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We aimed to differentiate between the interictal and preictal states in epilepsy

patients with focal cortical dysplasia (FCD) type-II using deep learning-based classifiers

based on intracranial electroencephalography (EEG). We also investigated the practical

conditions for high interictal-preictal discriminability in terms of spatiotemporal EEG

characteristics and data size efficiency. Intracranial EEG recordings of nine epilepsy

patients with FCD type-II (four female, five male; mean age: 10.7 years) were

analyzed. Seizure onset and channel ranking were annotated by two epileptologists.

We performed three consecutive interictal-preictal classification steps by varying the

preictal length, number of electrodes, and sampling frequency with convolutional neural

networks (CNN) using 30 s time-frequency data matrices. Classification performances

were evaluated based on accuracy, F1 score, precision, and recall with respect to

the above-mentioned three parameters. We found that (1) a 5min preictal length

provided the best classification performance, showing a remarkable enhancement

of >13% on average compared to that with the 120min preictal length; (2) four

electrodes provided considerably high classification performance with a decrease

of only approximately 1% on average compared to that with all channels; and (3)

there was minimal performance change when quadrupling the sampling frequency

from 128Hz. Patient-specific performance variations were noticeable with respect

to the preictal length, and three patients showed above-average performance

enhancements of >28%. However, performance enhancements were low with

respect to both the number of electrodes and sampling frequencies, and some

patients showed at most 1–2% performance change. CNN-based classifiers from

intracranial EEG recordings using a small number of electrodes and efficient sampling
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frequency are feasible for predicting the interictal-preictal state transition preceding

seizures in epilepsy patients with FCD type-II. Preictal lengths affect the predictability

in a patient-specific manner; therefore, pre-examinations for optimal preictal length will

be helpful in seizure prediction.

Keywords: epilepsy surgery, seizure prediction, focal cortical dysplasia, deep learning, convolutional neural

networks

INTRODUCTION

Accurate prediction of an impending seizure can alleviate life-
threatening risks in patients when combined with precautions
such as alarms, as is common in seizure advisory systems
(1). Despite the highly erratic characteristics of an epileptic
seizure, numerous studies have reported seizure prediction
approaches in the scalp and intracranial electroencephalography
(EEG) based on linear and non-linear analysis methods,
demonstrating the feasibility of recognizing epileptic seizures in
advance (1–4). In addition to the conventional threshold-based
and machine-learning-based predictors, recent deep learning-
based studies have demonstrated strong seizure prediction by
adopting convolutional neural networks (CNN) (5–7), long
short-term memory networks (8), mixed models (9, 10),
and semi-supervised (11) models with various multivariate
spatiotemporal time domain, frequency domain, and time-
frequency domain features.

Successful anticipation of a seizure is greatly dependent on
an understanding of the neurophysiological transition process
from interictal (between seizures) to preictal (prior to seizures)
states (2–4). Many studies have investigated the interictal-preictal
transition with noticeable changes in linear and non-linear
measures of EEG dynamics (12–17). Determining when the
transition starts provides meaningful clues to an impending
seizure within a certain timeframe, namely the preictal period—
the period between the starting point of the transition and seizure
onset—which can span from several minutes to hours (2). Recent
studies have attempted to determine an optimal length of the
preictal period based on probability-statistical approaches in
human EEGs (5, 18) and training datasets with varying preictal
lengths using machine learning techniques in human (19) and
canine EEGs (20).

Previous studies utilizing spatiotemporal analysis approaches
have also investigated the preictal dynamic changes in terms of
regional effects on seizure prediction (12, 15, 17, 21). Significantly
high predictability has been revealed in a seizure onset zone and
its surrounding areas through discernible interictal and preictal
states of human EEG (22). Nevertheless, these findings remain
controversial due to contradictory studies showing predictability
beyond the seizure onset areas (23–25). In this context, recent
studies have investigated the most preferred EEG recording sites
based on combinations of electrodes (25–27) using an entropy-
based algorithm (9).

Focal cortical dysplasia (FCD) is the most common etiology
in children with intractable epilepsy requiring resective epilepsy
surgery. FCDs are classified into type-I, -II, and -III based
on histopathological features (28). Patients with FCDs undergo

presurgical evaluations using electrophysiology and functional
imaging to identify the extent of their epileptogenic zones. Those
who suffer from medically refractory seizures are, in some cases,
even encouraged to use implantable devices for seizure detection
(29, 30) and prediction (31, 32). These implanted detection
systems contain enough computational power to allow for long-
term EEG monitoring while still assuring the patient’s comfort,
thereby allowing for timely medical interventions in a patient-
specific manner. Several simple, low-power machine learning
algorithms have been proposed based on feature extraction
from EEG spectral powers (33, 34). Recently, deep learning
techniques have been unequivocally identified as superior for
capturing the spatiotemporal neurophysiological signatures of
preictal states (35).

In this study, we adopted a well-known deep learning
approach to discriminate between the interictal and preictal
states that precede intractable seizures in epilepsy patients with
FCD type-II. We varied (1) the length of preictal periods, (2) the
number of EEG electrodes, and (3) sampling frequencies of input
data to investigate the practical conditions for high interictal-
preictal discriminability in deep learning-based classification
models. To our knowledge, this is the first study to demonstrate
the feasibility of deep learning-based classifiers to predict the
interictal-preictal state transition preceding seizures in epilepsy
patients with FCD type-II.

MATERIALS AND METHODS

Dataset
This study was approved by the Institutional Review Board
(IRB) of Seoul National University Hospital (IRB No. H-2007-
091-1141). The IRB waived the requirement for obtaining
informed consent due to the retrospective nature of the review
of medical records and EEG data. Patients were identified via
electronic medical record review. We retrospectively reviewed
all patients who underwent resective epilepsy surgery at Seoul
National University Children’s Hospital between July 2014
and September 2018. We selected magnetic resonance imaging
(MRI) lesional cases with postoperative histological diagnosis
of FCD type-II that had intracranial EEG monitoring as a
part of the respective surgery. Patients over the age of 19
were excluded. Nine patients (four female, five male; mean
age ± standard deviation: 10.7 ± 4.3 years) were included in
our analysis. Patients’ demographics and clinical characteristics,
including electrode number and types, MRI lesion locations, and
intracranial ictal EEG patterns (36), were collected. Presurgical
intracranial EEG recordings from the nine patients were
analyzed. All the recordings were obtained using a digital EEG

Frontiers in Neurology | www.frontiersin.org 2 November 2020 | Volume 11 | Article 594679

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Chung et al. Improved Seizure Prediction in Epilepsy

system (Grass Telefactor Inc., West Warwick, Rhode Island,
United States) with the number of subdural and depth electrodes
varying from 24 to 78 by patient at a 1,600Hz sampling
frequency. Details of patient clinical information are shown
in Table 1.

Two epileptologists (HH and KH) annotated EEG seizure
onsets and terminations after re-reviewing whole long-term
intracranial video-EEG data. In addition, they provided electrode
rankings of the patients based on the clinical importance of
electrodes in surgical decision. For example, electrodes on seizure
onset zones were considered most important, and those on the
other zones of interictal significance—such as zones showing
interictal spikes or slow waves—were considered less important.
A series of consecutive seizures within 1 h was considered as
one seizure. The first seizure in the series was defined as a
lead seizure. The EEG recordings from at least 3 h before and
after onsets of lead seizures were defined as interictal periods,
those from 1 to 120min prior to onsets of lead seizures were
defined as preictal periods, and those from 30min after the last
seizure in the series were defined as postictal periods. The lesser
length a preictal period had, the closer it was located to the
onset of a lead seizure. A 30min preictal period was considered
as default, whereby at least 60min (including the 30min
preictal and 30min postictal periods) were found between two
lead seizures.

Preprocessing
The EEG recordings were down-sampled at 128–512Hz
sampling frequencies, and band-pass filtered between 0.5–50Hz
and 0.5–90Hz for the down-sampling rates of 128Hz and
256–512Hz, respectively. The band-pass filtered signals were
segmented into 30 s epochs varying the amount of overlap based
on the preictal lengths to equalize the number of preictal and
interictal epochs as close as possible. Each epoch was transformed
to a time-frequency two-dimensional data matrix by the short-
time Fourier transform using a 1 s Hamming window with 50%
overlap to capture non-stationary EEG characteristics both in
time and frequency domains as seen in recent human (6, 35)
and canine (37) studies on the deep learning-based seizure
prediction. Coefficients between 55 and 64Hz were excluded
from the time-frequency data matrix down-sampled at 256–
512Hz to remove power line noise effects. In this way, the
time-frequency data matrices down-sampled at 128Hz and
256–512Hz had dimensions (n × T × F) of n × 59 × 65
and n × 59 × 81, respectively, where n was the number
of electrodes.

Interictal-Preictal Classification
We performed three consecutive interictal-preictal classification
steps. Detailed procedures are shown in Figure 1. To deal with an
imbalanced distribution of interictal data sets that outnumbered
the preictal data sets, a random under-sampling method was
applied to make a 1:1 ratio of interictal to preictal data sets. To
ensure the robustness and generality of our classification models,
all the data for each patient were randomly split into three subsets
of training, validation, and test with a ratio of 6:2:2. The total

number of samples used for training, validation, and test is shown
in Supplementary Table 4.

In the first classification step, preictal lengths were varied from
1, 5, 10, 30, 60, to 120min for input data to investigate variations
in classification performance with respect to the preictal lengths.
The EEG recordings from all electrodes, varying from 24 to 78
electrodes implanted for each patient, at a 256Hz down-sampling
frequency were used. For the preictal lengths from 1 to 30min,
the 30min preictal period set by default was applied to generate
input data. For the preictal lengths from 60 to 120min, 60 and
120min preictal periods were newly applied, respectively, to
generate input data. In each case, lead seizures within 1.5 or 2.5 h
including both preictal and postictal periods were considered as
one lead seizure. Hence, the number of lead seizures decreased
and their corresponding ictal durations increased for the preictal
lengths from 30 to 120min. Likewise, their corresponding
interictal durations decreased for those preictal lengths. There
was no change in the number of lead seizures and their
corresponding ictal and interictal durations in two patients (No.
4 and 9) because all the seizures in those patients were separated
sufficiently by more than 2.5 h between seizures. Details of
our dataset information, including the number of seizures and
lead seizures as well as their corresponding ictal and interictal
durations, are shown in Table 2.

In the second classification step, the number of electrodes
was varied from 4, 8, and 16, to all electrodes for input data to
investigate variations in classification performance with respect
to the number of electrodes. The predetermined preictal length
showing the best performance in the first classification step and a
256Hz down-sampling frequency were applied. Four, eight, and
16 electrodes were selected according to their clinical significance
ranking in each patient. Since recent seizure detection (29) and
prediction (32) devices have used multiple four-electrode strips,
the minimum number of electrodes was set to four.

In the third classification step, down-sampling frequencies
were varied from 128, 256, to 512Hz for input data to
investigate variations in classification performance with respect
to sampling frequencies and their corresponding data sizes. The
EEG recordings from all electrodes were down-sampled at those
sampling frequencies separately with the same predetermined
preictal length as in the second classification step.

CNN Architecture
We adopted CNN structures (38) with three convolution
blocks using the time-frequency data matrix as an input. Each
convolution block consisted of a convolution layer with a batch
normalization (39), a rectified linear unit (ReLU) activation
function, and a max pooling layer. Batch normalization was used
to improve training speed and to reduce overfitting. The first
convolution block had 64, n × 5 × 5 kernels, where n is the
number of electrodes, with a stride of 2. The next two convolution
blocks both had 64, 3 × 3 kernels with a stride of 1. Each
convolution layer used a 2 × 2 max pooling layer. Following the
three convolution blocks, two consecutive fully-connected (FC)
layers were used. The former one had a ReLU activation function,
while the latter one had a sigmoid activation function. The output
size of the latter one and its activation function were 256 and 1,
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TABLE 1 | Patient clinical information.

Patient

No.

Age (years) Sex Electrodes Lesion location Intracranial ictal EEG patterns (36)

Total number Type and number

1 12.4 M 24 16 (subdural) 4 × 2 (depth) Right frontal Low-voltage fast activities

2 6.6 F 48 40 (subdural) 4 × 2 (depth) Right temporal Low-voltage fast activities

3 6.7 M 52 48 (subdural) 4 × 1 (depth) Right parietal Burst of high amplitude polyspikes

4 7.6 M 32 32 (subdural) Left frontal Sharp activities at <13 Hz

5 18.2 M 58 50 (subdural) 4 × 2 (depth) Left frontal Burst of high amplitude polyspikes

6 5.8 F 40 32 (subdural) 4 × 2 (depth) Left temporal Sharp activities at <13 Hz

7 15.2 F 40 32 (subdural) 4 × 2 (depth) Left temporal Low-voltage fast activities

8 8.9 F 76 68 (subdural) 4 × 2 (depth) Left frontal Sharp activities at <13 Hz

9 14.6 M 78 74 (subdural) 4 × 1 (depth) Right frontal Low-voltage fast activities

EEG, electroencephalography; M, male; F, female.

FIGURE 1 | Overall procedures of our proposed consecutive classification steps.

TABLE 2 | Dataset information.

Patient

No.

Total recording

time (h)

Ictal (h) Inter-ictal

(h)

Number of

seizures

Based on preictal lengths and their corresponding lead seizures

≤30 min 60 min 120 min

Ictal

(h)

Inter-ictal

(h)

Lead

seizures

Ictal

(h)

Inter-ictal

(h)

Lead

seizures

Ictal

(h)

Inter-ictal

(h)

Lead

seizures

1 63.4 0.99 62.4 84 18.2 45.2 19 21.7 41.8 13 22.2 41.2 5

2 38.4 0.05 38.4 4 1.5 36.9 3 2.4 36.0 2 2.4 36.0 2

3 39.9 0.52 39.4 34 13.8 26.2 13 15.5 24.4 9 18.4 21.6 3

4 93.4 0.03 93.4 8 4.0 89.4 8 4.0 89.4 8 4.0 89.4 8

5 42.3 0.17 42.1 99 10.5 31.8 5 1.6 40.7 2 13.6 28.7 3

6 71.8 0.12 71.7 4 2.1 69.7 4 2.1 69.7 4 1.6 70.2 3

7 59.0 0.38 58.6 38 15.5 43.5 19 24.7 34.2 14 33.7 25.3 7

8 52.0 0.76 51.2 73 20.0 32.1 17 23.3 28.7 11 29.1 22.9 6

9 66.1 0.06 66.0 5 2.6 63.5 5 2.6 63.5 5 2.6 63.5 5

Average 58.5 0.34 58.1 38.8 9.8 48.7 10.3 10.9 47.6 7.6 14.2 44.3 4.7

Total 526.4 3.08 523.3 349 88.1 438.2 93 97.9 428.4 68 127.4 398.9 42
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respectively. Dropout (40) was applied to the first FC layer with a
probability of 0.5.

All experiments were implemented in Python 3.6 with
PyTorch library 1.4.0 (41), using four NVIDIA TITAN V
graphics cards with 12 GB memory graphic processing units and
CUDA 10.1 programming interface. He initialization (42) was
applied to network weights. To train the networks, the RMSProp
optimizer was employed with a learning rate, momentum, and
weight decay of 5 × 10−4, 0.9, and 1 × 10−6, respectively. The
binary cross-entropy loss function was used as a cost function.
Early stopping was used not only to avoid overfitting on the
validation set but also to improve our model’s generalization
ability. As our classification performance was sufficiently high
using the validation set, hyperparameters including the number
of epochs, learning rate, and patience in early stopping were fixed
and no further tuning was required during our validation step.
Model performances on the test set were evaluated based on
four different measures including accuracy, F1 score, precision,
and recall.

RESULTS

Preictal Lengths
On average, interictal-preictal classification performance was the

best at the 5min preictal length with all electrodes and the

256Hz sampling frequency in the first classification step. The

overall accuracy of classification gradually increased from 86.37
to 99.69%, showing a noticeable performance enhancement of

13.32%, by reducing the preictal length from 120 to 5min. The F1

score, precision, and recall averaged across patients also showed
distinct performance enhancements of 11.78, 11.67, and 9.99%,
respectively, by reducing the preictal length from 120 to 5min.

The performance variations with respect to the preictal lengths

for each evaluation measure are shown in Figure 2A.
For each preictal length, four (44%), eight (89%), and two

patients (22%) showed the highest performance at 1, 5, and
10min, respectively. Among the eight patients who showed the
highest performance at the 5min preictal length, three patients
(No. 1, 4, and 9) showed highly remarkable above-average
performance enhancements (28.65–37.73%) by reducing the
preictal length from 120 to 5min. Three patients (No. 3, 5, and
8) were least affected by the decrease in the preictal length from
120 to 5min, showing a slight increase in performance (<2%).

Number of Electrodes
On average, classification performance was best with all
electrodes using the predefined 5min preictal length and the
256Hz sampling frequency in the second classification step.
The accuracy averaged over all patients increased from 98.67 to
99.69%, showing a slight performance enhancement of 1.02%,
by increasing the number of electrodes from four to all. The
patients’ average F1 score, precision, and recall showed tiny
performance enhancements of 1.01, 0.99, and 1.01%, respectively,
when the number of electrodes was increased from four to 24–78
depending on patient. The performance variations with respect to
the number of electrodes for each evaluation measure are shown
in Figure 2B.

Eight patients (89%) showed the highest performance with
all electrodes and less than five patients (<50%) showed the
highest performance with 4, 8, and 16 electrodes using the 5min
preictal length. Three patients (No. 3, 7, and 8) maintained
the highest performance for all conditions (except for the
condition of eight electrodes in No. 7), showing no performance
enhancement by increasing the number of electrodes using
the 5min preictal length. Only one patient (No. 4) showed a
performance enhancement larger than 2%.

The prediction models required fewer parameters with 60.9,
63.1, and 67.4% of all-channel cases for 4-, 8-, and 16-channel
cases, respectively, for one (No. 8) of the three patients who
maintained the highest performance for all conditions. The lower
the number of electrodes, the higher the model efficiency.

Sampling Frequencies
On average, classification performance was the best at the
512Hz sampling frequency using the 5min preictal length
and all electrodes in the third classification step. The patients’
average accuracy increased from 99.62 to 99.69%, showing
a slight performance enhancement of 0.07%, by increasing
the sampling frequency from 128 to 512Hz. The average
F1 score, precision, and recall of patients also showed tiny
performance enhancements of 0.07, 0.06, and 0.08%, respectively,
after quadrupling the sampling frequency from 128Hz. The
performance variations with respect to the sampling frequencies
for each evaluation measure are shown in Figure 2C.

For each sampling frequency, four patients (44%), seven
patients (78%), and six patients (67%) showed their highest
performances at 128, 256, and 512Hz, respectively, using the
5min preictal length and all electrodes. Two patients (No.
3 and 7) maintained their highest performances across all
conditions showing no performance enhancement by increasing
the sampling frequencies. Five patients showed performance
enhancements of <1% (0.15–0.58%). Two patients (No. 4 and 7)
showed performance declines of <1% (0.48–0.92%).

The prediction model using 128Hz required fewer parameters
with 86.2% of the cases using 256–512Hz for one (No. 7) of
the two patients who maintained the highest performance for
all conditions. The lower the sampling frequency, the higher the
model efficiency.

Details of performance variations with respect to the preictal
lengths, number of electrodes, and sampling frequencies for
each patient are shown in Table 3 and Supplementary Figure 1

(by accuracy). Those for other measures are shown in
Supplementary Tables 1–3 for F1 score, precision, and recall,
respectively. The number of model parameters in terms of the
number of electrodes and sampling frequency are shown in
Supplementary Tables 5, 6, respectively.

DISCUSSION

We investigated the practical conditions for high
interictal-preictal discriminability in CNN-based classification
models using intracranial EEG recordings of epilepsy patients
with FCD type-II. We chose the CNN architecture to figure
out image-shape EEG signatures in both time and frequency

Frontiers in Neurology | www.frontiersin.org 5 November 2020 | Volume 11 | Article 594679

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Chung et al. Improved Seizure Prediction in Epilepsy

FIGURE 2 | Performance variations with respect to the preictal lengths (A), number of electrodes (B), and sampling frequencies (C) shown in accuracy, F1 score,

precision, and recall from left to right. Classification procedures were performed varying the preictal lengths with all electrodes and a 256Hz sampling frequency (A),

varying the number of electrodes with a 5min preictal length and a 256Hz sampling frequency (B), and varying the sampling frequencies with a 5min preictal length

and using all electrodes (C).

domains to learn short-term time-frequency relationships by
convolutional filters and to classify EEG states in an end-to-end
fashion (5). We showed that, in our consecutive classification
steps, (1) the 5min preictal length provided the best classification
performance producing a remarkable performance enhancement
of >13% on average compared to that with the 120min
preictal length, (2) four electrodes provided considerably high

classification performance showing a performance decrease of
only around 1% on average compared to that with all electrodes,
and (3) there was little performance change after quadrupling
the sampling frequency from 128Hz. Our results suggest that
CNN-based classifiers using intracranial EEG recordings from a
small number of electrodes with an efficient sampling frequency
are feasible for predicting the interictal-preictal state transition
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TABLE 3 | Performance variations with respect to the preictal lengths, number of electrodes, and sampling frequencies shown in terms of accuracy (unit: %).

Patient No. All electrodes, 256Hz sampling frequency 5min preictal length, 256Hz sampling

frequency

5min preictal length, all

electrodes

Preictal length (min) Electrodes Sampling frequency (Hz)

120 60 30 10 5 1 4 8 16 All 128 256 512

1 62.08 83.17 80.22 83.18 99.81 99.13 99.61 99.81 99.71 99.81 99.61 99.81 99.81

2 95.83 99.16 98.87 100.00 100.00 100.00 98.46 98.46 99.38 100.00 99.85 100.00 100.00

3 98.61 98.84 98.87 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

4 67.81 56.53 74.37 97.60 98.62 95.62 95.85 98.04 97.58 98.62 99.42 98.62 98.50

5 98.27 98.08 95.21 97.90 99.08 99.59 97.42 99.45 98.34 99.08 99.26 99.08 99.82

6 96.17 94.13 98.63 99.34 99.88 99.74 98.38 99.77 99.77 99.88 99.19 99.88 99.77

7 89.14 96.88 98.90 97.25 100.00 98.80 100.00 99.52 100.00 100.00 100.00 100.00 99.52

8 98.26 97.92 95.31 99.87 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

9 71.17 87.87 94.23 99.13 99.82 99.17 98.34 98.34 99.08 99.82 99.26 99.82 99.82

Average 86.37 90.29 92.73 97.14 99.69 99.12 98.67 99.27 99.32 99.69 99.62 99.69 99.69

preceding seizures in epilepsy patients with FCD type-II. Preictal
lengths affect the predictability in a patient-specific manner, and
therefore, pre-examinations for an optimal preictal length will be
helpful in seizure prediction.

Preictal Lengths
In spite of a large number of studies investigating EEG dynamics,
the exact timing and duration of true interictal-preictal state
transition remain unclear (12–17, 21, 43–45). Most recent deep
learning-based studies typically define their preictal lengths, such
as 10min (5), 15min (8, 35), 30min (10), or 60min (6, 9), in
advance of model training. In particular, Khan et al. (5) tried to
determine themost favorable preictal length based on a Kullback-
Leibler divergence to reflect scalp EEG dynamics on the true state
transition. However, predefined preictal lengths are inevitably
prone to deviating from actual preictal lengths. Here, we focused
on determining how long the preictal period should be by using
deep learning-based classification models for high interictal-
preictal discriminability, rather than determining when it occurs
based on EEG dynamics. Therefore, we suggest that the 5min
preictal length is the most appropriate choice among the CNN-
based classification models in our epilepsy patients with FCD
type-II, affording the highest interictal-preictal discriminability.
We further suggest that the true state transition mostly occurs
around 5min prior to the patient’s seizure. In three patients
(No. 1, 4, and 9), the state transition may have occurred
near the seizure onset because the discriminability increases by
reducing preictal lengths. In the other six patients, the state
transition may have occurred long before seizure onset, or the
EEG characteristics of the interictal and preictal states may
have been extremely subtle, because discriminability was high
across all preictal lengths. Importantly, when preictal changes
occur and whether they can be accurately detected are of
critical importance in seizure prediction as well as for accurate
application of rescue measures. For example, in patients with
sufficient intervals between preictal changes and clinical seizures,
rescue medication can be administered in numerous forms,
including sublingually, rectally, or intranasally, to maximize

the clinical outcome. Other patients with short intervals, such
as 5min, will be limited to parenteral administration or local
instillation. Consequently, detailed identification of variations
in interictal-preictal discriminability with respect to the preictal
lengths can be highly useful for individualized seizure prediction
and thus help guide therapeutic approaches.

Number of Electrodes
Where EEG electrodes should be located and how many
electrodes are required for successful seizure prediction are
still unclear. For example, some studies have suggested that
electrodes close to seizure onset zones have high interictal-
preictal discriminability (17), whereas others have observed that
electrodes remote to or even contralateral to seizure onset zones
also have high discriminability particularly in synchrony-based
studies (16, 25, 46). Importantly, the majority of previous deep
learning-based studies focused on either all intact electrodes (5,
6, 35), a fraction of all electrodes chosen by a clinical examination
(10), or an entropy-based algorithm (9) that was selected in
advance of model training. Furthermore, recent seizure advisory
systems typically consist of a 16-electrode implantable device
based onmultiple 4-electrode strips that collect long-term human
intracranial EEG recordings for conventional machine learning
(31, 32) and deep learning (35) techniques. Finally, cortical
stimulation devices designed to detect seizure occurrences are
typically made up of 8 or 16 electrodes with multiple 4-
electrode strips (29, 30). For these reasons, we investigated the
discriminability under conditions of at least four electrodes of
clinical importance (near seizure onset zones) in our epilepsy
patients with FCD type-II and all intact electrodes both near
and far from the seizure onset zones. As all recordings were
gathered from one hemisphere, contralateral electrodes were
not considered in our study. Interestingly, we found that the
discriminability with four electrodes is similar to that with 8,
16, and all electrodes in our patients. Hence, we suggest that a
small number of intracranial EEG electrodes, as few as four, are
sufficient for high interictal-preictal discriminability by CNN-
based classification models in our patients on the condition that
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the electrodes are located near seizure onset zones and an optimal
preictal length is defined. In fact, we only observed around a
1% decline in discriminability when the number of electrodes
was reduced to four. However, implantation of intracranial
electrode devices is a highly invasive procedure. Therefore,
determining the exact amount of decline in interictal-preictal
discriminability based on the number of implanted electrodes
will help inform epileptologists in selecting the fewest number of
electrodes to implant as well as guide manufacturers in designing
future devices.

Reduction of the number of electrodes in this study was
based on the clinical significance of intracranial EEGmonitoring.
Electrodes of higher clinical significance, such as those in ictal
onset zones or zones with frequent spike appearance were ranked
higher in reducing the number of electrodes. This reduction
narrows down the zones to presumptive epileptogenic zones
(47), which can be more focal in FCD type-II. This procedure
should be carefully assessed when evaluating the optimal number
of electrodes for other substrates of intractable focal epilepsy.
The main purpose of reducing the number of electrodes was to
minimize the invasiveness of the implanted commercial device.
However, when considering long-term applications of prediction
or forecasting devices, slight changes in this parameter can
significantly affect performance, such as increased false alarm
rates. These caveats should be accurately assessed and carefully
addressed when applying our findings in clinical practice.

Sampling Frequencies
Few studies have been conducted on seizure prediction
approaches in terms of varying sampling frequencies and their
corresponding data sizes. Using a low sampling frequency as well
as a small number of electrodes is a practical strategy for reducing
the size of input data in implantable seizure advisory systems.
Higher sampling frequencies provide large input data including
high-frequency activities exceeding several hundred Hz. Pearce
et al. (48) investigated temporal distributions of high-frequency
oscillations (HFOs) including ripples and fast ripples in interictal,
preictal, ictal, and postictal periods. However, they reported
highly varied distributions of the HFOs among patients and poor
performance outcomes in their seizure predictors. Recent studies
using implantable devices for seizure detection and prediction
acquired intracranial EEG recordings at sampling frequencies
lower than 400Hz in human (29–32, 35) and canine (37) subjects,
likely to lower power consumption and increase data processing
efficiency. Our results suggest that sampling frequencies from
128 to 512Hz have no significant impact on interictal-preictal
discriminability by CNN-based classification models. Given that
previous studies have observed preictal signatures in gamma
bands (43, 49), 256Hz is considered to be more proper than
128Hz because intracranial EEG recordings sampled at the
256Hz have frequency information up to its Nyquist frequency
of 128Hz including the gamma bands. However, we found that
increasing sampling frequency provides minimal improvement
on interictal-preictal discriminability which should be taken
into consideration in the planning and designing of future
implantable devices for seizure prediction.

Limitations and Suggestions
There are several limitations in this study. The number of patients
was small and the locations of FCD type-II as well as the number
of seizures were varied. We also used in-house intracranial
EEG data recorded under invasive monitoring, which are not
representative of the patients’ everyday lives. Finally, the ranking
of electrodes was arbitrary even though it was performed with the
final results of invasive monitoring and re-reviewing of the data.
To solve our limitations, we suggest increasing the number of
patients and incorporating long-term surgical outcomes into the
ranking and selection of electrodes. When considering the future
applications of seizure forecasting in intractable focal epilepsy
patients, the invasiveness of intracranial electrodes is a major
obstacle. Future studies with long-term EEG monitoring using
scalp EEGs can solve the invasiveness of intracranial electrodes.

CONCLUSION

Deep learning techniques have been strongly suggested as a
novel seizure prediction approach because no hand-engineered
feature extraction procedure is required to explore complicated
spatiotemporal neurophysiological markers. This study showed
that intracranial EEG recordings from a small number of
electrodes near seizure onset zones using a sampling frequency
sufficient to detect gamma bands can successfully discriminate
interictal-preictal states preceding seizures in epilepsy patients
with FCD type-II. Importantly, this requires the determination
of an optimal preictal length using CNN-based classification
models. Our findings can be considered a preliminary proof
of concept for the feasibility of deep learning-based seizure
prediction systems. For our next steps, we plan to evaluate the
predictability of seizure prediction systems based on our deep
learning-based classification models using long-term intracranial
EEG recordings in a larger number of epilepsy patients with
FCD type-II.
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