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Abstract

Mdm2 is the major negative regulator of p53 tumor suppressor activity. This oncoprotein is 

overexpressed in many human tumors that retain the wild type p53 allele. As such, targeted 

inhibition of Mdm2 is being considered as a therapeutic anticancer strategy. The N-terminal 

hydrophobic pocket of Mdm2 binds to p53 and thereby inhibits the transcription of p53 target 

genes. Additionally, the C-terminus of Mdm2 contains a RING domain with intrinsic ubiquitin E3 

ligase activity. By recruiting E2 ubiquitin conjugating enzyme(s), Mdm2 acts as a molecular 

scaffold to facilitate p53 ubiquitination and proteasome-dependent degradation. Mdmx (Mdm4), 

an Mdm2 homolog, also has a RING domain and hetero-oligomerizes with Mdm2 to stimulate its 

E3 ligase activity. Recent studies have shown that C-terminal residues adjacent to the RING 

domain of both Mdm2 and Mdmx contribute to Mdm2 E3 ligase activity. However, the molecular 

mechanisms mediating this process remain unclear, and the biological consequences of inhibiting 

Mdm2/Mdmx co-operation or blocking Mdm2 ligase function are relatively unexplored. This 

study presents biochemical and cell biological data that further elucidate the mechanisms by which 

Mdm2 and Mdmx co-operate to regulate p53 level and activity. We use chemical and genetic 

approaches to demonstrate that functional inhibition of Mdm2 ubiquitin ligase activity is 

insufficient for p53 activation. This unexpected result suggests that concomitant treatment with 

Mdm2/Mdmx antagonists may be needed to achieve therapeutic benefit.
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Introduction

The p53 protein is most often considered a stress-activated tumor suppressor but its 

functions likely evolved for other purposes (1). Recent studies indicate that p53 preserves 

genome integrity in the male germline, limits teratogen-induced developmental 

abnormalities, contributes to implantation and modulates metabolism (2). Its tumor 

suppressive role emerges when it is activated by genotoxic conditions or expression of 

oncogenes, whereupon it eliminates potentially tumorigenic cells via induction of cell cycle 

arrest, apoptosis, senescence or autophagy. Given the importance of p53 function in normal 

growth processes, as well as in response to tumor-initiating conditions, sophisticated 

mechanisms have evolved to limit p53 activity until it is absolutely required, and to then 

titrate its output in a stress and cell-appropriate fashion.

P53 activity is controlled by two broad mechanisms. First is a complex array of post-

translational modifications that affect its ability to engage with relevant co-activators or 

negative regulators. This in turn determines p53 stability and abundance, and its ability to 

productively engage chromatin to regulate downstream target genes and micro-RNAs (3, 4). 

Second are mechanisms that control the stability and/or activity of its negative regulators, 

most significant of which are the related RING domain proteins, Mdm2 and Mdmx (also 

known as Mdm4) (5). Embryonic deletion of either protein engenders early lethality that is 

completely p53-dependent, underscoring their critical role during development. Conditional 

deletion of either Mdm2 or Mdmx indicates that while both restrict p53 activation in almost 

all tissues tested, Mdm2 loss often has a more profound effect (6). These data suggest a 

modulatory, role for Mdmx in many somatic tissues, with possibly more important roles in 

actively dividing tissues (7, 8).

Both Mdm2 and Mdmx contain a RING domain, variants of which are found in several 

hundred human proteins. In the case of Mdm2, the RING domain possesses E3 ubiquitin 

ligase activity: it recruits one or more E2 ubiquitin conjugating enzymes (hereafter E2, (9)) 

and facilitates transfer of ubiquitin from E2 to p53 and other substrates (10), leading to their 

proteasome-dependent degradation (11). As p53 is a transcription factor, Mdm2-dependent 

degradation is therefore an effective mechanism to modulate activation of p53 target genes. 

The binding of both Mdm2 and Mdmx to p53 also directly inhibits p53 transactivation 

function by preventing recruitment of transcriptional co-activators (8). Although Mdmx also 

has a RING domain, it does not possess intrinsic ubiquitin ligase activity (12). RING-

mediated oligomerization is a conserved function of this domain, and Mdm2 is able to 

homo-oligomerize, as well as hetero-oligomerize with Mdmx. By analogy with other RING/

RING heterodimeric complexes (such as Brca1/Bard1, where only Brca1 has ligase activity 

(13)), a model in which Mdmx enhances Mdm2-dependent p53 ubiquitylation has been 

proposed (12). However, the precise molecular mechanism(s) by which Mdmx modulates 

Mdm2 function remain to be defined.

Although Mdmx co-operates with Mdm2 to inhibit p53 function, Mdmx can also be targeted 

for Mdm2-dependent degradation (14). Following genotoxic stress, Mdmx downregulation 

contributes to p53 activation. Indeed, attenuating damage-induced Mdmx degradation in 

vivo reduces both basal and stress-induced p53 activities. This engenders both remarkable 
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radioresistance, and dramatically increases sensitivity to Myc-induced lymphomagenesis 

(15). In addition to the Mdm2 and Mdmx RING domains, residues at the extreme C 

terminus of each protein are also important for regulation of Mdm2 ubiquitin ligase function 

(16, 17). Structural and functional analyses predict that C-terminal aromatic residues in both 

Mdm2 and Mdmx play a critical role in the context of Mdm2/Mdmx hetero-oligomers 

(16-19). Mdm2 point mutants in this region prevent p53 degradation, yet allow Mdmx 

degradation. Furthermore, Mdmx can restore Mdm2-directed ligase activity to these 

mutants, seemingly by providing the C-terminal residues in trans. These data suggest that 

the extreme C-terminus provides subtle structural elements that are critical for controlling 

p53 ubiquitylation; however, the mechanistic basis for these effects remains to be 

determined.

As both Mdm2 and Mdmx are potential therapeutic targets for cancer treatment (5), insight 

into their molecular interplay may inform new drug discovery and development strategies. 

Here, we investigate the effects of Mdm2 ligase inhibition on the control of p53 stability and 

activity. We show that the Mdmx extreme C-terminus comprises a key regulatory element 

affecting the degradation of endogenous p53 and Mdm2; it is also required for degradation 

of Mdmx in response to DNA damage. Using a genetic approach, we show that the 

inhibition of Mdm2 ligase function leads to stabilization of transcriptionally inactive p53. 

Furthermore, the stabilized p53 can be reactivated by attenuation of the interaction of p53 

with either Mdm2 or Mdmx. These findings indicate that drugs designed to selectively 

inhibit Mdm2 ligase activity may, if used alone, not activate p53 sufficiently to elicit 

adequate anti-tumor effects. Rather, as they do engender significant increases in p53 

abundance, they may achieve therapeutic benefits if used in combination with Mdm2 and/or 

Mdmx antagonists.

Results

Functional inhibition of Mdm2 stabilizes endogenous p53

By analogy with other heterodimeric E3 ligases, residues in the Mdm2 and Mdmx C- 

terminal tails may contribute to the correct structure for recruitment or processivity of the E2 

conjugating enzyme(s) required for p53 degradation. While a previous study found that 

Mdm2 and Mdmx C-terminal point mutants (Mdm2Y489A and MdmxF488A, respectively) 

prevented Mdm2-dependent degradation of p53, the consequences for p53 activation were 

not explored (17). We therefore initiated a genetic approach to evaluate the functional 

consequences of Mdm2 ligase inhibition by generating U2OS cell lines expressing 

doxycycline (Dox)-inducible wild type (WT) and Mdm2Y489A and MdmxF488A. U2OS was 

chosen as the host cell since it retains a wild type p53 allele, and expresses a molecular 

excess of Mdm2 over Mdmx (20). This provides a situation in which the excess Mdm2 is a 

relevant physiological target for evaluating the effects of exogenously expressed Mdm2 or 

Mdmx mutants. A relatively high dose (100ng/ml) of doxycycline was used for comparisons 

between Mdm2 and Mdmx, since at lower doses we either failed to see robust increases in 

the levels of Dox-inducible Mdm2 or observed cell-to-cell heterogeneity in Mdm2 levels 

(data not shown). This is consistent with previous reports of differential expression of 

Mdm2 and Mdmx from the same promoter (21). Importantly, MdmxWT was downregulated 
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by DNA damage at both low and high dose doxycycline (see Supplementary Figure 1C and 

D), indicating that the levels of induction achieved at the maximum Dox dose used for these 

studies is not saturating the capacity of the damage response system to induce Mdmx 

degradation.

Figure 1 shows the effects of Mdm2Y489A and MdmxF488A overexpression on levels of p53 

and its downstream target, p21. As expected, induction of Mdm2WT led to a decrease in p53, 

and corresponding decrease in p21. In contrast, Mdm2Y489A expression led to an increase in 

p53, likely due to inhibition of endogenous Mdm2 E3 ligase activity (17). Note that despite 

the increase in p53 abundance, the levels of p21 were reduced by Mdm2Y489A expression 

(Figure 1 and Supplementary Figures 1E and F). Similarly, overexpression of MdmxF488A 

increased p53 steady state levels, yet p21 did not increase. The ability of MdmxF488A to 

stabilize p53, yet suppress p53-dependent transactivation was also observed at low dose 

(15ng/ml) doxycycline (Supplementary Figure 1A, B, E, F). At this dose of doxycycline, 

exogenous Mdmx levels were approximately four-fold those observed in MCF7 cells, a 

breast cancer cell line with Mdmx gene amplification (Danovi et al 2004). Together, these 

data suggest that while the extreme C-terminal aromatic residues of Mdm2 and Mdmx are 

required for p53 degradation, they are dispensable for suppression of p53 transcriptional 

activity (see below).

We next investigated the mechanism by which MdmxF488A causes stabilization of p53. 

Figure 2 shows that MdmxF488A expression increased the half-life of both endogenous 

Mdm2 and p53, and this was not accompanied by a change in Mdm2 mRNA levels (Figure 

2A and 2B). This suggests that MdmxF488A causes post-transcriptional stabilization of 

Mdm2 by inhibiting Mdm2 ubiquitin ligase activity, and this leads to concomitant p53 

stabilization. We tested the hypothesis that MdmxF488A inhibits ubiquitin ligase activity by 

determining the extent of p53 ubiquitylation in cell lines expressing equivalent levels of 

MdmxWT or MdmxF488A. Consistent with this proposal, the total levels of p53 are higher in 

cells expressing MdmxF488A compared to MdmxWT, and the amount of ubiquitylated p53 is 

significantly lower in cells expressing this mutant (Figure 2C). These data are consistent 

with a previous study in which p53 ubiquitylation was reduced by Mdm2Y489A (17).

MdmxF488A binds Mdm2 and p53, but reduces p53 ubiquitylation

Like some other RING E3 ubiquitin ligase complexes, such as Brca1/Bard1, Mdm2 and 

Mdmx can hetero-oligomerize. As only Mdm2 possesses E3 ubiquitin ligase activity, a 

reasonable explanation for the above results is that MdmxF488A hetero-oligomerizes with 

Mdm2 and reduces its ability to degrade p53. However, MdmxF488A could also stabilize p53 

by more indirect mechanisms. For example, MdmxF488A might antagonize p53-dependent 

transactivation of Mdm2, leading to a reduction in Mdm2 levels. This is unlikely, since 

Mdm2 mRNA levels are similar in the presence and absence of MdmxF488A (Figure 2B).

The inability of MdmxF488A to activate p53 while increasing p53 levels was surprising, and 

could be explained by its ability to suppress p53-dependent transactivation concomitant with 

binding to, and inactivation of, Mdm2 ligase function. To begin to explore this possibility, 

we first determined whether MdmxF488A could bind both Mdm2 and p53 using the 
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proximity ligation in situ assay (PLISA, see Supplementary Figure 2 for a description of the 

method, and (22)).

PLISA confirmed that MdmxF488A binds endogenous Mdm2 and p53 in intact cells (Figures 

3A and B). Induction of MdmxWT led to a small but detectable increase in the interaction 

between Mdmx and Mdm2, as shown by an increase in the number of PLISA foci (Figure 

3A, panel ii). The PLISA signal for Mdmx/Mdm2 interaction was much more robust after 

MdmxF488A induction (Figure 3A, panel vi). This is in part due to the elevated Mdm2 levels 

in MdmxF488A expressing cells (see Supplementary Figure 3A and western blots in Figures 

4 and 6). Interaction of Mdm2 with MdmxWT was detected in the nucleus, but appeared 

slightly enriched in the cytoplasm (Figure 3A, panel ii). This did not appear to be due to a 

preferential enrichment of either protein in the cytoplasm (Supplementary Figure 3C). In the 

case of MdmxF488A, the intensity of PLISA foci was greatest in the nuclei, although the 

Mdm2/Mdmx interaction was also detected in the cytoplasm (data not shown). These data 

confirm that the MdmxF488A mutation does not significantly interfere with Mdm2 binding, 

and that Mdm2 and MdmxF488A interact in both nuclear and cytoplasmic compartments in 

situ.

PLISA analyses revealed that MdmxWT and MdmxF488A also interact with p53 (Figure 3B). 

Again, the signal in the cells expressing MdmxF488A cell line was higher than in those 

expressing MdmxWT, in part because induction of the F488A mutant leads to increased p53 

levels. Standard immunofluorescence showed that both MdmxWT and MdmxF488A were 

distributed throughout the nucleus and cytoplasm, but p53 was predominantly nuclear 

following induction of MdmxF488A (Supplementary Figures 3B and C). This likely 

contributes to the preferential localization of p53/Mdmx PLISA signal in the nucleus. 

Cytoplasmic PLISA signals were also observed at a higher intensity in MdmxF488A cells 

compared to MdmxWT, presumably due to the increased total p53 levels (data not shown). 

The PLISA signal faithfully reflects p53-Mdmx interaction since many fewer PLISA signals 

were observed in Dox-inducible cells expressing equivalent levels of the p53 binding-

deficient Mdmx mutant, G57A (Supplementary Figure 3D). Conventional 

immunoprecipitation also confirmed that MdmxF488A is found in complex with Mdm2 and 

with p53 (Supplementary Figures 4A and B). Finally, we found that mutation of the Mdmx 

p53 binding site does not affect the ability of MdmxF488A to stabilize p53 (Supplementary 

Figure 4C and Figure 5C). Together, these data show that MdmxF488A binds both p53 and 

Mdm2, and suggest that the dominant negative effect of MdmxF488A is due to direct 

perturbation of Mdm2 ligase function, rather than sequestration of p53.

Both Mdm2Y489A and MdmxF488A suppresses p53 transactivation function

Since an increase in p53 level is often associated with increased p53 activity, we next 

determined whether the p53 stabilized in cells expressing Mdm2Y489A or MdmxF488A was 

transcriptionally active. As expected, induction of Mdm2WT reduced p53 level and 

transcriptional activity (Figure 4A, lane 2 and Figure 4C). By contrast, induction of 

Mdm2Y489A stabilized p53, yet was still able to suppress p53 activity (Figure 4A, lane 6 and 

Figure 4C). In fact, although Mdm2Y489A expression and treatment with the DNA damaging 

agent neocarzinostatin (NCS) led to similar increases in p53 level, p53 transcriptional 
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activity was only increased by damage (compare lanes 6 and 7). These data demonstrate that 

ligase-deficient Mdm2 retains the capacity to suppress p53-dependent transactivation, 

presumably by binding to and occluding the p53 transactivation domain. Similar results 

were obtained by comparing the effects of MdmxWT and MdmxF488A (Figure 4B). 

Specifically, while MdmxF488A expression led to an increase in p53 level, there was no 

corresponding increase in p53 transcriptional activity (Figure 4B, compare lanes 5 and 6 and 

Figure 4D). Again, although p53 levels following MdmxF488A expression or DNA damage 

were similar, p53 was only active in the latter case (Figure 4B, compare lanes 6 and 7 and 

Figure 4D). By normalizing the amount of p21 mRNA to p53 protein, we found that both 

Mdm2Y489A and MdmxF488A reduce p53 specific activity (Supplementary Figure 5A and 

B).

Following DNA damage, we observed that MdmxWT but not MdmxF488A was 

downregulated (Figure 4B, compare lanes 6 and 8). This is consistent with a dominant 

negative function of MdmxF488A, since downregulation of Mdmx after DNA damage is an 

Mdm2-dependent process (14, 23). Similarly, Mdm2Y489A appeared significantly more 

stable than Mdm2WT following NCS treatment (Figure 4A, compare lanes 2 and 4, 6 and 8). 

Intriguingly, neither Mdm2Y489A nor MdmxF488A expression was sufficient to block 

damage-induced p53 activation (compare lanes 3 and 4, 7 and 8 in Figures 4C and D). 

Taken together, these data suggest that DNA damage signaling can counteract the 

suppressive effects of Mdm2 ligase inhibition on p53 activation. Additionally, the finding 

that DNA damage leads to downregulation of MdmxWT (Figure 4B) and destabilization of 

Mdm2WT (Figure 4A and Supplementary Figure 6) indicates that, although these proteins 

are overexpressed, they are still subject to regulation by endogenous damage signaling 

pathways.

Antagonizing the interaction between p53 and Mdm2Y489A or MdmxF488A derepresses p53 
activity and elicits a cytotoxic response

Inhibition of Mdm2 ligase activity is suggested as a potential anticancer strategy in tumors 

with wild type p53 (24, 25). However, whether the ensuing p53 stabilization would be 

sufficient to elicit a cytotoxic response remains unclear. This is since inhibition of Mdm2 

ligase activity would also stabilize Mdm2 itself, which could then interact with and 

antagonize p53. In this case, combinations of Mdm2 ligase inhibitors and Mdm2 

antagonists, such as Nutlin-3a (hereafter Nutlin) may be required. We utilized the 

Mdm2Y489A and MdmxF488A inducible cell lines to investigate the potential for such an 

approach.

Although Mdm2Y489A stabilizes p53, expression of the protein did not affect the growth of 

U2OS cells with wild type p53 (Figure 5A and B). This is consistent with the ability of 

Mdm2Y489A to block p53-dependent transactivation. By contrast, Nutlin suppressed colony 

outgrowth in the presence of both Mdm2WT and Mdm2Y489A, even though the increase in 

p53 abundance was similar (data not shown). Thus, while inhibition of Mdm2 ligase activity 

stabilizes p53, concurrent treatment with an Mdm2 antagonist is required for a maximal 

cytotoxic response.
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A prediction from these results is that cells in which Mdm2 ligase activity is blocked by the 

MdmxF488A mutant would not be sensitive to Nutlin, as numerous reports show that this 

drug interacts poorly with the Mdmx hydrophobic p53 binding pocket (26, 27). To address 

this, we repeated the colony outgrowth experiments with MdmxWT and MdmxF488A. 

Consistent with previous studies, induction of MdmxWT reduced basal levels of Mdm2 

protein and mRNA by 50% (Figure 6A and B), whereas treatment with Nutlin alone lead to 

the expected increase in Mdm2 mRNA and protein (Figure 6A, lane 3). Induction of 

MdmxF488A or treatment with Nutlin both lead to similar increases in p53 and Mdm2 

protein levels (Figure 6A, lanes 6 and 7), yet p53-dependent transactivation increased only 

with the Mdm2 antagonist (Figure 6B, bars 6 and 7 and Supplementary Figure 5D). This 

underscores the notion that MdmxF488A retains the ability to antagonize p53-dependent 

transcription while concomitantly stabilizing both Mdm2 and p53 proteins.

Since Nutlin is a less potent antagonist of Mdmx, Mdmx overexpression should attenuate 

Nutlin-induced p53 activation. Following Nutlin treatment, MdmxWT marginally inhibited 

p53 activation, while MdmxF488A expression had a more robust effect (compare Figure 6B 

lanes 3 and 4, and lanes 7 and 8). Consistent with this observation, only MdmxF488A 

appeared to attenuate Nutlin-induced p53 specific activity (Supplementary Figure 5C).

The above results show that while MdmxF488A blocks Mdm2 E3 ligase activity and 

stabilizes p53, its ability to inhibit p53-dependent transactivation remains intact. A 

prediction from the preceding results is that while p53 levels are elevated, cells expressing 

MdmxF488A should continue to proliferate due to inhibition of p53 transactivation. 

Consistent with this, expression of MdmxF488A alone did not inhibit growth, despite the high 

level of p53 under these conditions (Figure 6C). These findings suggest that inhibiting p53 

degradation can be tolerated, providing the Mdmx/p53 interaction is preserved. Conversely, 

disrupting Mdmx/p53 binding under these conditions should lead to increased p53-

dependent toxicity. In order to test this, we introduced a second mutation into MdmxF488A. 

This mutation (G57A) reduces the interaction of Mdmx with p53 ((28) and Supplementary 

Figures 3 and 7). Figure 6D shows that although MdmxF488A and MdmxG57A/F488A each 

lead to p53 accumulation, only MdmxG57A/F488A causes an increase in p53 activity 

(measured as an increase in the level of p21 protein). Importantly, the elevated p53 activity 

in MdmxG57A/F488A was not due to higher total p53 levels, or a low Mdmx:p53 ratio 

(Supplementary Figure 7). Interestingly, although MdmxG57A/F488A and Nutlin stabilized 

p53 to similar levels, induction of p21 was much higher after Nutlin treatment. Additionally, 

although prolonged expression of MdmxG57A/F488A Mdmx was associated with a marked 

decrease in cell viability compared with MdmxF488A, cell survival was significantly higher 

than following Nutlin treatment (Figure 6E, compare lanes 2 and 6). In theory, this could be 

due either to the increased Mdm2 levels resulting from MdmxG57A/F488A, inhibition of 

Mdm2 E3 ligase activity, or because MdmxG57A/F488A has some residual binding to p53 

(Supplementary Figure 7). We used Nutlin, an Mdm2-selective antagonist (27), as a 

chemical probe to ascertain whether a putative Mdm2/MdmxG57A/F488A heterodimer might 

bind to and inhibit p53 function. Indeed, we found that the viability of cells expressing 

MdmxG57A/F488A was further decreased by Nutlin treatment (Figure 6E, compare lanes 6 

and 8), indicating that the elevated level of stabilized Mdm2 is a significant determinant of 
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p53 activity following induction of MdmxG57A/F488A. Together, these data suggest 

inhibition of Mdm2 ligase activity may be most effective when combined with either Mdm2 

or Mdmx antagonists.

Discussion

The functional co-operation between Mdm2 and Mdmx may be a critical component for 

regulating p53 levels in normal cells. Therefore, understanding the mechanistic basis for this 

may aid rational design of Mdm2/Mdmx targeted therapeutics. Mdm2/Mdmx binding 

proceeds via RING/RING domain interaction, which is utilized by a large number of other 

RING domain-containing human proteins. Thus, findings from studies of Mdm2 and Mdmx 

may provide greater insight into molecular mechanisms in other RING E3 ligase-associated 

pathways. In this manuscript, we provide further insight into the regulation of p53 by Mdm2 

and Mdmx, and show that the co-operation between the two proteins is critical for p53 

abundance control. Additionally, our data suggest that correct Mdm2/Mdmx hetero-

oligomerization is critical for degradation of Mdmx following DNA damage. These findings 

indicate that regulating Mdm2/Mdmx hetero-oligomerization is likely to be a key 

determinant of p53-dependent responses to genotoxic stress.

Previous studies indicated that MdmxF488A inhibits Mdm2-dependent degradation of p53 

(17). We confirmed and extended these observations by showing that expression of 

MdmxF488A leads to stabilization of non-ubiquitylated, endogenous p53. RING E3 ubiquitin 

ligases (including Mdm2) bind to E2s, and facilitate the transfer of ubiquitin to their target 

substrates (in this case, p53). Since we show the interaction between Mdm2 and p53 is not 

perturbed in the presence of MdmxF488A, the most likely explanation is that transfer of 

ubiquitin to p53 is being inhibited. As structural studies suggest the MdmxF488A mutation 

perturbs the function of the Mdm2/Mdmx heterodimer (19), we infer this mutation may 

prevent the recruitment of E2 to the complex. Alternatively, E2 may be recruited, but unable 

to transfer its ubiquitin cargo to p53. This would be consistent with proposals that RING E3 

ligases can allosterically activate E2 to facilitate ubiquitin transfer (29, 30). Since 

MdmxF488A can be detected in complexes containing both p53 and Mdm2, we suggest that 

MdmxF488A induction is effectively a “substrate trap”, and may facilitate detection of 

intermediates in the degradation of p53. We also show that optimal Mdmx degradation after 

DNA damage requires an intact Mdmx extreme C-terminus. As damage-induced 

phosphorylation of MdmxF488A and its binding to Mdm2 are unperturbed, the failure to 

degrade Mdmx is likely due to defects in Mdm2-dependent ubiquitylation. Recent studies 

have shown that following DNA damage, degradation of Mdmx is associated with an 

increase in p53 transactivation function (15, 31). In the present study, p53 activation was 

equivalent in cells expressing both MdmxWT and MdmxF488A, even though the latter protein 

was not degraded after damage. It is likely that additional damage-induced modifications to 

p53 itself, and possibly to the RING domains of both Mdm2 and Mdmx are responsible for 

this effect (32, 33). Together with the finding that phosphorylation of the Mdm2 and Mdmx 

N-termini also contribute to p53 activation (34, 35), these data highlight the redundancy 

built into damage signaling pathways to ensure a ‘failsafe’ p53 response to genotoxic stress.
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Earlier studies provided compelling evidence for the functional co-operation between Mdm2 

and Mdmx (16-19, 36, 37). Modeling this molecular interaction in vivo is beginning to 

provide further insight into its biological importance. For example, a point mutation of the 

Mdm2 RING domain that destroys RING structure (C462A) and blocks Mdm2 ligase 

activity triggers p53 stabilization and leads to p53-dependent embryonic lethality (38). 

Additionally, mutation or deletion of the Mdmx RING also prevents Mdm2/Mdmx 

interaction and triggers p53-dependent lethality in vivo (39, 40). In these systems, Mdm2 

remains unstable, likely explaining the inability to control p53 activity under these 

conditions. Therefore, it is still unclear whether complete inhibition of Mdm2 ligase activity, 

in the context of structurally intact Mdm2/Mdmx RING domains, would be sufficient to 

activate p53. Our in vitro data suggest that a high level of structurally intact but ligase-

deficient Mdm2 can still block p53 activity. Whether this is recapitulated at physiological 

levels in vivo remains an open question. An in vivo study of MdmxF488A and Mdm2Y489A 

(17) would also provides a direct test of whether ligase-independent RING domain activities 

of Mdm2 contribute to its biological function.

Our results also have implications for the design of drugs that block Mdm2 ligase activity by 

inhibiting the function of the Mdm2/Mdmx hetero-oligomer. We show here that perturbing 

the function of the hetero-oligomer increases p53 levels, suggesting ligase inhibition would 

be a viable anticancer strategy. However, in our system, p53 stabilization was not sufficient 

to trigger its activation, since it was antagonized by stabilized Mdm2 or high levels of 

exogenous Mdmx. Thus, we infer that increasing p53 level by blocking Mdm2 ligase 

activity may not be sufficient to trigger a robust p53 response. Previous studies lead to the 

discovery of the HLI series of compounds, which block Mdm2 ligase activity and lead to 

p53 stabilization (24, 41). In contrast to our results, treatment with HLI compounds also 

activated p53-dependent transcription. One explanation for this discrepancy is that the levels 

of exogenous Mdm2 or Mdmx used in our system exceed those present following treatment 

of tumor cells with HLI compounds. However, our results with MdmxG57A/F488A show the 

increase of endogenous Mdm2 following Mdm2 ligase inhibition can also block p53-

dependent transactivation. We suggest, therefore that there are cases in which Mdm2 ligase 

inhibition alone may not be sufficient to trigger p53 activation. In such instances, either 

treatment with antagonists such as Nutlin as single agents, or in combination with ligase 

inhibitors may be more effective.

Materials and Methods

Cell culture and drug treatments

MCF7 cells were cultured in DMEM/10% FBS with Ciprofloxacin (CIP, 10 μg/ml). U2OS 

cells with doxycycline-inducible human Mdmx expression cassettes were generated as 

previously described (42) and cultured in DMEM/10% FBS/CIP/G418 (400 μg/ml). 

Doxycycline (SIGMA, St Louis, MO) was dissolved in water as stocks of 500 μg/ml and 

frozen at −20°C. Neocarzinostatin (stock 1 mg/ml in sodium acetate) was obtained from 

Robert Schultz at NCI, the proteasome inhibitor MG132 was from Calbiochem and 

Nutlin-3a was a kind gift of Lyubomir Vassilev (Hoffman-La Roche, Nutley, NJ). Unless 
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otherwise stated, Nutlin-3a was used at a final concentration of 10 μM. Cycloheximide (US 

Biologicals) was dissolved in 0.1% ethanol and used at a final concentration of 100 μg/ml.

Western blotting, immunoprecipitation and antibodies

Cells were lyzed in Oren Buffer (50 mM Tris, pH 8.0, 5 mM EDTA, 150 mM NaCl, 0.5% 

NP-40, 1 mM PMSF, 1 mM sodium vanadate, 10 mM NaF, and Complete Mini Protease 

Inhibitors (Roche)), at 4°C for 30 min. Following SDS-PAGE, proteins were transferred to 

PVDF membrane (Millipore, MA). The following antibodies were used for western blotting: 

p53, DO1 (Calbiochem, mouse, 1:1000) or FL-393 (Santa Cruz, rabbit, 1: 1500); Mdmx, 

BL1258 (Bethyl Laboratories, 1:10000, overnight); Mdm2, triple mouse monoclonal 

cocktail of IF-2 (Calbiochem), SMP-14 (Santa Cruz) and 4B2 (Calbiochem) (1:500 each, 

overnight); p21, C-19 (Santa Cruz, rabbit 1:1500 or Cip/Waf1 (Transduction Labs, mouse 

IgG2a, 1:500); actin, (rabbit, 1:20000, SIGMA, MO). Peroxidase-conjugated secondary 

antibody was used at 1:10000 (Jackson Immunochemicals). For LiCor far-red western 

analysis, lysis was as above, but protein was transferred to Immobilon-Fluor (Millipore, 

MA) prior to blocking with BioRad PBS/Casein Blocker per the manufacturer’s instructions. 

Species-specific secondary antibodies for LiCor analysis were conjugate to Alexa Fluor 680 

(Molecular Probes) or IRD-800 (Rockland, PA). Analysis was performed using Odyssey 

v3.0 software. For immunoprecipitation analyses, cells were harvested on the plate in Oren 

Buffer. Typically, 500μg-1mg of protein was used for immunoprecipitation. The antibodies 

used were: DO1 or agarose bead-conjugated FL393 (p53), anti-HA (HA.11, Covance), 

BL-1258 (Human Mdmx, Bethyl Labs). 2μg of each antibody per milligram of protein was 

used. Immobilized recombinant protein A was used for antibody pulldown, and 

immunoprecipitates were washed and eluted as described (43).

Proximity ligation in situ assay

U2OS cells expressing a doxycycline-inducible HA-HDMX construct (20) were seeded onto 

coverslips and treated with doxycyline for 24 h. Cells were fixed in 3.7% para-

formaldehyde, washed in PBS, and permeabilized in 0.2% Triton X-100 for 5 min. 

Coverslips were then blocked in 10% normal goat serum in PBS (NGS) for 2 h. For 

Mdmx/p53 PLISA, primary antibodies HA.11 (Covance, 1:500) and FL-393 (Santa Cruz, 

1:1000) were diluted in PBS/EDTA/0.2% Triton X-100/2% NGS and incubated at 4°C 

overnight. For Mdmx/Mdm2 PLISA, primary antibodies BL-1258 (1:1000) and 5B10 

(1:500) were used. Note that some background staining in the absence of doxycycline is 

observed using BL-1258, but the inducible nature of the system permitted clear distinction 

of Mdmx/Mdm2 complex formation. Following washes with TBS/0.05% Tween-20, a 

proximity ligation in situ assay (PLISA) was performed according to the manufacturer’s 

protocol (Detection Kit 613, OLink Bioscience, Sweden) with the following exception: goat 

anti-rabbit (minus) and anti-mouse (plus) PLISA probes were diluted in NGS at 1:10 instead 

of 1:5. Coverslips were mounted on microscope slides and images acquired using OpenLab 

software (Perkin-Elmer/Improvision, UK) and a Zeiss Axioplan 2 microscope with 63x 

magnification. Post-image capture, nuclear (Hoechst) images were contrast-enhanced and all 

PLISA images (red foci) from untreated and Dox-treated cells were contrast-enhanced 

simultaneously to reduce background (non-focal) signals. RGB planes of nuclei and PLISA 

foci were then overlaid.
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Ubiquitylation assay

U2OS were transfected with His-tagged ubiquitin using FuGene HD (Roche) at a 2:5 ratio 

(DNA to FuGeneHD). After 6h, transfection reagent was replaced with regular medium in 

the presence or absence of doxycycline to induce MdmxWT or MdmxF488A. 24h later, cells 

were lysed, and pulldown of ubiquitylated proteins was performed using agarose-conjugated 

Ni2+ beads (Invitrogen, licensed from Qiagen). Lysis and wash conditions were as 

previously described (44, 45). Following SDS-PAGE and transfer to PVDF membrane, 

ubiquitylated p53 was visualized using DO-1 antibody.

Quantitative PCR

Total RNA was prepared using QiaShredder and RNeasy RNA isolation kits per the 

manufacturer’s instructions (Qiagen, CA). 2μg of total RNA per sample was used for cDNA 

synthesis with random hexamer primers, using SuperScriptIII Reverse Transcriptase system 

(Invitrogen, CA). Real time quantitative PCR was performed using an ABI PRISM 7700 

Sequence Detection System, using Platinum SYBR SuperMix (Invitrogen) with ROX as an 

internal standard. Changes in gene expression were normalized to 18S mRNA. Primer 

sequences supplied on request.

Colony outgrowth

For colony formation assays, cells were plated at 3000/6cm plate and colonies were allowed 

to form (~2 days) before addition of Doxycycline for 24h prior to treatment with 10μM 

Nutlin (for 2 days). After a further 5-6 days, cells were fixed in 3.7% para-formaldehyde and 

stained with crystal violet. Images of colonies were taken on the plate, and then dye was 

extracted in Sorenson’s buffer (50mM sodium citrate, 50mM citric acid in 50% (v/v) ethanol 

solution) and quantified by absorbance at 590nm.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Expression of Mdm2Y489A or MdmxF488A leads to stabilization of p53
Cell lines containing doxycycline-inducible Mdm proteins were treated with Doxycycline 

(100 ng/ml) for 24h and analyzed by western blot for the indicated proteins.
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Figure 2. Stabilization of p53 upon MdmxF488A expression is post-translational
(A) Following induction of MdmxWT or MdmxF488A, cycloheximide was added for the 

indicated times prior to blotting for p53 and Mdm2. Band intensities were calculated using 

the LiCor/Odyssey image analysis system, and plotted as log2 values. (B) Mdm2 mRNA was 

analyzed by qPCR following addition of Dox, or the damaging agent NCS (300 ng/ml) as a 

positive control. (C) Cells were transfected with Histidine-tagged ubiquitin and doxycycline 

was added to induce MdmxWT or MdmxF488A. After 24h, cells were lyzed and ubiquitylated 

proteins were pulled down using Ni2+-agarose beads. Following SDS-PAGE, p53 was 

detected using DO-1. Numbers above each lane represent the ratio of ubiquitylated p53 

species to the total amount of p53 in the lysate.
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Figure 3. Proximity ligation assay (PLISA) reveals MdmxF488A binds to p53 and Mdm2
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(A) Both MdmxWT and MdmxF488A interact with endogenous Mdm2. Cells were treated for 

24h with doxycycline and then incubated with primary antibodies against Mdm2 and Mdmx. 

PLISA was then performed, and visualized under a fluorescence microscope. For MdmxWT, 

a longer exposure time was required to detect Mdmx/Mdm2 PLISA signals (panels i and ii). 

Panels iii and iv, (MdmxWT) and v and vi (MdmxF488A) were taken with the same exposure 

time (B) MdmxWT and MdmxF488A Mdmx interact with p53. Cells were treated as in (A) 

and then processed for PLISA after incubation with primary antibodies to detect Mdmx and 

p53. Exposures were as in (A).
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Figure 4. MdmxF488A expression inhibits p53 ubiquitylation, but suppresses p53-dependent 
transactivation
(A and B) Cells expressing Mdm2WT and Mdm2Y489A (A) or MdmxWT or MdmxF488A (B) 

were treated with 100 ng/ml doxycycline for 24h prior to addition of NCS (300 ng/ml, 5h) 

and analyzed by western blot for the indicated proteins and qPCR for p21 mRNA 

expression.
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Figure 5. Mdm2Y489A antagonizes p53-dependent transactivation and promotes cell survival
(A) Mdm2WT or Mdm2Y489A cells were seeded into 6cm plates and colonies were allowed 

to form. Cells were then treated with 100 ng/ml Doxycycline for 16h prior to addition of 

Nutlin for a further 48h. Drug was then replaced with regular medium. Following a further 6 

days, cells were fixed and stained with crystal violet. (B) Following extraction with 

Sorenson’s buffer (50mM sodium citrate, 50mM citric acid in 50% (v/v) ethanol solution), 

total crystal violet stain was quantified by measuring absorbance at 590nm.
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Figure 6. MdmxF488A antagonizes p53-dependent transactivation and promotes cell survival
(A) Following induction of MdmxWT or MdmxF488A for 19h, cells were treated with 10 μM 

Nutlin for 24h and analyzed for the indicated proteins. (B) Cells treated as in (A) were 

analyzed for Mdm2 mRNA by qPCR. Results are from 3 replicate experiments. (C) 

MdmxWT or MdmxF488A cells were seeded into 6cm plates and colonies were allowed to 

form. Cells were then treated as in Figures 5A and B. (D) MdmxF488A and MdmxG57A/F488A 

cells were treated and processed as in (A). (E) MdmxF488A and MdmxG57A/F488A cells were 

treated and processed as in Figure 5B.
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