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Abstract
Purpose Midostaurin, a multitargeted tyrosine kinase inhibi-
tor, is primarily metabolized by CYP3A4. This midostaurin
drug–drug interaction study assessed the dynamic response
and clinical usefulness of urinary 6β-hydroxycortisol to cor-
tisol ratio (6βCR) and plasma 4β-hydroxycholesterol (4βHC)
for monitoring CYP3A4 activity in the presence or absence of
rifampicin, a strong CYP3A4 inducer.
Methods Forty healthy adults were randomized into groups
for either placebo or treatment with rifampicin 600 mg QD for
14 days. All participants received midostaurin 50 mg on day
9. Midostaurin plasma pharmacokinetic parameters were
assessed. Urinary 6βCR and plasma 4βHC levels were mea-
sured on days 1, 9, 11, and 15.
Results Both markers remained stable over time in the control
group and increased significantly in the rifampicin group. In the
rifampicin group, the median increases (vs day 1) on days 9, 11,
and 15 were 4.1-, 5.2-, and 4.7-fold, respectively, for 6βCR and
3.4-, 4.1-, and 4.7-fold, respectively, for 4βHC. Inter- and
intrasubject variabilities in the control group were 45.6 % and
30.5 %, respectively, for 6βCR, and 33.8 % and 7.5 %, respec-
tively, for 4βHC. Baseline midostaurin area under the concen-
tration–time curve (AUC) correlated with 4βHC levels
(ρ=−0.72; P=.003), but not with 6βCR (ρ=0.0925; P=.6981).

Conclusions Both 6βCR and 4βHC levels showed a good
dynamic response range upon strong CYP3A4 induction with
rifampicin. Because of lower inter- and intrasubject variabil-
ity, 4βHC appeared more reliable and better predictive of
CYP3A4 activity compared with 6βCR. The data from our
study further support the clinical utility of these biomarkers.
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Introduction

Cytochrome P450 3A4 (CYP3A4), the most abundant human
CYP isoform [1], is involved in themetabolism of approximately
half of all marketed drugs [2]. However, there is large intersubject
variability in the expression and activity of CYP3A4, resulting
from both genetic and nongenetic factors [3]. Sensitive probes
such asmidazolam are often used as exogenousmarkers to assess
the in vivo activity of CYP3A4 [4, 5]. In contrast to exogenous
markers, urinary 6β-hydroxycortisol to cortisol ratio (6βCR) and
plasma 4β-hydroxycholesterol (4βHC) levels are endogenous
biomarkers of CYP3A4 activity [6–14]. Indicative of cortisol and
cholesterol metabolism by CYP3A4, respectively, urinary 6βCR
and plasma 4βHC rise with increasing CYP3A4 activity [13,
15]. Besides being endogenous, these biomarkers are measured
less invasively or noninvasively, making them attractive candi-
date markers for studies that involve monitoring pharmacokinet-
ics (PK) and pharmacodynamics at multiple time points.

Midostaurin (PKC412; N-benzoylstaurosporin), a multitar-
geted tyrosine kinase inhibitor with activity in acute myeloid
leukemia [16] and advanced systemic mastocytosis [17–19],
is a sensitive CYP3A4 substrate [20]. Previously, we assessed
plasma 4βHC level and urinary 6βCR in the rifampicin
induction part of a drug–drug interaction study [20]. The goals
of this analysis were to further evaluate the dynamic range of

Electronic supplementary material The online version of this article
(doi:10.1007/s00228-014-1675-0) contains supplementary material,
which is available to authorized users.

C. Dutreix : S. Lorenzo
Novartis Pharma AG Basel, Basel, Switzerland

Y. Wang
Novartis Pharmaceuticals, East Hanover, NJ, USA

Present Address:
Y. Wang (*)
Isis Pharmaceuticals, Carlsbad, CA, USA
e-mail: ywang@isisph.com

Eur J Clin Pharmacol (2014) 70:915–920
DOI 10.1007/s00228-014-1675-0

http://dx.doi.org/10.1007/s00228-014-1675-0


these biomarkers upon strong induction with rifampicin and to
compare and evaluate whether these biomarkers can serve as
covariates to explain intersubject variability of midostaurin
pharmacokinetics in a clinical setting.

Methods

Study population and design

The study population and study design have been reported
previously [20]. Briefly, healthy adults aged 18 to 55 years
weighing 50 to 90 kg and with a bodymass index (BMI) of 18
to 29.9 kg/m2 were randomized 1:1 to receive placebo or
rifampicin 600 mg once daily in the evening on days 1
through 14 (Fig. 1; Electronic Supplementary Material
[ESM]-Methods). All subjects received midostaurin 50 mg
on day 9.

Pharmacokinetics and biomarker assessments

As described previously [20], a validated liquid chromatography/
tandem mass spectrometry (LC-MS/MS) assay was used to
assess midostaurin, rifampicin, and 4βHC levels in plasma and
6β-hydroxycortisol and cortisol levels in urine. Missing values
were not imputed, and analyte concentrations below the lower
limit of quantitation were treated as zero values. Additional
details are reported in the ESM-Methods.

Statistical analysis

The 4βHC concentrations and 6βCR were log-transformed
and analyzed for each treatment group (placebo, rifampicin)
with a linear mixed-effects model with visit (days 1, 9, 11, and
15) as fixed effect and subject as random effect. Point esti-
mates and a corresponding 90 % CI of differences in visits
were computed and antilogged to provide the GMR and 90 %
CI of change in 4βHC and 6βCR (day 9/day 1, day 11/day 1,
and day 15/day 1) by treatment group. The intersubject and
intrasubject variabilities of 4βHC and 6βCR for each

treatment were provided using the linear mixed-effect models.
The correlation between the area under the concentration–time
curve from time zero to infinity (AUCinf) of midostaurin and
biomarkers (4βHC and 6βCR) was investigated with the
Pearson correlation coefficient by treatment group.

Results

Baseline characteristics

Baseline characteristics in the PK population (N=40, 20 in
each arm) were balanced between study arms (Table 1). Most
participants were male (60.0 %), and the majority were white
(95.0 %). Median age, weight, and BMI were 44 years,
78.2 kg, and 24.9 kg/m2, respectively.

4βHC levels and 6βCR

Evidence of CYP3A4 induction and midostaurin PK are
discussed in the ESM-Results. At baseline (day 1), 4βHC
showed an intersubject variability of approximately 36 % in
the midostaurin+rifampicin group and approximately 34 % in
the midostaurin+placebo group. In the presence of rifampicin,
the geometric mean estimate (90 % CI) of plasma 4βHC
concentration in the midostaurin+rifampicin arm showed in-
creases of 3.4-fold (3.2–3.6), 4.1-fold (3.8–4.3), and 4.6-fold
(4.4–5.0) between day 1 and days 9, 11, and 15, respectively;
variability ranged from 26 % to 29 % (Table 2; Fig. 2). In the
midostaurin+placebo arm, the plasma 4βHC concentrations
remained stable over time, as did intersubject variability (geo-
metric CV%≈36 %). Based on similar 4βHC levels in the
placebo group, the intrasubject variability was estimated to be
7.5 %. There were no significant differences in 4βHC levels
between males and females in either study arm (ESM-
Supplemental Table 1).

The intersubject variability at baseline was slightly higher
for 6βCR (≈48 %) than for 4βHC (≈36 %). In the presence of
rifampicin, the geometric mean estimate (90 % CI) of 6βCR
showed 4.1-fold (3.4–4.8), 5.2-fold (4.4–6.2), and 4.7-fold
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(4.0–5.6) increases between day 1 and days 9, 11, and 15,
respectively. The variability remained high in the rifampicin
treatment group. In the placebo arm, the 6βCRvalues remained
stable over time despite a high variability on day 15. Based on
the repeated measurements in the placebo group, the
intrasubject variability for 6βCR was estimated to be 30.5 %.

Correlation between midostaurin AUC and CYP3A4
biomarker levels at baseline

In the placebo arm, midostaurin AUC correlated well with
4βHC levels at baseline (ρ=−0.72; P=.0003), but not with
6βCR at baseline (ρ=0.0925; P=.6981; Fig. 3). In the pooled
dataset that included the placebo and rifampicin groups, a clear
separation of plasma 4βHC concentrations was observed be-
tween participants in the midostaurin+rifampicin arm (>55
ng/mL in all participants) and those in the midostaurin+place-
bo arm (≤55 ng/mL in all participants) after induction (Table 2).
Considering all samples from days 9, 11, and 15, plasma 4βHC
concentrations were higher in participants in the rifampicin arm
(range, 55.5 ng/mL–183.0 ng/mL) than in those in the placebo
arm (range, 11.9 ng/mL–53.0 ng/mL). However, for urinary

6βCR, pooled data showed significant overlap between the
rifampicin and placebo groups (ranges 10.10–117.82 and
3.38–53.13, respectively), likely due to the large observed
variability of the urine biomarker.

Discussion

Both 6βCR and 4βHC level are well-known endogenous
biomarkers for CYP3A4 activity [6–14]. CYP3A4/5 cata-
lyzes the formation of 6β-hydroxycortisol from cortisol,
both of which are excreted in urine [6]. Single-spot urine
collection can be used to measure 6βCR [8, 15]. CYP3A4/
5 also catalyzes the formation of 4βHC, which is formed
from cholesterol [21]. Recent studies suggest that both
6βCR and 4βHC are viable and sensitive biomarkers for
CYP3A4 activity; both showed good correlation with
changes of the exogenous sensitive probe substrate midazo-
lam when it was coadministered with rifampicin or ketoco-
nazole [12, 14].

In the current study, healthy volunteers were administered a
clinically relevant dose of rifampicin to induce CYP3A4

Table 1 Baseline demographics of the pharmacokinetics population

Midostaurin+Rifampicin Midostaurin+Placebo All Participants
(n = 20) (n = 20) (N = 40)

Median age (range), y 40 (23–52) 46 (30–53) 44 (23–53)

Male, n (%) 12 (60.0) 12 (60.0) 24 (60.0)

White, n (%) 19 (95.0) 19 (95.0) 38 (95.0)

Median weight (range), kg 77.8 (55–89) 78.3 (57–89) 78.2 (55–89)

Median BMI (range), kg/m2 24.5 (21–29) 25.1 (20–30) 24.9 (20–30)

BMI body mass index

Table 2 Changes in biomarker levels over time in each treatment arm

Midostaurin+Rifampicin Midostaurin+Placebo

(n = 20) (n = 20)

Geometric Mean
(CV%)

Range Fold Increase
(90 % CI)

Geometric Mean
(CV%)

Range Fold Increase
(90 % CI)

4βHC, ng/mL

Day 1 22.03 (36.45) 14.1–59.2 1.0 (baseline) 25.33 (34.25) 12.3–54.5 1.0 (baseline)

Day 9 74.35 (27.17) 55.5–152.0 3.4 (3.15–3.61) 23.38 (34.60) 12.5–48.5 0.9 (0.89–0.96)

Day 11 89.46 (29.47) 59.6–183.0 4.1 (3.79–4.35) 25.43 (33.85) 12.9–50.9 1.0 (0.97–1.04)

Day 15 102.70 (25.54) 69.5–178.0 4.6 (4.36–4.99) 23.28 (36.27) 11.9–53.0 0.9 (0.88–0.96)

6βCR

Day 1 6.83 (47.75) 2.46–13.31 1.0 (baseline) 9.22 (46.64) 4.85–20.00 1.0 (baseline)

Day 9 27.73 (56.80) 10.10–75.20 4.1 (3.42–4.82) 6.92 (57.03) 3.38–21.90 0.8 (0.64–0.88)

Day 11 35.42 (53.63) 12.83–85.91 5.2 (4.37–6.15) 9.21 (50.81) 5.89–41.03 1.0 (0.85–1.17)

Day 15 32.14 (83.58) 11.46–117.82 4.7 (3.96–5.58) 7.49 (70.58) 3.45–53.13 0.8 (0.69–0.95)

4βHC 4β-hydroxycholesterol, 6βCR 6β-hydroxycortisol to cortisol ratio, CV% percent coefficient of variation
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activity. CYP3A4 induction was associated with a notable
increase in urinary 6βCR and plasma 4βHC concentrations,
demonstrating that both 6βCR and 4βHC level can be used to
monitor CYP3A4 activity. Levels of 4βHC had lower
intersubject and intrasubject variability than 6βCR did, con-
sistent with the long half-life of 4βHC in humans (17 days)
[9]. Because 4βHC level is less variable within the sample
subject, it can serve as a reliable biomarker for the baseline
level of CYP3A4 activity in vivo. Midostaurin is a sensitive
substrate of CYP3A4, as shown by the 94 % drop in AUC in
the presence of rifampicin and a more than 10-fold increase
with ketoconazole [20]. A high correlation coefficient of
ρ=−0.72 betweenmidostaurin AUC and 4βHC level suggests

that a large portion (52 %) of the PK variability for
midostaurin could be explained by CYP3A4 variability as
reflected by different 4βHC levels. For drugs less sensitive
to CYP3A4 metabolism, the correlation is likely to be less
significant. The PK exposure–biomarker correlation analysis
provides an added value of measuring baseline levels of
4βHC for drugs metabolized primarily by CYP3A4 in clinical
studies. Additionally, prior work showed that 4βHC level was
higher in women than in men [22]; while our data showed a
similar trend, the differences were not significant.

While there was higher inter- and intrasubject variability in
urinary 6βCR compared with plasma 4βHC levels, CYP3A4
induction was demonstrated more quickly with 6βCR than
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with 4βHC level. Urinary 6βCR increased 4.1-fold by day 9,
close to the average plateau range between days 11 and 15,
whereas the levels of 4βHC showed a continued increase
between days 9 and 15, apparently due to its long half-life as
discussed above. Although both cortisol and 6β-
hydroxycortisol have a diurnal effect, their ratio remains stable
over time [15, 23]. A steady state can be reached rather rapidly
because of the short half-life of cortisol and its metabolite
(approximately 1 h) [24], with little delay or lag time behind
the changes of CYP3A4 activity in vivo. Thus, 6βCR and
4βHC may complement each other as CYP3A4 biomarkers.
If a stable biomarker is needed, 4βHC would be the first
choice. However, if a more rapid biomarker is necessary,
6βCR would be the marker of choice. If the outcome is
unknown, as for new molecular entities, using both bio-
markers in clinical studies would be recommended. Further
studies may be warranted to evaluate whether the variability
of 6βCR can be reduced or better managed.
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