Fig. 4 Breast region segmentation steps and generating the contrast-enhanced image map including (a) the original image, (b) separation
line, (c) generated mask, and (d) breast region segmented on the contrast-enhanced map
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characteristics. The second set of image features is com-
puted to quantify the size and density heterogeneity of
the total psoas area (TPA) and its surrounding muscle
region (as shown in Fig. 6) [44]. Using these global and
targeted non-tumor-related image features, we trained
machine learning models to predict the outcome of PFS
and OS in the patients with EOC. The details of the
model development have been reported in our previous
study [30].

Steps in training machine learning models using small
datasets
Although we can compute a large pool of image features
(i.e., morphological, density heterogeneity, and texture)
from the original medical images or transformed maps
(i.e., frequency domain), identifying small sets of optimal
image features from the initially large feature pools is an

important and challenging task to improve the perform-
ance and robustness of the multiple image feature
fusion-based machine learning models. Additionally, we
also often encounter two difficult issues related to image
datasets. The first is the relatively small number of cases,
and the second is the unbalance between two case clas-
ses (i.e., more negative cases than positive cases). Thus,
to minimize or reduce case selection bias in searching
for optimal features and training machine learning
models in our studies, we perform the following model
training and testing steps.
First, a synthetic minority oversampling technique

(SMOTE) [45] is applied to balance the number of cases
in two classes to achieve the ratio close to 1:1 (if needed).
The details of applying the SMOTE algorithm in our
model development have been reported in several studies
(i.e., ref. [38]). Second, a feature selection algorithm (i.e.,

Fig. 5 Applying a convolutional neural network (CNN) algorithm (a) to automatically identify the targeted abdominal region marked inside a red
frame and segmenting each selected abdominal CT slice into three groups of pixels, namely, SFA (light gray), VFA (white), and other human
organs (dark) (b)

Fig. 6 Identifying the level (L3) of vertebral spines in (a) the sagittal and (b) axial views and (c) the segmented TPA and its surrounding muscle
region where the color indicates the heterogeneity of muscle density
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modified sequential forward floating selection [46]) or fea-
ture regeneration algorithm (i.e., locality preserving pro-
jection [47]) is applied to search for and build an optimal
feature set or vector. Third, a machine learning model
(i.e., artificial neural network and support vector machine)
is trained and tested. Because of the availability of the rela-
tively small image dataset, we typically apply a cross-
validation method, such as a 10-fold or leave-one-case-out
(LOCO) cross-validation method, to train and test the
model. When using a cross-validation method, the first
and second steps of SMOTE and feature selection are em-
bedded into the cross-validation loop to train and test the
model. Thus, the testing cases will be excluded from
the above two processes of generating synthetic data and
feature selection or regeneration. Each testing case (in-
cluding the synthetic case) is tested once and receive one
prediction score (ranging from 0 to 1) generated by the
trained machine learning model. Lastly, the synthetic data
or cases are removed, and then the area under a ROC
curve (AUC) or adjusted odds ratio (OR) is used as evalu-
ation indices to assess model performance. Furthermore,
by applying an operation threshold on the model-
generated risk scores, we build a confusion matrix to com-
pute the overall prediction accuracy (i.e., sensitivity, speci-
ficity, and positive predictive value).

Experiments and results
During the last several years, we have conducted several
experiments to test our new machine learning models
based on the analysis of global or non-tumor-related
image features. The experimental and data analysis re-
sults have been reported in several previous papers, such
as prediction of the following:

1) Short-term breast cancer risk using the bilateral
mammographic density asymmetrical features
computed from the “prior” negative screening
mammograms [34, 47, 48];

2) Likelihood of the case being abnormal using the
global image features computed from the “current”
screening mammograms (case-based CAD scheme)
[16, 49];

3) Response of breast tumors to neoadjuvant
chemotherapies using the global kinetic image
features computed from the breast MRI performed
before chemotherapy [40];

4) Response of ovarian cancer patients to
chemotherapy using the global adiposity-related
image features computed from abdominal CT im-
ages performed before chemotherapy [30, 42].

In this study, we report two new sets of experiments
and data analysis results, which have not been previously
published in the peer-reviewed journal papers.

Prediction of short-term breast cancer risk
A retrospectively assembled image dataset, which in-
volves images acquired from 1045 women who under-
went at least two annual mammographic screening, was
used in one recent study. Specifically, each case had two
subsequent screenings defined as “current” and “prior”
screenings with a time interval ranging from 12 to 18
months. All “prior” images were detected as negative by
the radiologists in the original mammography screening.
In “current” screenings, cancers were detected and con-
firmed in 402 cases, while the remaining 643 remain
negative. Each screening mammography has 4 images in
the CC and MLO view of the left and right breasts.
Thus, all “prior” negative mammograms were selected
and processed by the model to predict the risk or likeli-
hood of developing cancer that is detectable in the next
(“current”) mammographic screening.
The CAD scheme computes six image feature differ-

ences between the left and right mammograms. Briefly,
from one bilateral pair of either CC or MLO view im-
ages and the processed or transformed image maps, the
scheme computes bilateral difference of (1) the average
mammographic density, (2) fibro-glandular tissue vol-
ume, (3) size of the CAD-detected focal asymmetric re-
gions, (4) average pixel values computed from the two
local breast tissue fluctuation maps, (5) average pixel
values computed from the maps generated using a
difference-of-Gaussian filter, and (6) overall mammo-
graphic density (similar to the breast imaging reporting
and data system [BIRADS]).
The CAD scheme then uses a k-nearest neighborhood

(KNN) model, which fuses above six image features to
generate a risk score to predict the likelihood of cancer
being detected in the next subsequent mammographic
screening. First, the similarity is assessed by the differ-
ence in feature values, fr(x), between a queried case (yq)
and reference case (xi) in a multi-dimensional (n) feature
space,

d yq; xi
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
r¼1

f r yq
� �

− f r xið Þ
h i2s

Next, a distance weight (wi) is defined as

wi ¼ 1

d xq; xr
� �2

Lastly, the cancer risk prediction score is computed as

Prisk ¼
PN

i¼1w
Pos
iPN

i¼1w
Pos
i þPM

j¼1w
Neg
j

in which the total reference cases compared are K =N +
M. Two weighting factors, wPos

i and wNeg
j , are the com-

puted distance of the positive and negative cases in the
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“current” mammographic screening. In this KNN-based
prediction model, K = 15.
Using a LOCO cross-validation method, this risk

model yielded a prediction performance of AUC =
0.70 ± 0.02. Table 1 presented the relative adjusted odds
ratios (ORs) and corresponding 95% CI. It shows that,
by dividing the model-generated prediction scores into
five subgroups with an approximately equal number of
cases, five adjusted ORs monotonically increase from 1.0
to 8.13. The logistic regression analysis also indicates an
increasing trend with statistical significance as the in-
crease of model-generated prediction scores (p < 0.01).
For a comparison, when dividing the cases into four
BIRADS bins, four adjusted ORs are computed in a
range of 1.0 to 1.27. The corresponding logistic regres-
sion analysis does not show an increasing or decreasing
trend (p = 0.346). Thus, the results support that al-
though mammographic density rated using BIRADS is a
well-known breast cancer risk factor, it cannot be used
to predict short-term breast cancer risk [33]. Our new
model-generated scores are different from BIRADS rat-
ings of mammographic density, which yielded signifi-
cantly higher discriminatory power in predicting short-
term breast cancer risk.

Prediction of lung cancer recurrence risk
A retrospective dataset involving 107 patients diagnosed
with early-stage NSCLC was used in this experiment.
Postoperatively, 26 patients had a cancer recurrence,
while 81 had disease-free survival (DFS) in 3 years. A
CAD scheme was applied in processing CT images of

these patients, which were acquired preoperatively, and
compute to a pool of 56 image features, which includes
35 tumor-related morphological, CT number distribu-
tion, and texture features computed from the segmented
three-dimensional tumor volume as reported in our
previous study that built a prediction model using
tumor-related image features only [37] and 21
emphysema-related features computed from the entire
lung volume of the CT images. These 21 features are di-
vided into three subgroups representing emphysema vol-
ume and shape, density distribution and heterogeneity,
and gray-level texture-based features.
First, due to unbalanced data (26 positive cases for

cancer recurrence and 81 negative cases for DFS in 3
years), a SMOTE algorithm was applied to add synthetic
data and double the “positive” test cases from 26 to 52
to improve case balance in the two classes. Thus, a total
of 133 cases were used to build and optimize random
forest tree models. Second, a correlation-based feature
selection (CFS) algorithm implemented in Weka data
mining software package with a best-first heuristic fea-
ture selection criterion [50] was applied to select a sub-
set of optimal features from the initial feature pool. This
feature selection method evaluates the value of a subset
of features with respect to the discriminative power of
each individual feature along with the degree of redun-
dancy between the features. Using the LOCO cross-
validation method, we sorted the frequency of the se-
lected top performed features and finally assembled a
small and optimal set of eight image features, which in-
clude five tumor-related features and three emphysema-
related features. Lastly, we built and compared three
random forest models using five tumor-related features,
three emphysema-related features, and all eight features.
The LOCO cross-validation method was used to train
the model and validate its performance.
The selected three top-performing emphysema-related

features are entropy, autocorrelation, and uniformity of
global emphysema patterns. AUC values using these
three individual features to predict the risk of lung can-
cer recurrence are 0.63 ± 0.07, 0.57 ± 0.06 and 0.66 ±
0.06, respectively. It indicates that, unlike the subjective
reading of radiologists, which estimates a percentage of
emphysema regions over the entire lung volume, the
CAD scheme can detect and quantify more image
features that have higher or improved discriminatory
power than the percentage of emphysema in the total
lung volume. By comparing these three random forest
tree models trained using tumor-related features,
emphysema-related features, and combined features,
AUC values are 0.79 ± 0.05, 0.70 ± 0.07, and 0.84 ± 0.03,
respectively, which indicates that adding global
emphysema-related features significantly increases pre-
diction performance (p < 0.05).

Table 1 Comparison of the adjusted odds ratios (OR) and 95%
CIs between the new model-generated risk scores and
mammographic density ratings by the radiologists

Risk factor Subgroup Number of
cases

Adjusted
ORs

95% CI

New prediction
model

1 34–175 1.00 Baseline

2 62–147 2.17 [1.35,
3.48]

3 84–125 3.46 [2.18,
5.48]

4 94–115 4.21 [2.66,
6.65]

5 128–81 8.13 [5.13,
12.9]

Density BIRADS 1 21–40 1.00 Baseline

2 158–250 1.20 [0.69,
2.12]

3 218–328 1.27 [0.73,
2.21]

4 5–25 0.38 [0.13,
1.14]
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After applying an operation threshold of T = 0.5 to the
model-generated prediction scores, we assembled three
confusion matrices (Table 2). From the confusion matri-
ces, we computed and compared the prediction perform-
ance of three models (Table 3). The results indicate that
we can identify global emphysema-related image features
that do not only have reasonable discriminatory power
but also are complementary to tumor-related image fea-
tures. Thus, adding global image features into the ma-
chine learning model improves the performance of
predicting the risk of lung cancer recurrence in patients
with early-stage NSCLC postoperatively. Specifically, by
fusing image features computed from the segmented
tumor and global emphysema regions, Model 3 increases
the overall accuracy of predicting cancer recurrence risk
by more than 10% to 83.2% as comparing to Models 1
and 2.

Discussion
To help establish new precision or personalized medi-
cine, identifying new genomic biomarkers and quantita-
tive imaging markers and developing the multiple
feature fusion-based machine learning models have been
attracting broad research interest in the biomedical re-
search field recently. Based on the newly proposed radio-
mics concept and several preliminary studies, it is
feasible to identify and compute quantitative medical
imaging markers to assist the prediction of cancer risk
and prognosis. Since medical imaging is commonly used
in clinical practice, developing new prediction models
based on medical image features provides an unprece-
dented opportunity to support radiologists, oncologists
and/or surgeons in their decision making of cancer diag-
nosis and treatment at low cost [51]. Recently, we have
been exploring and developing several new CAD-
supported machine learning models. These models can
be applied to radiographic images of human bodies (i.e.,
presented in this paper) or animal models [52] and to
digital histopathology images [28]. In this study, we
reviewed several prediction models trained using global
or non-tumor-related image features computed from a
variety of medical images (FFDM, MRI, and CT) for
breast, lung, and ovarian cancers with new experimental

results. From our recent studies, we observed several
unique characteristics of developing new image process-
ing and machine learning models involving global or
non-tumor-related image features.
First, although many cancer risk factors have been

identified and used in existing cancer risk prediction
models based on epidemiology studies, these models
lack the clinically accepted discriminatory power to help
establish new risk-based or personalized cancer screen-
ing programs [33]. For example, breast MRI has the
highest cancer detection sensitivity [31] and has been
recommended by the American Cancer Society as an
adjunct screening tool to mammography in women with
increased cancer risk (i.e., > 20–25% of lifetime risk).
However, it excludes most women who have
mammography-occult early breast cancers. In contrast,
annual MRI screening in small groups of women at the
elevated risk has a quite low cancer detection yield (i.e.,
2–3%) [53]. However, quantitative imaging markers are
time-dependent, which makes them significantly differ-
ent from most genetic and lifestyle-based risk factors
used in existing cancer risk models. Thus, the risk scores
generated by imaging markers or machine learning
models will increase as the time interval to having or de-
veloping image detectable cancer shortens [34]. As a re-
sult, cancer risk prediction models based on quantitative
image features have advantages in predicting short-term
cancer risk after having negative screening of interest,
which can help stratify the general cancer screening
population into different groups with variable screening
intervals to improve efficacy of cancer screening (i.e.,
increase cancer detection yield and reduce unnecessary
biopsies of benign cases). Since medical image features
vary as cancer risk increases or decreases, it has the
potential to establish different screening intervals or
strategies for individuals at different life periods. In our
studies, we observed that, although tumors are not
detectable in the negative screening images, the global
image features computed from these images carry useful
information or markers to predict cancer risk. For ex-
ample, we demonstrated the advantages of developing
short-term breast cancer risk prediction models based

Table 2 Comparison of three confusion matrices generated by
three machine learning models trained using tumor-related
features (Model 1), emphysema-related features (Model 2), and
combined image features (Model 3) to predict the risk of lung
cancer recurrence

Cancer
recurrence

Model 1 Model 2 Model 3

Yes No Yes No Yes No

Prediction – yes 13 14 15 19 18 10

Prediction – no 13 67 11 62 8 71

Table 3 Comparison of prediction performance of three
machine learning models trained using tumor-related features
(Model 1), emphysema-related features (Model 2), and
combined image features (Model 3)

Performance index Model 1 Model 2 Model 3

Sensitivity 50.0% 57.7% 69.2%

Specificity 82.7% 76.5% 87.7%

Positive predictive value 48.1% 44.1% 64.3%

Negative predictive value 83.8% 84.9% 89.9%

Overall accuracy 74.8% 72.0% 83.2%
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on bilateral mammographic density and tissue pattern
asymmetry. A similar concept may also be applied in
screening other types of cancer. For example, based on
the current guideline issued by the US Preventive Services
Task Force, annual screening for lung cancer using low-
dose CT images only applies to adults aged 55–80 years
who have a 30 pack-year smoking history and currently
smoke or have quit smoke within the past 15 years. This
guideline also has similar weaknesses of low cancer detec-
tion yield among the targeted smoking groups and omit-
ting the majority of nonsmokers who can also develop
lung cancer. To address this challenge, researchers can
also develop new short-term lung cancer risk prediction
models using the quantitative image features computed
from the negative lung CT images, such as using the fea-
tures related to the heterogeneity of COPD patterns [54].
Second, the most current CAD schemes are tumor-

based schemes aiming to detect suspicious tumors, clas-
sify malignant and benign tumors, and predict or assess
tumor response to chemotherapies. The challenges of
using these tumor-based CAD schemes include (1) high
false-positive rates, which may impose a negative impact
on radiologists and reduce their image reading perform-
ance [17, 19], and (2) difficulty and error in tumor seg-
mentation, which reduces the accuracy and robustness
of the computed image features [18]. The case-based
CAD schemes only use global image features without
detecting tumor locations and segmenting tumor re-
gions. This makes developing global image feature ana-
lysis model-based CAD schemes simpler and probably
more robust. However, the new case-based CAD
schemes do not directly compete with tumor-based
CAD schemes. For example, although case-based CAD
schemes may not be used as “a second reader” as the
current tumor-based CAD schemes, they have the po-
tential to be used as prescreening tools to help stratify
image cases into high- and low-risk groups (e.g., like
prescreening performed by technologists [55]). Using the
model-generated prediction scores (or “warning” signs),
radiologists can focus on reading and interpreting higher
risk cases to increase detection sensitivity by reducing
the risk of missing or overlooking subtle tumors, while
reducing image reading time in lower risk cases. Thus,
adding this prescreening process may help improve both
the accuracy and efficiency of radiologists in reading and
interpreting medical images in the busy or high-volume
clinical practice.
Third, our studies also demonstrated that the models

developed using global image features can not only gen-
erate higher or equivalent discriminatory power com-
pared to the conventional tumor-based models but also
provide complementary information due to the lower
correlation between the image features and prediction
scores generated by these two types of models. Thus, an

optimal fusion of quantitative image features computed
from both the tumor and global parenchymal regions
can further improve model performance in detecting
suspicious breast tumors [49] and predicting the risk of
lung cancer recurrence (Tables 2 and 3). Such a fusion
approach can also be expanded to optimally combine
imaging markers and genomic biomarkers to improve
model performance in cancer risk prediction, tumor
diagnosis, and prognosis assessment [37, 56].
Fourth, the efficacy of cancer treatment (i.e., using

chemotherapies) depends on not only the characteristics
of tumors but also overall health issues of patients. Thus,
it is also important to identify new imaging features or
markers computed from other non-tumor regions. For
example, we demonstrated that using a logistic regres-
sion model built by quantitative image features of adi-
posity can yield significantly higher accuracy than using
the bone mass index to predict the benefit in patients
with ovarian cancer who received bevacizumab-based
chemotherapy [30]. Our machine learning model com-
bining the computed image features associated with
SFA, VFA, and TPA has been applied to analyze image
data acquired from a large US national clinical trial
(GOG 218), which involves > 1800 patients diagnosed
with ovarian cancer. The study result supports the feasi-
bility of using these non-tumor-related imaging markers
as new prognostic prediction markers [57].
Therefore, this study reviewed several machine learn-

ing models based on the analysis of image features com-
puted from global or non-tumor regions and presented
new experimental data. This is a new research direction
in CAD-related medical imaging informatics field, which
opens an opportunity for researchers to explore new re-
search and application tasks. For example, we recently
investigated the feasibility of developing a new CAD
scheme based on global mammographic image features
to classify malignant and benign cases in which suspi-
cious tumors have been detected by radiologists. The
scheme initially computes 59 global mammographic
image features, followed by applying a particle swarm
optimization algorithm to search for optimal features
and training a support vector machine model to predict
the likelihood of malignancy. When using a relatively
small dataset involving 134 malignant and 141 benign
cases, the model yields a performance of AUC = 0.79 ±
0.07 [58], which is highly comparable to the perform-
ance of applying tumor-based CAD schemes in classify-
ing malignant and benign tumors [26].
Despite the encouraging results, we also recognize

the limitations of these studies. First, due to the use of
the relatively small image datasets, the robustness of
these models has not been well tested. Second, image
features explored and used in our models may not be
optimal, which limits model performance. Figure 7
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shows an example of applying our short-term breast
cancer risk prediction model to analyze “prior” negative
images of two cases. Both cases were positive in the
“current” screening. The model correctly predicted one
case as a high-risk case (with a prediction score of 0.83)
but incorrectly predicted another case as low-risk case
(with a prediction score of 0.25), which is a quite aggres-
sive case with a large tumor developed in 1 year. There-
fore, developing optimal imaging feature fusion-based
machine learning models to predict cancer risk and
prognosis still faces many challenges particularly in de-
tecting aggressive cases. The more innovative research
effort is needed to identify more effective image features,
optimize machine learning schemes, and validate model
performance and robustness using larger and independ-
ent image datasets in future studies.
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