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Polychlorinated biphenyls (PCBs) are synthetic chlorinated hydrocarbons that have extensively polluted the environment and
bioaccumulated in the food chain. PCBs have been deemed to be probable carcinogens by the Environmental Protection Agency,
and exposure to high levels of PCBs has been consistently linked to increased risk of non-Hodgkin lymphoma (NHL). In the
present article we present a forensic epidemiologic evaluation of the causal relationship between NHL and elevated PCB levels
via application of the Bradford-Hill criteria. Included in the evaluation is a meta-analysis of the results of previously published
case-control studies in order to assess the strength of association between NHL and PCBs, resulting in an odds ratio in which the
lowest percentile PCB concentration (quartile, quintile, or tertile) has been compared with the highest percentile concentration
in the study groups. The weight-adjusted odds ratio for all PCB congeners was 1.43 with a 95% confidence interval of 1.31 to
1.55, indicating a statistically significant causal association with NHL. Because of the lack of an unexposed comparison group, a
rationale for the use of a less than 2.0 relative risk causal contribution threshold is presented herein, including an ecologic analysis
of NHL incidence and PCB accumulation (as measured by sales volume) over time. The overall results presented here indicate a
strong general causal association between NHL and PCB exposure.

1. Introduction

Polychlorinated biphenyls (PCBs) are a class of commer-
cially-produced organochlorines known as chlorinated hy-
drocarbons [1]. PCBs are nonflammable, chemically stable,
have a high boiling point, and are nearly insoluble in water.
In addition, they are resistant to the effects of oxidation,
acids, bases, and other chemicals [2, 3]. A PCB molecule
consists of a pair of joined 6-carbon rings, with chlorine(s)
attached or “substituted” at any one of the free 10-carbon
positions. There are 209 possible chlorine arrangements,
which are called congeners. It is the number of the chlorines
and where they are attached that determine the congener’s
properties. A congener’s two-carbon rings can be twisted,

relative to each other, or they can be aligned in the same plane
(coplanar). Coplanar carbon ring alignment occurs when the
chlorine(s) are attached to the carbons closest to the link
between the two rings, called the ortho position. Coplanar
congeners exhibit dioxin-like properties [4, 5].

For approximately 50 years (beginning in 1929), PCBs
were manufactured in the United States (USA) and were
used in numerous industrial and commercial applications in
the form of mixtures called Aroclors [6]. One manufacturer
(Monsanto Company) has produced ∼99% of all the PCBs
used in the USA [2]. Worldwide, Monsanto has produced
between 39 and 48 percent of all PCBs. Widespread industrial
use of PCBs, combined with improper disposal practices,
has led to the introduction of PCBs into the environment,
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where these chemicals are found in all environmental media,
including air, water, and soil. Based on mounting evidence
that PCBs were accumulating and persisting in the environ-
ment and that this accumulation was causing adverse health
effects in humans and animals, PCB production in the USA
was halted in the late 1970s [1].

PCBs are highly soluble in lipids, and as such, are ab-
sorbed by fish and other animals, leading to considerable
bioaccumulation in the food chain. PCBs are typically
absorbed into the human body through ingestion, inhala-
tion, and/or dermal exposure [1, 7–9]. Bioaccumulation in
humans and animals occurs when PCBs are absorbed into
the body at a rate greater than the rate at which they are
metabolized and excreted from the body. Detectable levels
of PCBs have been found in humans in adipose (fat) tissue,
breast milk, hair, and serum lipids [3, 10]. Consumption
of contaminated food is the major source of PCB exposure
for the general United States population that is not occupa-
tionally exposed to PCBs [1, 2, 8, 10, 11]. Unsurprisingly,
populations that are at particular risk to high exposure to
PCBs include people who consume sport-caught fish and
other contaminated foods, workers occupationally exposed
to PCBs, individuals residing near hazardous waste sites
containing PCBs, and nursing infants [7, 8, 10, 12].

PCBs are deemed to be probable carcinogens by the
Environmental Protection Agency based on the results of
both animal and human studies [1]. A number of animal
studies have demonstrated a direct dose-response relation-
ship between PCB levels and liver tumor occurrence [13–
16]. In humans, there is also good evidence of an association
between increased cancer rates and PCBs. A number of
epidemiologic studies have indicated increased rates of liver
and biliary cancer [17], breast cancer [18], skin cancer [19],
and Non-Hodgkin Lymphoma (NHL), among other cancers
[20].

PCBs appear to have a number of toxic qualities that
potentially explain these observed associations, including
dioxin-like characteristics of some congeners (118, 156, and
169) [5], the ability to mimic hormones for others [11], and
neuro- and immunotoxicity as well [21–23]. This last quality
(immunotoxicity) is helpful in explaining the observed
association between elevation of certain congener titers (118,
138, 153, 170, and 180) and the increased incidence of NHL,
as immune system depression is considered to be one of the
strongest risk factors for NHL [24, 25]. Immunotoxicity is
a characteristic shared by other organochlorines as well,
including dioxins and chemicals found in pesticides and
herbicides such as hexachlorobenzene, heptachlor, chlor-
dane, and others [26], which have also been found to be
associated with increased risk of NHL [27]. It is most likely
the quality of immunotoxicity that links both PCBs and non-
PCB organochlorines to increased incidence of NHL, and
when both are present, each contribute to the risk of NHL
independently [26].

NHL includes all cancers of lymphoid tissues except
Hodgkin’s disease, a malignancy of the lymph nodes [28].
The incidence of NHL in many parts of the world is
rising more rapidly than the incidence of virtually all other
human cancers [29, 30]. In the US, the incidence of NHL

increased at an average of 3.6% per year from 1975–1991
and continued to rise over the period 1991–2005, albeit at
a slower rate (∼0.5% annually) [31, 32]. It is widely accepted
that changes in diagnostic practices and known risk factors
such as age, autoimmune disease incidence, and prevalence
of immune-suppressing infections are insufficient to explain
the emerging “epidemic” of NHL observed in most of the
world [33, 34]. Additionally, it is hypothesized that exposures
shared by many populations worldwide are the most likely
explanation for the steep increases in NHL incidence [31,
33–35], and that this exposure is likely immunotoxic or
immunosuppressive [36]. Thus, exposure to PCBs and other
persistent organic pollutants provides a reasonably plausible
explanation, at least in part, for the rise in NHL incidence
during the latter half of the 20th century.

The underlying physiologic mechanisms for the devel-
opment of NHL secondary to PCB exposure are not fully
known. It is well established that the dioxin-like congeners
can bind to and activate the aryl hydrocarbon receptor
(AhR), a normally inactive transcription factor [37]. The
overactivation of the AhR can induce enzymes that produce
cytotoxic metabolites or otherwise adversely affect cellular
metabolism [38]. The degree to which a particular coplanar
dioxin-like congener can act on the AhR is measured in
Toxic Equivalents (TEQ), a comparison with a standard
set to the highly toxic dioxin-like compound 2,3,7,8-Tetra-
chlorodibenzo-p-dioxin (TCDD) [39]. Less is known about
the noncoplanar nondioxin-like congeners, however, they
appear to affect immune function by direct cellular effects,
including inhibition of leukocytic phagocytosis, among other
actions [22].

Although there are some differences in the specific
congeners measured and variations in the PCB levels asso-
ciated with increased risk of NHL, the literature generally
supports, via both case-control and cohort studies, the
concept that populations with higher levels of exposure to
certain PCB congener and with higher body burdens of
these same congeners are at increased risk for NHL. Multiple
representative publications describe groups of previously
identified cases of NHL from various registries and clinical
investigations and compared them with age and gender-
matched controls, resulting in quantitative descriptions of
relative influence of percentile groupings of blood plasma
PCB on NHL risk via conditional logistic regression (Table 1)
[26, 40–48]. An additional study [49], analyzed adipose
tissue in a postmortem assessment. Rothman et al. [40],
Engel et al. [41, 48], all used prediagnosis blood samples (not
subject to weight loss bias). Additionally, three landmark
exposure studies investigated the association between envi-
ronmental levels of various Aroclor products and mortality
rates from NHL (Table 2) [50–52]. These studies collectively
have provided a foundation for a reasonable conclusion that
a causal relationship exists between high levels of PCBs, both
in the environment and in the body and increased risk of
NHL.

A few authors have reported subgroups of NHL that are
linked to PCB exposure, including an association between
diffuse large cell lymphoma and congener 118 and T-cell
lymphoma and congener 180 [42]. Hardell reported the
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Table 2: Summary of published cohort studies examining mortality from NHL as associated with PCB exposure. Note the cohort described
in Prince et al., [50] were included in the Prince et al., [51] study. Here, the standardized mortality ratio (SMR) was calculated as an indirect
adjustment method where the observed number of events (deaths) in each occupational cohort is compared with the number of expected
events (based on a “standard” rate).

Study
PCB product

exposure
Chlorine (%)

PCB air sampling
(μg/m3)

Cohort
size (n)

Deaths
Cancer
deaths

NHL
deaths

Mortality
rate (SMR)

Prince et al., 2006
[50]

Aroclor 1254 54
24–476 & 50–1,260 2,572 798 218 10 1.31Aroclor 1242 42

Aroclor 1016 41

Prince et al., 2006
[51]

Aroclor 1254 54
24–476 & 50–1,260 14,458 3,417 1015 35 0.98Aroclor 1242 42

Aroclor 1016 41

Ruder et al., 2006
[52]

Aroclor 1242 42
7–339 & 62–290 3,569 547 171 9 1.23

Aroclor 1016 41

highest observed association in their cohort between elevated
PCB burdens and low-grade B-cell lymphomas, the most
prevalent category of NHL subtypes [43]. DeRoos found an
association between congeners 180 and 187 and diffuse but
not follicular NHL, whereas Morton reported an association
between follicular NHL and congener 180, as well as
marginal zone NHL subtype [54].

Given a reasonable basis for a conclusion of general
(population-based) causation, the question arises of how to
determine, in an individual case of NHL in which elevated
blood and/or adipose levels of total or individual PCB
congeners have been observed, if the relationship between
the two is causal. Far more has been written in epidemiology
about the evaluation of general (population) causation than
specific (individual) causation. Epidemiologic methods are
used for the investigation of specific causation in both short
acting exposure/outcome situations (i.e., outbreak/injury
investigation) and in settings in which disease onset is
latent, sometimes for decades, following exposure, such as
with exposure to environmental toxicological or radiological
hazards. The discipline of forensic epidemiology is directed
at addressing, often for presentation in legal settings, the
specific causal correlation between a suspected hazard and
a disease or injury outcome [55–57]. The ultimate goal of
the investigation is to answer the “but-for” question, which
is “but-for the exposure to the hazard, would the individual still
have the disease or injury?” [58]. The forensic epidemiologic
approach to answering this question is accomplished by
first assessing the plausibility of a causal relationship via
application of the Bradford-Hill criteria and then estimating
the attributable risk percent or probability of causation (PC)
that quantifies the probability that, but for the exposure,
the disease or injury outcome would not have occurred
[59]. Generally, if the PC exceeds 50% then the hazardous
exposure is considered most probably causally related to the
disease or injury outcome [60]. PC is derived from com-
parative epidemiologic data that adequately represent the
relative risk (RR) of disease or injury between hazard-exposed
populations most meaningfully similar to the individual
versus nonhazard-exposed populations most meaningfully

similar to the individual. A PC of >50% is the equivalent
of an RR >2.0 and implies that the cause of disease or
injury in an individual randomly selected from the exposed
population is the hazard of interest more often than not.
This approach is relatively straightforward for evaluating the
causal relationship between, for example, cigarette smoking
and pancreatic cancer, as there are clearly defined and easily
identified exposed (smoking) and unexposed (nonsmoking,
not exposed to second-hand smoke) populations.

For the evaluation of PCB exposure and NHL, the
issue of causation is more complicated, as the ubiquitous
nature of PCBs in the environment means that there are no
truly unexposed populations. In combination with the likely
multifactorial etiology of NHL (viral infections, immune
system depression, autoimmune conditions, and genetic
anomalies are all thought to play a role), it is much easier to
conclude that the prominence of a single “suspect” hazard-
like elevated serum levels of PCBs serves to contribute to
the cause of an individual’s NHL such that the hypothetical
complete subtraction of the hazard would likely result in
the individual not developing the disease (the factor is
necessary for the development of the condition). Conversely,
the development of NHL most likely requires a number of
components along with the suspect hazard, any number of
which may also be necessary in order for the disease to
manifest.

In the present endeavor, we propose a methodologic
framework for the evaluation of specific causation of NHL
associated with PCB exposure that takes into account the
pervasive and persistent nature of PCBs in the environment
and the difficulties with setting an absolute threshold for spe-
cific causation. To accomplish this task, we present a meta-
analysis of the previously published case-control studies that
have examined the risk of NHL relative to PCB titer by
congener. Additionally, we discuss a rationale for the use of
an adjusted relative risk or probability of causation threshold
for concluding that a causally contributory relationship is
more probably than not present in an individual with NHL
and elevated PCB titers.
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2. Methods

2.1. Application of Hill Criteria for Causal Assessment. For
the purposes of the present study, a causal relationship is
defined as when an exposure is found to have served as an
antecedent event or condition that was necessary for the
occurrence of a specific disease or injury at the moment that
it occurred, given that other conditions are fixed [61]. That
is to say, the cause of the disease or injury is an event or
condition that preceded the disease or injury and without
which the disease or injury would not have occurred. Forensic
applications of epidemiology that address the evaluation
of causation generally follow the criteria set forth by Sir
Austin Bradford-Hill in 1965 [55, 56, 62–66]. Hill’s nine
criteria, in the order in which they were given in the original
publication, are briefly as follows.

(1) Strength of association: strength of association is the
most important determinant of both general and
specific causation and quantified by RR, in that the
larger the ratio between the incidence of the condi-
tion in the exposed group versuses the incidence in
the unexposed group, the greater the probability that
the relationship is causal. As described previously, an
RR >2.0 is the equivalent of a PC >50%, meaning that
it is more probable than not that the suspected causal
relationship is true.

(2) Consistency: the repetitive observation of a relation-
ship in different circumstances strengthens the causal
inference.

(3) Specificity: the degree to which a suspected causal
factor is associated with a particular outcome or
population.

(4) Temporality: the potential causal factor must precede
the outcome it is assumed to affect, and the outcome
cannot either occur before it is physiologically feasi-
ble or after too great of a latency period. Temporality
is the one factor that must always be present in
general and specific causation in order to conclude
that a cause and effect relationship is present.

(5) Biological gradient: the injury outcome increases
proportionately with increasing dose of exposure
(also known as dose-response).

(6) Plausibility: the degree to which the observed associ-
ation can be explained by known scientific principles.

(7) Coherence: a causal conclusion should not funda-
mentally contradict present substantive knowledge; it
should “make sense” given current knowledge.

(8) Experiment: in some cases, there may be evi-
dence from randomized experiments on animals or
humans.

(9) Analogy: an analogous exposure and outcome may
be translatable to the circumstances of a previously
unexplored causal investigation.

For application in a forensic setting, these criteria are some-
times modified to include cessation (of exposure) as a test-
retest criteria and consideration of alternative explanations

Table 3: Notation for the calculation of Mantel-Haenszel-adjusted
odds ratios from the published case-control studies reporting asso-
ciation of NHL and PCB blood content for specific congeners. Here,
“exposed” and “unexposed” populations noted in traditional meta-
analyses were replaced with “upper” and “lower” acknowledging the
upper and lower percentiles of exposure reported in the literature,
respectively. The subscript “i” indicates each stratum (published
congener).

Cases Controls Total

Upper ai bi M1i

Lower ci di M2i

Total n1i n2i Ni

for the association (such as bias and confounding), in place
of the less frequently useful experiment criterion [60]. The
only criterion that is truly essential for a causal association
is temporality, as the outcome must follow the exposure in
time. In fact, none of the criteria (with the exception of
temporality) are applicable in all circumstances [67, 68].

The causation criteria can be lumped into three main
groups by their utility: (1) those used to evaluate whether
there is a reasonably plausible relationship between outcome
and exposure (consistency, specificity, biological gradient, plau-
sibility, coherence, experiment, and analogy and cessation);
(2) temporality; (3) strength of association (or probability of
causation). An analysis involving the application of these
criteria to the evaluation of the plausibility of a causal rela-
tionship between NHL and elevated PCB congener titers, as
well as temporality, is presented in the results and discussion
sections. The final criterion, strength of association, is
discussed below.

2.2. Meta-Analysis of Individual Congeners as a Measure of
Strength of Association (Causal Contribution). In order to
assess the utility of PCB congener level as an index of
causal contribution, it was necessary to meta-analyze data
from previously published case-control studies in which the
risk of NHL was compared with serum levels of individual
congeners through the application of conditional logistic
regression. In order to be included in the meta-analysis, the
studies needed to have the following characteristics in com-
mon: they examined individual PCB congeners identified in
plasma samples acquired from cases of NHL (as opposed
to groups of congeners), they included age and gender
frequency-matched controls, they ranked their results by
percentile of congener concentration (from lowest to highest
tertile, quartile, or quintile), they quantified their results in
terms of natural log odds ratios as a measure of NHL risk by
comparing the minimum percentile with the maximum, and
multiple strata were available for any included congener. For
the meta-analysis, the fixed-effect Mantel-Haenszel (MH)-
adjusted odds ratio (ORMH) was calculated as a weighted
average (wi) of the natural log (ln) odds ratio (ORi) for
each study in which the minimum percentile was compared
with the highest percentile concentration (Table 3). This
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minimum-maximum comparison was chosen for the meta-
analysis in order to summarize the comparison of the
extrema. The following calculation was used:

ORMH =
∑k

i=1((bici/Ni)× (aidi/bici))
∑k

i=1 bici/Ni

=
∑k

i=1 wiORi
∑k

i=1 wi

. (1)

This approach utilized the subpopulations within each study
(ai, bi, ci, and di) as identified in the two-by-two contingency
tables stratified by k studies. The confidence interval for the
ORMH was determined by first calculating the standard error
(SE) of the OR estimate (ORi) and given by the following
equation [69]:

SE(ln ORMH)

=
√
√
√
√
√

∑k
i=1(PiRi)

2
(∑k

i=1 Ri

)2 +

∑k
i=1(Piwi + QiRi)

2
(∑k

i=1 Ri

)(∑k
i=1 wi

) +

∑k
i=1(Qiwi)

2
(∑k

i=1 wi

)2 ,

(2)

where

Pi = ai + di
Ni

, Qi = bi + ci
Ni

,

Ri = ai × di
Ni

, wi = bi × ci
Ni

.
(3)

The meta-analyzed 95% confidence level (CI) was then
calculated in the natural logarithmic (ln) scale to match the
scale of the OR:

95% CI(ln OR) = ln OR± [1.96× SE(ln OR)]. (4)

A test for homogeneity was also conducted to assess the
application of the fixed-effect model applied here to the
published ORs. This approach was applied to test whether
the population ORs are in fact constant across the different
strata [70]. If the test fails, the ORs can simply be reported as
distinct values or be further meta-analyzed using a random-
effects model [27, 71]. The test for homogeneity evaluates
the null hypothesis (Ho) where the population odds ratios for
the g tables are assumed statistically identical, or equivalently,
Ho = OR1 = OR2 = · · · = ORi = · · · = ORg . To perform
this test, we calculated the chi-square statistic (Q or χ2):

Q = χ2 =
g∑

i=1

wi
(
yi − Y

)2
. (5)

Here the natural logarithm of each estimated OR is deter-
mined:

yi = ln ORi (6)

and used to produce a weighted average (Y) applying the
weighting value described in (1), such that:

Y =
∑g

i=1 wiyi
∑g

i=1 wi
. (7)

The resulting statistic from (5) has a distribution that is
approximately chi-square with g-1 degrees of freedom. A chi-
square distribution table was then consulted for each test,
producing a P value as an assessment of the null hypothesis,
where P < 0.05 was considered as a rejection of the null
[70]. An alternative test statistic for assessing homogeneity
is the likelihood ratio test, which is computationally more
cumbersome than the Q statistic applied here [72].

2.3. Ecological Analysis. In order to explicate the correlation
between changes in environmental levels of PCBs and
changes in the incidence of NHL an ecologic effect analysis
was performed. Data were acquired from the National
Institute of Cancer [32] and compared to PCB production
and sales levels [6, 73]. Time-dependent accumulation of
PCBs was calculated from the annual sales data of the
open source materials including heat transfer products,
hydraulics/lubricants, miscellaneous industrial products,
plasticizers, and petroleum additives. The environmental
PCB accumulation data are presented in three forms: first,
only the sales data are plotted over time; second, the
sales data are extended in time, assuming a static level of
accumulation where the maximum presence of PCB in the
environment remains fixed and constant after production
ceased; third, the sales data are used as a basis from which
to assume a dynamic accumulation of PCB, where environ-
mental levels increase as devices and materials break down,
continuously releasing congeners into the environment. This
last approach required forecasting the accumulation beyond
the end of production following a similar initial growth curve
into the future. A polynomial curvefit produced a strong
phenomenological model representing the time-dependent
accumulation in units of kilo-lbs (R2 = 0.9772), with time
measured in years:

PCB Accumulation = 16, 488.2 + 1048.9 (Time)2. (8)

This model was then applied to years beyond the end of the
sales period, extending the accumulation data into the future,
matching the surveillance period for NHL incidence. Plotted
comparisons were made over the actual dates (calendar
years) as well as relative time from origination (both in sales
and cancer incidence monitoring).

The environmental PCB accumulation model was juxta-
posed with the incidence over time of a number of major
cancer types. A correlation coefficient was calculated for
each NHL and non-NHL association, where R2 > 0.80 was
considered a strong statistical correlation.

3. Results

3.1. Assessment of the Hill Criteria for Causation

3.1.1. Plausibility. In the present context, plausibility does
not refer to Hill’s narrow use of the term as one of the
nine causal criteria, in which he referred to the specific
biologic action by which an environmental factor caused a
disease, but rather to the group of criteria (all but temporality
and strength of association) that answer the question “can
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Figure 1: Odds ratios and 95% confidence limits for all PCB blood-level congeners as associated with NHL and reported in six case-control
studies.

the exposure cause the outcome?” Interestingly, Hill did not
consider the biological plausibility criterion to be particularly
critical to a finding of cause and effect, stating that he was
“convinced this is a feature that we cannot demand” [62].
This was because of the recognition that an environmental
toxin may, in fact, cause a disease by a currently unexplicated
mechanism that may be described in the future.

In examining the plausibility of a causal relationship
between PCB exposure and NHL, there is a substantial
amount of published information to rely upon that indicates
that the relationship is indeed plausible. Analogy is strongly
supported for PCB exposure as a cause of NHL, as they
belong to the same chemical family of organochlorines as
other chemicals that have been associated with NHL in prior
epidemiologic studies [27]. From a biological plausibility
perspective, NHL is a disease that has been repeatedly
shown to be related to compromise of the body’s immune
response [24, 25], and there are a number of PCB congeners
that have been deemed immunotoxic [74]. Additionally, the
dioxin-like PCB congeners have the ability to bind to the
aryl hydrocarbon receptor, a normally inactive transcription
factor that when bound can alter genetic transcription.

Consistency of the relationship is seen with the number
of published epidemiologic studies, both case-control and
cohort design, of various populations in various settings in
which an association between PCB congener titer levels has
been linked to NHL risk (Tables 1 and 2).

3.1.2. Temporality. Because of the ubiquitous nature of PCBs
in the environment and the way in which they accumulate
over time in the body, as well as the nature of NHL as a
disease that has seen its largest increases in the population
over the age of 55, aside from the youngest patients with
NHL (often those with readily apparent explanations for the
disease, such as immunosuppressive infections), temporality
is assumed to be appropriately present in most cases of NHL
in the presence of high PCB titers.

3.1.3. Strength of Association (Causal Contribution) via Meta-
Analysis. Eleven published case-control studies reported on
the association between NHL and PCB levels were considered
for meta-analysis (Table 1). Of these publications, six articles
described seven unique populations associating the influence
of 10 congeners (28, 99, 118, 138, 153, 156, 170, 180, 183,
and 187) on NHL incidence and which were deemed eligible
under the meta-analysis inclusion criteria. Point-estimate
odds ratio results for all studied congeners from each of the
published case-control studies are described via horizontal
forest plot as a summary of the previous published results
(Figure 1). These results were then meta-analyzed according
to the methods described previously (Figure 2).

The weight-adjusted odds ratio (ORMH) for all 10 con-
geners collectively was 1.43 (95% CI 1.31–1.55). Each of
the 10 congeners contributed to its own congener-specific
meta-analysis as well as toward the all-congener ORMH.
ORMH results for seven congeners (118, 138, 153, 156,
170, 180, and 187) were statistically significant, whereas
the results for three congeners (28, 99, and 183) were not
(Figure 2 and Table 4). All of the seven congeners with
significant meta-analysis results have been previously de-
scribed as having immunotoxic characteristics, and one
(118) is also considered to be dioxin like.

3.2. Ecological Effects. The ecological data representing the
incidence of NHL versus PCB accumulation over time indi-
cated statistically strong correlations (R2 > 0.94) regardless
of the assumed accumulation models (Figure 3). A high
degree of correlation (R2 > 0.8) between NHL incidence and
PCB accumulation was observed for several other cancers
for one or two of the accumulation models, including
breast, liver and bile duct, kidney, skin, and soft tissue
and heart, however none of these other cancers consistently
demonstrated high-correlation values in all three models
(Table 5).
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4. Discussion

The results of the (nonexhaustive) application of the Hill
criteria to the current state of knowledge regarding the
relationship between blood levels of PCBs and NHL risk
indicate a plausible causal association. The multiple case-
control studies described herein also consistently demon-
strate a strong level of association between elevated PCB
levels and NHL sufficient to conclude that a (general) causal
relationship exists between the two, and that if PCBs were to
be eliminated from the environment, a certain proportion of
NHL cases would likewise be eliminated.

This conclusion is further supported by the results of the
ecological analysis reported herein, in which a relationship
between PCB levels in the environment over time appeared
to be more uniquely and strongly correlated with NHL
incidence than with other types of cancers. The multicause
nature of NHL means that these data should be viewed with
caution and even skepticism, but the observed relationships
are at the very least consistent with other theories regarding
the inordinately large increase in NHL incidence over the
past approximately 40 years.

Based on these results and the multifactorial nature of
NHL, it is reasonable to conclude that a certain proportion
of individual cases of NHL occur only because of elevated
PCB levels; in another proportion, elevated PCB levels have
contributed to the cause of the NHL in conjunction with
other causes but cannot be said to be solely necessary as a
cause; in another proportion the body burden of PCBs is
neither completely nor partially contributory to the NHL
occurrence. We posit that if an individual with NHL is found
to have a titer of PCB congeners 118, 138, 153, 156, 170, 180
or 187 that exceeds 75% of that of the comparable general

population of the same age and era [75], then it can be
concluded that the elevated body burden of PCBs causally
contributed to the NHL occurrence.

Given this conclusion, the issue of the >2.0 relative risk
specific causation threshold must be addressed. In a setting
in which there is an identified unexposed comparison group,
a relative risk of 1.43 (here defined by an OR with the
lesser exposed) would mean that out of 143 hazard-exposed
subjects with the disease of interest, 43 acquired the disease
only because of the exposure, and 100 developed the disease
independent of the exposure to the hazard. For the purposes
of a specific causation evaluation, randomly selecting one of
the exposed cases would result in a probability of causation of
30% (43/143), and thus the conclusion that the individual’s
disease was not related to the exposure, on a more probable
than not basis. Such an approach is potentially problematic
because it will result in an erroneous determination of no
causal relationship between the hazardous exposure and the
disease in 30% of specific causation evaluations [76]. The
2.0 relative risk approach becomes problematic to a point of
impracticality when evaluating specific causation for PCBs
and NHL. When considering the 143 highest PCB titer
percentile-exposed subjects with NHL (representative of the
meta-analyzed 1.43 ORMH described herein), there will be
43 who have the disease only because of the PCB exposure,
and 100 subjects in whom their elevated PCB levels may or
may not have contributed to their NHL, since in reality all
of the “unexposed” subjects are really just “lesser exposed”
subjects. The fact that there are no unexposed comparison
groups (zero PCB body burden) with which the cases could
be compared in the meta-analyzed studies effectively lowered
the resulting odds ratios to a largely unknown degree. Some
indication of the magnitude of this effect can be inferred
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Figure 3: Ecological correlations between PCB accumulation and the national incidence of NHL compared over calendar years and relative
year based on the assumptions of (a) sales-only exposure (sales model); (b) environmental exposure (static model); (c) physiologic exposure
(dynamic model).

from the ecological data presented herein, as there was an
approximate doubling of the incidence of NHL over a 30-
year period of time that was temporally associated with the
introduction of PCBs into the environment. It may be a
reasonable supposition that some proportion of the cases
resulted from the exponential increase in environmental
PCBs that preceded the dramatic increase in the rate of NHL
and which are represented in all percentiles of PCB exposure.

Additionally, it appears that there are a couple of factors
that tend to decrease PCB levels in the body that may be
associated with the presence or diagnosis of NHL, resulting
in lower post-NHL-diagnosis titers than what may have been

presented prior to diagnosis. Individuals with higher body
mass index (BMI) levels metabolize and eliminate PCBs
more slowly, and because weight loss is a common feature
of NHL, this feature of the disease would tend to decrease
the body burden of PCBs as the illness progressed [77].
Additionally, chemotherapy, a common medical treatment
for NHL, has been observed to potentially decrease PCB
levels in the body by nearly 30% [78].

Taken together, all of these factors indicate that the 2.0
relative risk or odds ratio threshold cannot be reasonably
applied to PCB and NHL. It is for this reason that the use of
upper percentile cutoff values associated with the maximum
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Table 4: List of contributing strata and OR metrics satisfying the meta-analysis criteria. Results of the Chi-square test for homogeneity (P
values and degrees of freedom, DOF) are shown for each meta-analyzed congener. Note that congener 118 is statistically heterogeneous
(P < 0.025). However, removal of the weighted outlier [46] indicated homogeneity in the remaining strata. A combined test of all congeners
indicated overall homogeneity (P > 0.10 and 37 DOF).

Study (strata) Percentile type PCB congener OR LCL UCL Homogeneity test (Chi-Square DOF)

Spinelli et al., 2007 [42] Tertile 28 0.95 0.67 1.34
P > 0.10 (1)

Cocco et al., 2008 [46] Quartile 28 1.60 0.80 3.20

Spinelli et al., 2007 [42] Quartile 99 1.27 0.86 1.87
P > 0.10 (1)

De Roos et al., 2005 [26] Quartile 99 0.77 0.28 2.10

Engel et al., 2007-J [41] Quartile 118 1.70 0.90 3.50

P < 0.025 (6)

Engel et al., 2007-C [41] Quartile 118 5.40 1.70 17.10

Spinelli et al., 2007 [42] Quartile 118 1.77 1.15 2.72

De Roos et al., 2005 [26] Quartile 118 0.73 0.29 1.84

Cocco et al., 2008 [46] Quartile 118 0.40 0.20 0.80

Laden et al., 2010 [48] Quartile 118 0.81 0.42 1.56

Bertrand et al., 2010 [47] Quintile 118 1.40 0.76 2.50

Engel et al., 2007-J [41] Quartile 138 1.70 0.80 3.20

P > 0.10 (5)

Engel et al., 2007-C [41] Quartile 138 4.40 1.50 12.60

Spinelli et al., 2007 [42] Quartile 138 1.46 0.98 2.18

Cocco et al., 2008 [46] Quartile 138 1.10 0.60 2.00

Laden et al., 2010 [48] Quartile 138 0.95 0.49 1.83

Bertrand et al., 2010 [47] Quintile 138 1.80 0.98 3.20

Engel et al., 2007-J [41] Quartile 153 2.00 1.00 3.90

P > 0.10 (6)

Engel et al., 2007-C [41] Quartile 153 2.20 0.90 5.20

Spinelli et al., 2007 [42] Quartile 153 1.79 1.17 2.72

De Roos et al., 2005 [26] Quartile 153 1.59 0.63 4.00

Cocco et al., 2008 [46] Quartile 153 1.00 0.70 2.50

Laden et al., 2010 [48] Quartile 153 0.82 0.43 1.56

Bertrand et al., 2010 [47] Quintile 153 2.10 1.10 3.80

Spinelli et al., 2007 [42] Quartile 156 1.77 1.14 2.74
P > 0.10 (1)

De Roos et al., 2005 [26] Quartile 156 2.70 0.97 7.50

Spinelli et al., 2007 [42] Quartile 170 1.80 1.16 2.79
P > 0.10 (2)De Roos et al., 2005 [26] Quartile 170 1.73 0.73 4.14

Cocco et al., 2008 [46] Quartile 170 1.00 0.50 1.80

Spinelli et al., 2007 [42] Quartile 180 1.91 1.19 3.07

P > 0.10 (4)
De Roos et al., 2005 [26] Quartile 180 3.50 1.34 9.15

Laden et al., 2010 [48] Quartile 180 1.03 0.52 2.02

Cocco et al., 2008 [46] Quartile 180 1.50 0.70 3.20

Bertrand et al., 2010 [47] Quintile 180 2.40 1.30 4.50

Spinelli et al., 2007 [42] Tertile 183 1.22 0.87 1.71
P > 0.10 (1)

De Roos et al., 2005 [26] Quartile 183 1.02 0.36 2.93

Spinelli et al., 2007 [42] Quartile 187 1.92 1.23 2.98
P > 0.10 (1)

De Roos et al., 2005 [26] Quartile 187 1.22 0.49 3.08

versus minimum ORMH to conclude that causal contribution
is present is thought to be a reasonably practicable alternative
to evaluating causation for an environmental toxin so
ubiquitous that no unexposed group exists for comparison.

5. Conclusions

Application of the Hill criteria to the current state of knowl-
edge regarding the association between environmental PCBs

and NHL reveals convincing evidence of plausibility, as well
as a strong general causal association, with meta-analyzed
odds ratios indicating a 43% association of studied NHL
cases in the literature with total PCB levels in the highest
percentile, relative to comparison populations in the lowest
percentiles of PCB levels. For evaluation of the causal
contribution of PCBs to an individual case of NHL, the meta-
analyzed values for seven immunotoxic congeners (118, 138,
153, 156, 170, 180, and 187) are presented and compared
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Table 5: Summary of the dose-response correlations between synchronized polychlorinated biphenyl (PCB) bioaccumulation and the
incidence of cancer. Accumulation is represented as based on sales alone (sales growth), environmental exposure (static growth), and
physiologic exposure (dynamic growth).

Cancer type
Statistical correlation with PCB accumulation (R2)

Sales only (sales) Environment (static) Physiologic (dynamic)

Non-Hodgkin lymphoma 0.9813 0.9427 0.9850

All cancers 0.9754 0.8874 0.3523

Hodgkin lymphoma 0.2077 0.0062 0.0273

Pancreatic 0.0411 0.0979 0.0001

Liver and bile duct 0.8834 0.5960 0.9715

Kidney and renal 0.9399 0.7022 0.9534

Bone and joint 0.1190 0.1156 0.1486

Brain and nervous system 0.7966 0.5746 0.0800

Digestive system 0.0089 0.4168 0.8548

Leukemia 0.0913 0.0248 0.0081

Lung 0.8826 0.5600 0.0236

Skin 0.9166 0.7254 0.9378

Oral 0.4224 0.5994 0.8910

Soft tissue and heart 0.3322 0.5377 0.9118

Urinary bladder 0.7153 0.7050 0.3750

Breast (female) 0.9076 0.8639 0.3546

Genital system (female) 0.6892 0.7718 0.6825

Prostate (male) 0.8369 0.7290 0.3808

with relevant population survey data. When an individual
case of NHL presents with one of these seven congener
titers that fall into the highest quartile of their representative
general population, it is reasonable to conclude a causal
contributory relationship is present, on a more probable than
not basis.
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