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Infertility is becoming much more common and affects more couples. The past years
witnessed the rapid development of the diagnosis and treatment upon infertility, which
give numerous coupled more opportunities become parents. Extracellular vesicles are
known as nano-sized membrane vesicles to play a major role in intracellular
communication. In recent years, several basic and clinical studies have tried to
investigate the correlation between the reproductive health/disorder and extracellular
vesicles. However, the mechanism is still unclear. In this review, we reviewed the
relationship between reproductive physiology and extracellular vesicles, and then
collectively focused on the recent findings on the relationship between extracellular and
infertility, and its consequent influence on the novel insight regarding the therapeutic
strategies for infertility in the future clinical practice.
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INTRODUCTION

Infertility (subfertility) is defined as a disease characterized by the failure to establish a clinical
pregnancy after 12 months of regular and unprotected sexual intercourse” (1, 2). Infertility is
common and is estimated that affects 1/6 couples at reproductive-age worldwide (3, 4). Several key
steps are involved in achieving pregnancy including follicular development, fertilization,
implantation and so on. Thus, premature ovarian insufficiency (5), polycystic ovary syndrome
(6), endometriosis (7), uterine fibroids and endometrial polyps may play vital roles in
female infertility.

Extracellular vesicles are bubbles with lipid bilayer structure of 30-5000 nm in diameter that
secreted by different cells (8, 9). It was widely acknowledged that extracellular vesicles are produced
by the fusion of multivesicular membrane with the plasma membrane, contain diverse cargos
including proteins (10), mRNAs and microRNAs (11). Therefore, extracellular vesicles could act as
important mediators of cell-cell message communication and exchange of substance that involved
in numerous physiological and pathological processes (12, 13). Numerous studies have clarified that
extracellular vesicles participant in cancers (14), immune responses (15), pregnancy and so on.
Increasing studies indicated that extracellular vesicles derived from diverse types of cells are
n.org October 2021 | Volume 12 | Article 7582061
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involved in infertility (16). Furthermore, the therapeutic
potential of extracellular vesicles in infertility have been
increasingly addressed in this field. While the diameter of
exosomes ranged from 50 to 150 nm, extracellular vesicles
formed at the plasma membrane can be of this size range or
larger (up to 5 mm). Different extracellular vesicles subtypes
cannot be separated according to size or density. Extracellular
vesicles with similar sized can be classified into several types of
extracellular vesicles based on biogenesis, size and biophysical
contents: exosomes (ranged from 50 to 150 nm) secreted upon
fusion of multivesicular compartments with the plasma
membrane, microvesicles (or ectosomes) (ranged from 100 to
1,000 nm) and apoptotic bodies (ranged from 100 to 5,000 nm)
released directly from the plasma membrane, and exomeres
(ranged from 30 to 50 nm). The establishment of a formal
International Society of Extracellular Vesicles (ISEV) has
defined standards for the experimental characterization of
extracellular vesicles, and encouraged the use of ‘extracellular
vesicle’ as a generic term for all secreted vesicles, and as a
keyword in all publications. Despite there were difference
among diverse types of extracellular vesicles including
biogenetic mechanisms and contents, it is difficult to
distinguish different vesicle types after they are released or
secreted from a cell. Thus, the clear descriptive function from
diverse extracellular vesicles is st i l l unclear worth
further exploring.

Although an evidence-based, cost-effective and safer fertility
treatment developed in the recent years, several issues (including
the physical and psychological pressure, the substantial financial
burden of infertility treatment, the unsatisfied success rate and so
on) are still unsolved. Better understanding the molecular
mechanisms of disorders related to infertility, and further
developing timely effective therapeutics are urgent issues in
this field.

In this review, we summarized the existing research on
extracellular vesicles in fertility biology and infertility disorder.
We aimed to illustrate the relationship between the extracellular
vesicles and infertility (referring to both the female infertility and
the male infertility), and also considered priorities for future
research. Moreover, we summarized the extracellular vesicles in
in-vitro fertilization (IVF) and the applications of extracellular
vesicles in treating infertility, which might be an invaluable
tool for the intervention of infertility and other related
infertility disorders.
FERTILITY PHYSIOLOGY AND
EXTRACELLULAR VESICLES

Male Fertility Healthy Physiology and
Extracellular Vesicles
It is widely acknowledged that spermatogenesis is a vital and
complex process during the whole process of male fertility
physiology (17–19). This process requires the collaboration of
numerous genes, hormones, proper temperature combined with
other environmental factors. While sperms isolated from the
Frontiers in Endocrinology | www.frontiersin.org 2
testicle are generally immotile and immature, the maturation of
sperm during transit through the epididymis is important for
acquiring capacity of gaining motility and fertilization. Several
studies indicate that part of this process is correlated to
extracellular vesicles in transferring RNAs, proteins, and other
materials from the epididymis to sperm (20).

Ex t race l lu la r ves ic l e s der ived f rom epid idymis
(epididymsomes (21)), ranged between 50 and 250 nm, play a
vita role to sperm during epididymal transit. It was reported that
epididymis-extracellular vesicles could transfer a variety of
proteins to surrounding epithelial cells and sperm, and further
regulate transcription/translation within these cells (22). In
addition, it appears that epididymis-extracellular vesicles
carrying microRNAs are transferred between epididymal
epithelial cells and spermatozoa to regulating sperm
maturation (23). What’s more, several studies depicted that
epididymis-extracellular vesicles content affected by paternal
metabolic contents would further influence the healthy of
offspring (22).

Extracellular vesicles-associated proteins are involved in the
biological processes such as cell growth and maintenance,
metabolism (24). Also, human seminal extracellular vesicles
contain diverse small non-coding RNAs that modulate female
reproductive tract (25) to support embryo development (26).

In addition, extracellular vesicles derived from the vaginal,
uterine, and fallopian tube fluid have been shown to bind sperm,
and to prevent premature activation of the acrosome reaction in
mice (27). Furthermore, these extracellular vesicles and
encapsulated protein cargos (28) have also been found in the
human female reproductive tract, suggested that extracellular
vesicles involve in a highly conserved and important mechanism
in supporting sperm (29) (Figure 1).

Female Fertility Healthy Physiology and
Extracellular Vesicles
When it comes to the female reproductive physiology, follicular
development and maturation are regarded as complicated
processes which involve intercellular communication between
the maturing oocyte, cumulus cells and mural granulosa cells.
The ovarian follicular development (including recruitment,
selection and growth of follicles, followed by atresia or
dominance, ovulation and formation of the corpus luteum and
finally luteolysis) needs complicated coordination in the multi-
steps duration. The role of communication (30) between theca
cells, mural granulosa cells, cumulus cells as well as the oocyte in
the ovary are critical for ovulation of a high-quality oocyte and
further potential development into an embryo. It is quiet clear
that the appropriate communication mediated by extracellular
vesicles among diverse types of cells within the ovarian follicle is
critical for the growth and maturation of healthy oocytes (31),
particularly in fertilization and development into embryos.

It is clear that extracellular vesicles are present in ovarian
follicular fluid, extracellular vesicles could mediate the delivery of
molecular cargo (including proteins, microRNAs) between the
different follicular cells to play a role in cell-to-cell
communication in regulating follicle development and oocyte
October 2021 | Volume 12 | Article 758206

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Zhou et al. Extracellular Vesicles and Infertility
maturation. Extracellular vesicle miR-23a, regulates the
apoptosis of human granulosa cells through affect the XIAP
(which may contribute to the etiology of POF) and the caspase
signaling cascade in human granulosa cells, was reported
involved in the oocyte maturation (32). In addition,
extracellular vesicle miR-21-5p (33) derived from follicular
fluid plays a dynamic role in preimplantation embryo
development by regulating apoptotic proteins by targeting
PI3K/AKY and JAK/STAT3 signaling pathways in the process
of cellular communication. These studies clearly depicted that
extracellular vesicles involved in various aspects of follicular
growth and maturation by transferring microRNAs. Further
studies suggest that extracellular vesicles microRNAs play an
important role in follicular development and cellular
communication within the ovarian follicle by regulating critical
signaling pathways, including TGF-b and WNT signaling. Based
on the high-throughput sequencing results, extracellular vesicles
miR-31-5p was found to promote the proliferation of GCs and
progesterone synthesis via the WNT/b-actin pathway by
targeting the SFRP4 follicle growth inhibitor and further
regulating the physiological function of GCs, which is vital in
follicle development (34, 35) (Figure 1).

In addition, fallopian tube plays a vital role in absorbing and
transporting eggs, fertilization, and initial embryonic
development. The contents including extracellular vesicles
derived from the fallopian tube influence sperm motility,
acrosome reaction, and fertilization. Extracellular vesicles
associated miR-30d derived from the endometrial fluid was
taken up by trophoblastic cells of murine embryos, and was
involved in modifying the embryo transcriptome and its adhesive
phenotype. Extracellular vesicles derived from oviductal fluid
contain the OVGP1 (oviduct specific protein) and influence the
sperm motility, acrosome reaction and fertilization (36). Also,
when it comes to the proper communication and regulation
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between gametes/embryos and the fallopian tube, extracellular
vesicles also paly important role in the multi-steps process.
For example, proteins including endothelial nitric oxide
synthase (eNOS), PMCA1 and PMCA4 can be delivered to
sperm by extracellular vesicles via a fusogenic mechanism, and
contributing to the sperm viability (37–39).
FEMALE INFERTILITY AND
EXTRACELLULAR VESICLES

Endometriosis and Extracellular Vesicles
Endometriosis is defined as the presence of endometrial tissue
outside the uterus, which troubles 25-50% women at their
reproductive age (40, 41). While endometriosis is supposed to
a benign inflammatory gynecological disease, some malignant
biological behaviors (including invasion (42), recurrence and so
on) also make it one of main reasons for infertility.

Recent studies showed that extracellular vesicles are
associated with angiogenesis (43), cell proliferation, and gene
mutation in endometriosis. Among these effects, different
biological behaviors are mediated by different encapsulated
content in extracellular vesicles. Previous studies confirmed
that extracellular vesicles and/or extracellular vesicles-derived
microRNA-126-5p (44) and proteins could regulate the
proliferation, migration of endometrial mesenchymal stem cells
by negatively regulating the expression of BCAR3 (a kind of
EMT-associated genes), as well as enhance the angiogenic
abilities, subsequently affect the occurrence and metastasis of
endometriosis. Although BCAR3 was not associated with
synergistic effect with estrogen and not associated with
inducing EMT, its inhibition of anti-estrogen function may
provide new insight into the mechanism of local estrogen
action in endometriosis (45). Studies have shown that
FIGURE 1 | Schematic diagram showing the impact of extracellular vesicles in infertility.
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endometriosis stromal cells could enhance the angiogenic ability
in vitro through secreted extracellular vesicles, and many other
cell types also exert angiogenic effects through extracellular
vesicles in regulating endothelial cells (46) and stromal cells
(47). Based on the next-generation sequencing of EVs obtained
from endometriosis patient plasma–derived extracellular vesicles
compared with healthy control extracellular vesicles, studies have
documented that differential expression of miR-16 and -30d
regulating the angiogenic function by targeting the VEGF and
MYPT1/cJUN/VEGFA pathway, respectively. These results
suggest ing that extracel lular vesicles derived from
endometriosis exert their contribution to the pathophysiology
process of angiogenesis and invasion (43). Furthermore, the
identification of biomarkers for the early diagnosis in
endometriosis is essential to protect the gradual aggravation of
the disease (48) (Figure 1).

Polycystic Ovary Syndrome (PCOS) and
Extracellular Vesicles
Polycystic Ovary Syndrome (PCOS), a kind of reproductive
endocrine disorder which troubles women at childbearing
age (49). PCOS is characterized by ovulation disorder,
hyperandrogenism, and an excessive number of follicles (equal
or greater than 12 follicles) of unilateral ovarian, is regarded as
one of the most common causes of infertility. It is reported that
the incidence increased for the reason that the transformation of
the life-style and elevated related-risks [including obesity (50),
insulin resistance (51) and so on] in recent years.

The existence of extracellular vesicles in human follicular
fluid may provide pathways for information exchange between
follicular fluid microenvironment and the oocyte (16, 52). The
miRNAs in extracellular vesicles might play a regulatory role in
the pathogenesis of PCOS (53, 54). Platelet-derived extracellular
vesicles was detected elevated in plasma of women with PCOS
when compared to healthy women. In addition, the extracellular
vesicles derived from platelet are correlated with the serum
testosterone levels (55), and similarly correlated with the free
androgen index. Further studies reported that the extracellular
vesicles derived from platelet are significantly elevated in obese
women with PCOS, even overweight women with PCOS (56).
Other study founded that PCOS women had higher
concentrations of extracellular vesicles, further studies
indicated that when focusing on the sub-population of small
extracellular vesicles whose diameter less than 150 nm, small
extracellular vesicles from PCOS women expressed greater
percentage of annexin V positive than control women (56).

Recently study demonstrated that the results by miRNA
profiling indicate that extracellular vesicles encapsulated hsa-
miR-126-3p (53), ciRNA-7323_TIAM1 (57), circLDLR (58) have
been altered in women with PCOS. And depleting circLDLR in
extracellular vesicles would increase the expression level of miR-
1294 and inhibit the expression level of CYP19A1 in recipient
cells. In addition, down-regulated circLDLR in extracellular
vesicles functioned as a vital mediator to regulate E2 secretion
via sponging miR-1294 to repress CYP19A1 (58). Extracellular
vesicles encapsulated miRNAs might exert potentially effects on
Frontiers in Endocrinology | www.frontiersin.org 4
the IGF1R signaling pathways upon the recipient cells in PCOS
patients (59), which were different from the effects of non-
extracellular vesicles-mediated miRNA secretion. These results
would not only broaden the understanding of molecular
mechanism in PCOS, but also provide new insights and
strategies for further therapies against PCOS.

Primary Ovary Insufficiency (POI) and
Extracellular Vesicles
Primary Ovary Insufficiency (POI), a kind of disorder known as
premature ovarian failure or premature menopause defined as
cessation of menstruation before the expected age of menopause
(60). While POI could be divided into genetic, autoimmune, and
iatrogenic categories (61), evidences indicate that extracellular
vesicles is related to the progression and treatment of POI. It was
reported that the extracellular vesicles derived microRNAs is
associated with POI. In addition, some studies reported that
extracellular vesicles derived from human adipose mesenchymal
stem cells would attenuate the ovary function damage through
SMAD signaling pathway in a POI mouse model (62). Also,
extracellular vesicles derived from human umbilical cord
mesenchymal stem cells (hUMSCs) encapsulated miR-17-5P
repressed PARP1, gH2AX, and XRCC6 by inhibiting SIRT7
(63), which implied the potential of extracellular vesicles based
therapy for POI treatment. Extracellular vesicles derived bone
mesenchymal stem cell (BMSC) transferred miR-644-5p could
inhibit the apoptosis of ovarian granulosa cell by targeting p53 of
cells (64), suggesting that the potential of extracellular
vesicles as nano-carriers in treating POI as well as restoring
ovarian function.
MALE INFERTILITY AND
EXTRACELLULAR VESICLES

It was reported that among all the couples suffered from infertility
worldwide, 20-30% of them resulted from male infertility (65),
while only 20-35% resulted from female infertility. However, male
infertility (66) is often undervalued in the routine clinical practice.

Extracellular vesicles transferred proteins and miRNAs play a
vital role in the multi-steps process including sperm motility
(67), capacitation, acrosome reaction, and further fertilization.
Studies demonstrated that extracellular vesicles proteins play role
in the process of cell growth, cell maintenance and protein
metabolism. Further results indicated that the extracellular
vesicles proteome of normozoospermic men differs from non-
normozoospermic men. Proteins known as positively regulators
on sperm-specific functions including sperm associated antigen
11B (SPAG11B), cysteine-rich secretory protein-1 (CRISP1), and
defensin B126 (DEFB126), were most strongly enriched in
extracellular vesicles samples from seminal plasma of
normozoospermic men; on the other hand, glycodelin (PAEP)
and TGM4, were among the more represented proteins in
extracellular vesicles from severe asthenozoospermic samples
(68), suggesting that extracellular vesicles proteome might be
potential biomarker in predicting the potential outcome (69).
October 2021 | Volume 12 | Article 758206
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Aberrant expression of extracellular vesicles proteins could affect
sperm functions and influence the subsequent fertilization. In
mice, some studies demonstrated that the loss of specific proteins
in extracellular vesicles causes infertility.

Besides proteins in extracellular vesicles, several studies have
shown that aberrant miRNA levels in seminal plasma derived small
extracellular vesicles (sEVs) are related to the sperm quality (70).
Extracellular vesicles derived seminal plasma could potentially
regulate the signaling pathways of the recipient mucosa through
delivering the small RNA molecules. Some studies identified that
when compared with controls, several in seminal plasma
extracellular vesicles derived miRNAs altered in azoospermic
individuals. It was reported that miR-31-5p in extracellular
vesicles from semen would act as a predictive biomarker for the
origin of azoospermia with high sensitivity and specificity, and the
prediction efficacy was even better when combined the blood FSH
values in the analysis (20). In addition, other studies demonstrated
the biological role of extracellular vesicles beyond the epididymis
and even outside the male reproductive tract (71). Extracellular
vesicles from the ejaculates of normozoospermic men (including
men after vasectomy) would significantly increase the sperm
motility, while extracellular vesicles from asthenozoospermic men
damage the sperm motility. Extracellular adenosine triphosphate
produced in seminal plasma extracellular vesicles may finely
modulate mitochondrial metabolism to control sperm motility
(72). The results can provide insights into semen dilution and
artificial insemination. Other studies reported that when
spermatozoa isolated from two different severe asthenozoospermic
patients coincubated with extracellular vesicles from seminal plasma
of normozoospermic men, CRISP1 protein levels increased in
spermatozoa treated with extracellular vesicles, as did those of
lysosomal-associated membrane protein 1 (LAMP1), a canonic
extracellular vesicles marker, strongly suggesting that extracellular
vesicles-mediated transfer in regulating sperm motility (68). What’s
more, better understanding of the spatiotemporal contents of
extracellular vesicles and aberrant fluctuation of encapsulated
component, and further the mechanism of regulation upon sperm
will be critical to better understanding fertility and developing
potential treatments in the future.
EXTRACELLULAR VESICLES AND
IN-VITRO FERTILIZATION (IVF)

The technology of in-vitro fertilization (IVF) has underwent rapid
development since it came out (73). Although IVF technology is
originally used for women with tubal factor infertility, it has been
regarded as the last resort treatment of for all infertility couples when
conventional therapy fails. However, how to better understand the
biological process (includingmolecular regulation and environmental
regulation) during the whole in-vitro fertilization, and how to
improve IVF pregnancy rates still undiscovered.

Although it was well-acknowledged that technology of
intracytoplasmic sperm injection has brought many successful
pregnancies by evading the obstacle in conception (74)
(including low sperm count and so on), the success rate of the
Frontiers in Endocrinology | www.frontiersin.org 5
technology still remains suboptimal. The increasing
understanding of the role of extracellular vesicles in fertility
process is vital in the assisted reproduction. It was demonstrated
that the sperm RNAs involved in the regulation during the
process of fertilization and further embryo development (5),
and the extracellular vesicles microRNAs derived from human
follicular fluid are involved in critically important pathways
(including WNT, MAPK, ErbB, and TGFb signaling pathway)
for follicle growth and oocyte maturation, which also explaining
the correlation between the lack of extracellular vesicle–delivered
RNAs and poorer outcomes among azoospermic men after
successful microscopic testicular sperm extraction. Also, these
results could represent noninvasive biomarkers of oocyte quality
or sperm quality in assisted reproductive technology (75).

It is also reported that that the fallopian tube is superior for
fertilization and embryo development than artificially modified
conditions in vitro. Nevertheless, we still cannot pin-point which
proteins or molecular cargos from extracellular vesicles are
responsible for normal embryo development. It was reported
that extracellular microRNAs in follicular fluid could lead to
downstream events that would affect fertilization and embryo
morphology (76). What’ more, some studies demonstrated that
several key components derived from extracellular vesicle in the
follicular microenvironment might be potential to act as
predicting factors for the pregnancy outcomes in Assisted
Reproductive Technology (ART) (40). These results indicate
that extracellular vesicles might associated with fertilization
potential and embryo quality. However, it is also still uncertain
how extracellular vesicles regulate the optimal microenvironment
for gametes and embryos in the multi-steps process in humans.
EXTRACELLULAR VESICLES AS
POTENTIAL THERAPEUTICS
IN FERTILITY

Considering that extracellular vesicles are stable and low-
immunogenicity, their therapeutic applications as drug delivery
systems have drawn great attention in the treatment area.
Combination of the complicated bio-engineering nanotechnology
not only enable the encapsulation of therapeutic agents such as
miRNAs and small molecules into extracellular vesicles, but also
modify the extracellular vesicles with diverse ligands as targeting
nano-carriers.

Increasing studies regarding the use of extracellular vesicles in
the treatment of infertility was explored with respect to not only
in female infertility (including PCOS, POI and endometriosis)
but also male infertility. It was reported that extracellular vesicles
encapsulated miR-214 could reduce the expression of Collagen
aI and CTGF in endometriosis stromal and endometrial
epithelial cells both in vitro and in vivo, and further alleviate
the endometriosis fibrosis. Some studies demonstrated that
mesenchymal stem cells derived extracellular vesicles could
promote proliferation and inhibits apoptosis of cumulus cells
in polycystic ovary syndrome (PCOS) via transferring
encapsulated miR-323-3p and targeting PDCD4. And
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upregulation of miR-323-3p ameliorated PCOS via regulating
the serum FSH, LH and E2 levels in the PCOS mice model (77).
Recent study demonstrated that histopathological evaluation
provided evidences that spermatogenesis would be improved
when treated with extracellular vesicles derived from amniotic
fluid in non-obstructive azoospermia rats through injection
treatment, which indicate that extracellular vesicles are
potential to orchestrate the sperm quality and further recovery
of sperm production capacity.

The above results suggest that therapeutic extracellular
vesicles can be explored and applied in infertility. Although
most of studies remain in the in-vitro and animal level, and
challenges for clinical application still unsolved, the drug delivery
based on engineering extracellular vesicles still remains a
promising therapeutic strategy.
SUMMARY AND PERSPECTIVES

As a kind of disorder which disturbs numerous couples at
reproductive age, infertility has drawn widespread attentions
for the reason that the rapidly increasing among generations.
In spite of the understanding of infertility as well as the rapid
development of Assisted Reproductive Technology(ART), some
limitations including unsatisfactory rate of success, undiscovered
mechanism and limited therapeutics still remain.

While increasing studies demonstrate the correlation between
the extracellular vesicles (including concentration, size and
Frontiers in Endocrinology | www.frontiersin.org 6
specific cargos) and infertility, the underlying mechanism of
extracellular vesicles function in the process of infertility is still
unclear. In addition, most of the current studies of extracellular
vesicles in reproduction and infertility still remains the animal
models, more relevant human-related research is needed. Taken
together, extracellular vesicles play an important role in
mediating a variety of physiological and pathological processes
through the intracellular communication and exchange of
substance, which provides us a promising avenue to better
understand and subsequent treat infertility (23).
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