
cancers

Article

Deep Learning for the Classification of Non-Hodgkin
Lymphoma on Histopathological Images

Georg Steinbuss 1,2,†, Mark Kriegsmann 2,3,† , Christiane Zgorzelski 2, Alexander Brobeil 2, Benjamin Goeppert 2,
Sascha Dietrich 1, Gunhild Mechtersheimer 2 and Katharina Kriegsmann 1,*

����������
�������

Citation: Steinbuss, G.; Kriegsmann,

M.; Zgorzelski, C.; Brobeil, A.;

Goeppert, B.; Dietrich, S.;

Mechtersheimer, G.; Kriegsmann, K.

Deep Learning for the Classification

of Non-Hodgkin Lymphoma on

Histopathological Images. Cancers

2021, 13, 2419. https://doi.org/

10.3390/cancers13102419

Academic Editor: Marcel Spaargaren

Received: 28 April 2021

Accepted: 13 May 2021

Published: 17 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Hematology, Oncology and Rheumatology, University of Heidelberg,
69120 Heidelberg, Germany; georg.steinbuss@med.uni-heidelberg.de (G.S.);
sascha.dietrich@med.uni-heidelberg.de (S.D.)

2 Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany;
mark.kriegsmann@med.uni-heidelberg.de (M.K.); christiane.zgorzelski@med.uni-heidelberg.de (C.Z.);
alexander.brobeil@med.uni-heidelberg.de (A.B.); benjamin.goeppert@med.uni-heidelberg.de (B.G.);
gunhild.mechtersheimer@med.uni-heidelberg.de (G.M.)

3 Translational Lung Research Centre Heidelberg, Member of the German Centre for Lung Research (DZL),
69120 Heidelberg, Germany

* Correspondence: katharina.kriegsmann@med.uni-heidelberg.de; Tel.: +49-6221-37238
† These authors contributed equally to this study.

Simple Summary: Histopathological examination of lymph node (LN) specimens allows the detec-
tion of hematological diseases. The identification and the classification of lymphoma, a blood cancer
with a manifestation in LNs, are difficult and require many years of training, as well as additional
expensive investigations. Today, artificial intelligence (AI) can be used to support the pathologist in
identifying abnormalities in LN specimens. In this article, we trained and optimized an AI algorithm
to automatically detect two common lymphoma subtypes that require different therapies using
normal LN parenchyma as a control. The balanced accuracy in an independent test cohort was above
95%, which means that the vast majority of cases were classified correctly and only a few cases were
misclassified. We applied specific methods to explain which parts of the image were important for
the AI algorithm and to ensure a reliable result. Our study shows that classifications of lymphoma
subtypes is possible with high accuracy. We think that routine histopathological applications for AI
should be pursued.

Abstract: The diagnosis and the subtyping of non-Hodgkin lymphoma (NHL) are challenging and
require expert knowledge, great experience, thorough morphological analysis, and often additional
expensive immunohistological and molecular methods. As these requirements are not always avail-
able, supplemental methods supporting morphological-based decision making and potentially entity
subtyping are required. Deep learning methods have been shown to classify histopathological images
with high accuracy, but data on NHL subtyping are limited. After annotation of histopathological
whole-slide images and image patch extraction, we trained and optimized an EfficientNet convo-
lutional neuronal network algorithm on 84,139 image patches from 629 patients and evaluated its
potential to classify tumor-free reference lymph nodes, nodal small lymphocytic lymphoma/chronic
lymphocytic leukemia, and nodal diffuse large B-cell lymphoma. The optimized algorithm achieved
an accuracy of 95.56% on an independent test set including 16,960 image patches from 125 patients
after the application of quality controls. Automatic classification of NHL is possible with high
accuracy using deep learning on histopathological images and routine diagnostic applications should
be pursued.
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1. Introduction

Non-Hodgkin lymphoma (NHL) is a group of hematological neoplasms and among
the 10 most common cancer subtypes worldwide [1]. A total of 77,240 new cases and
19,940 cancer-related deaths were estimated to be due to NHL in the United States in 2020,
according to the Surveillance, Epidemiology, and End Results (SEER) database [2]. The
group of neoplasms constituting NHL is heterogeneous with very different clinical features
and variable outcomes of the respective subtypes [3].

The diagnosis and the subtyping of NHL are challenging and require clinical, serolog-
ical, morphological, and potentially cytogenetic/molecular information. Often, histopatho-
logical workup of a lymph node (LN) resection specimen is needed for definite subtyping.
As the workup is commonly expensive and time-consuming, a stepwise approach is ad-
vocated [4], where thorough morphological evaluation is key and directs the decision on
which immunohistochemical and molecular tests need to be performed [5].

Currently, this subjective decision is made by an experienced hematopathologist.
However, there are general problems that are expected to aggravate this approach in the
future; the overall number of pathologists is decreasing, specifically in Germany, while
the overall requirements in terms of knowledge and specialization are increasing [6].
Additionally, not all pathologists can rely on extensive hematopathological experience, as
well as expensive and methodological equipment that allows for liberal use of molecular
analyses [7,8]. Thus, supplemental methods that support morphological-based decision
making and potentially entity subtyping are desirable and needed.

Digital pathology has emerged as an important tool, not only to review histopatho-
logical slides, but also to use additional computer-assisted software to support routine
diagnostics and research [9]. It has previously been shown that subtyping of carcinoma
is feasible [10–13]. However, few reports are available on the classification of hematolog-
ical neoplasms, particularly NHL subtypes [14–18]. Therefore, we set out to investigate
whether the classification of tumor-free LNs, nodal small lymphocytic lymphoma/chronic
lymphocytic leukemia (SLL/CLL), and nodal diffuse large B-cell lymphoma (DLBCL) is
possible using deep learning techniques on scanned histopathological slides.

2. Materials and Methods
2.1. Patient Cohort, Tissue Microarray Construction, and Scanning of Tissue Slides

A cohort of 629 patients was assembled from the archive from the Institute of Pathol-
ogy, University Clinic Heidelberg, with the support of the Tissue Biobank of the National
Center for Tumor Diseases (NCT). The study was approved by the local ethics committee
(study number: #S315–2020). While lymph node lymphoma specimens were collected from
different anatomical regions, tumor-free lymph node specimens were collected from resec-
tion specimens operated for a non-lymphoma tumor disease (lung, colon, and pancreas).
Diagnoses of lymphomas were made according to the 2016 World Health Organization Clas-
sification of Tumors of Hematopoietic and Lymphoid Tissue [3]. Conventional hematoxylin
and eosin staining, as well as immunohistochemistry according to current best practice
recommendations, was performed [3]. Tissue microarrays (TMAs) were constructed and
subsequently scanned at 400× magnification using a slide scanner (Aperio SC2, Leica
Biosystems, Nussloch, Germany) as previously described [19].

2.2. Tumor Annotation and Image Patch Extraction

Scanned slides were imported into QuPath (v.0.1.2, University of Edinburgh, Ed-
inburgh, UK). Tumor areas of control LNs, SLL/CLL, and DLBCL were annotated by a
pathologist. Patches 100× 100 µm (395× 395 px) in size were generated within QuPath [20],
and the tumor-associated image patches were exported to the local hard drive. To ensure
adequate representation of each tumor, the goal of exporting a minimum of 10 patches
per patient was set. Care was taken not to annotate beyond the border of the tissue cores
to avoid a prominent representation of the tissue edge, because we anticipated interfer-
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ence with translation of the algorithm to whole slides. Representative tumor areas, tumor
annotations, generated patches, and extracted patches are displayed in Figures 1 and 2.
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a conda (v4.9.1) environment containing tensorflow (v2.3.1) and tf-explain (v0.3.0). We 
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maximum gradient per each channel was used as described in the respective git repository 
(https://github.com/sicara/tf-explain/issues/157, accessed on 1 May 2021). 
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2.3. Hardware and Software

For training and prediction with our models, we used the BwForCluster MLS&WISO
Production nodes [21] that feature the Nvidia Tesla K80 (models B0 to B3, see also Model
training and optimization) or the Nvidia GeForce RTX 2080Ti (model B4). With the Nvidia
Tesla K80 nodes, we used both GPUs with a mirrored strategy from TensorFlow. With
the Nvidia GeForce RTX 2080Ti nodes, we used a single GPU. Furthermore, we applied
singularity (Sylabs, https://sylabs.io/singularity/; v3.7.2, accessed on 1 May 2021) to
adopt (v3.6.4) and run (v3.0.1) the TensorFlow 2.3.1-gpu docker container for training and
prediction with our models. We added R (v4.0.3) with packages dplyr (v1.0.4), tidyr (v1.1.2),
tibble (v3.0.6), config (v0.3.1), readbitmap (v0.1.5), data.tree (v1.0.0), jsonlite (v1.7.2), and
jpeg (v0.1–8.1), as well as the python packages pandas (v1.1.5), Pillow (v 8.1.0), scipy (v
1.5.4), tabulate (v0.8.7), and tensorflow_addons (v 0.12.1), to the container. The SmoothGrad
heatmaps were generated on a Lenovo P1 Gen 2 running Windows 10 with a conda
(v4.9.1) environment containing tensorflow (v2.3.1) and tf-explain (v0.3.0). We used a
noise level of 0.5% and a sample size of 50 for SmoothGrad. We adopted the tf-explain
package code such that the resulting heatmaps were normalized to [0, 1), and the maximum
gradient per each channel was used as described in the respective git repository (https:
//github.com/sicara/tf-explain/issues/157, accessed on 1 May 2021).

https://sylabs.io/singularity/
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2.4. Analytical Subsets

To ensure reliable results, patients were randomly separated into three subsets: train-
ing (60%), validation (20%), and test sets (20%). All image patches from a patient (case)
were used in the respective subset. We had a checkpoint in our code to ensure that cases
were used in a single subset only. These subsets were not changed during the analyses.

2.5. Model Training and Optimization

We used models from the EfficientNet family [22] for our analysis. The EfficientNet
family is composed of multiple models (from B0 to B7), which are each scaled versions
of the baseline model B0. The models were scaled by the compound scaling method
introduced in [22]. With compound scaling, each consecutive model increased in network
width, depth, and image resolution by a set of fixed scaling coefficients. This form of
scaling utilizes the idea that network width, depth, and image resolution seem to exhibit a
certain relationship [22]. A model with fewer trainable weights can be trained using fewer
resources, and its inference is faster [22]. In this study, we investigated up to which stage
the compound scaling did seem to be beneficial in predicting the NHL on histopathological
images. The nontrainable model parameters (such as dropout) provided in the tensorflow
implementation of EfficientNet models were used without modification. The batch size
was chosen as the maximal allowed value (in the sequence of 2n, n ∈ N), given the available
GPU memory. The batch size usually becomes smaller when scaling up an EfficientNet;
the image resolution increases and the model itself becomes bigger due to the additional
weights. We used the Adam optimizer with a learning rate that was selected for each
model as follows: models were trained for 50 epochs (each a pass of the full training data)
with various learning rates roughly in the range of 10−5 to 10−6. Then, the best-performing
learning rate was chosen, and the respective model was trained further until there seemed
to be no further performance gain. Performance was visually evaluated by the achieved
validation and training accuracy, the amount of overfitting (difference of training and
validation accuracy), and the smoothness of the accuracy curves. The models with highest
validation accuracy for each class of EfficientNet models (B0–B4) were compared, and the
overall best-performing one was used to classify the test set.

For the tumor-free reference cases, a detailed classification (into LNs from lung, colon,
and pancreas) was available, which we used for training of the classifier (we anticipated
that this might improve accuracy). Since such a detailed classification was not available for
the tumor cases, we analyzed our predictions on the test data using an aggregated class
“tumor-free reference LN”.

3. Results
3.1. Patient Cohort, Annotation, Image Patch Extraction, and Subset Analysis

Cases from SLL/CLL (n = 129) and DLBCL (n = 119), as well as control LNs from lung,
colon, and pancreas (n = 381), were identified, retrieved, assembled in a TMA, stained,
and scanned. Identification of representative regions resulted in a total of 84,139 extracted
100 × 100 µm (395 × 395 px) image patches. The number of extracted image patches is
displayed in Table 1. The goal to extract a minimum of 10 image patches per patient was
met in all but seven cases.

3.2. Convolutional Neuronal Network Selection and Hyperparameter Optimization

Different models (B0–B4) were trained and optimized using different learning rates.
Figure 3 shows the training and validation accuracy of the models with the highest vali-
dation accuracy per EfficientNet architecture (B0, B1, etc.). Since the B4 architecture did
not seem to outperform the B3 architecture, we did not tune the architectures B5–B7 on
our data. For the tuned models in Figure 3, the chosen learning rate and batch size were
as follows: B0, 1 × 10−6, 256; B1, 1 × 10−5, 128; B2, 9 × 10−6, 128; B3, 8 × 10−6, 64; B4,
6 × 10−6, 16. Whereas the overall accuracies of the B3 and B2 models were almost on par,
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the respective confusion matrices on the validation data of the B3 model were slightly more
accurate. Thus, we chose the B3 model to classify the test set.

Table 1. Number of extracted image patches per group.

Group SLL/CLL DLBCL LN Lung LN Colon LN Pancreas

Total cases, n 129 119 64 230 87
Training set, ~60% of cases

Cases, n 78 80 34 134 52
Image patches, n

Total 11,404 8625 5064 18,488 7004
Minimum 4 7 33 4 2
Maximum 231 278 238 222 245

Mean 146 108 149 138 135
Median 149 99.5 150 142 139

Validation set, ~20%
of cases
Cases, n 22 18 15 57 14

Image patches, n
Total 3086 1815 2436 7870 1387

Minimum 3 13 115 24 18
Maximum 214 329 251 255 242

Mean 140 101 162 138 99
Median 146.5 88 156 140 80.5

Test set, ~20% of cases
Cases, n 29 21 15 39 21

Image patches, n
Total 4631 2236 2393 4966 2734

Minimum 18 22 105 17 48
Maximum 226 225 265 184 237

Mean 160 106 160 127 130
Median 189 103 162 132 131

DLBCL: diffuse large B-cell-lymphoma, LN: lymph node, SLL/CLL: small lymphocytic lymphoma/chronic
lymphatic leukemia.
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3.3. Evaluation of the Test Set and Quality Control

Figure 4 displays the normalized confusion matrix of the selected B3 model in terms of
the image patches or cases. For these matrices, image patches were assigned the predicted
class with the highest probability, and cases were assigned the predicted class of the
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majority of their patches. We used the balanced accuracy (BACC) [23] instead of the plain
accuracy to account for class imbalance. The model showed a high BACC for DLBCL and
the tumor-free reference (in both cases, only a single missed case was identified; Figure 4).
However, the predictions for CLL displayed a lower BACC with multiple misclassifications.
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(left) and case level (right). The lower panels exhibit the balanced accuracy (BACC). CLL: chronic
lymphocytic leukemia, DLBCL: diffuse large B-cell lymphoma, LN: lymph node.

Table 2 features the BACC for different quality control thresholds at the case or patch
level. Any patch with a predicted probability (in terms of the highest prediction probability)
of less than the patch-based quality control (PQC) threshold was filtered out. The case-
based quality control (CQC) threshold filtered cases in which the proportion of patches
for the predicted class was less than the threshold. From Table 2, one can see that an
increase in the case-based quality control threshold improved the overall BACC up to
95.56%. A more detailed example for results with a PQC and CQC of 0.9 showed a decrease
in the proportion of misclassified patches and cases (Figure S1). Only 3/102 patients were
misclassified using high-quality control thresholds.

Table 2. Balanced accuracy (BACC) given different case quality control (CQC) thresholds and patch quality control
thresholds (PQC).

CQC Threshold 50% 60% 70% 80% 90%

PQC
Threshold

PQC not
met (%)

BACC
(%)

CQC
not met

(%)

BACC
(%)

CQC
not met

(%)

BACC
(%)

CQC
not met

(%)

BACC
(%)

CQC
not met

(%)

BACC
(%)

CQC
not met

(%)

50% 0.54 84.48 0.8 88.61 5.6 89.55 8 94.12 17.6 95.56 24.8
60% 3.44 83.74 0 87.67 4.8 89.55 8 94.12 16.8 93.75 22.4
70% 6.43 85.25 0.8 85.99 3.2 89.64 7.2 94.74 15.2 93.75 21.6
80% 10.05 85.32 0 86.79 4 89.64 7.2 92.42 11.2 93.75 20.8
90% 15.74 85.25 0.8 85.24 2.4 89.64 6.4 91.3 9.6 93.75 18.4

To further investigate if the network was learning the correct features on cells, we
applied SmoothGrad [24] to a selection of patches (Figure 5). SmoothGrad produced
heatmaps indicating the importance of certain pixels toward the prediction of a certain
class. In the heatmaps in Figure 5, we can observe high activity in the respective cells and
not in noncellular structures. Thus, we concluded that our model predicted the respective
class on the basis of cell morphology.
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To estimate the inference latency of our model on a CPU and GPU, we classified a
random image patch (each pixel from a uniform distribution) multiple times. We predicted
1000 steps of our final model with a tf.data (https://www.tensorflow.org/guide/data,
accessed on 1 May 2021) pipeline using a batch size of 1 that repeated the random image
patch. The prediction took 203 s with 203 ms per step (i.e., per image patch) on a single
thread of an Intel(R) Core(TM) i9-9880H CPU (2.3 GHz) (Intel Corporation, Santa Clara,
USA), and 107 s with 107 ms per step on an Nvidia Quadro T2000 (Nvidia Corporation,
Santa Clara, CA, USA).

4. Discussion

In the present study, we evaluated and optimized a convolutional neuronal network
(CNN) for the classification of histopathological images of tumor-free LNs, SLL/CLL, and
DLBCL. The principal capacity of CNN for the classification of malignant and benign
diseases on scanned histopathological tissue of conventionally stained sections was pre-
viously demonstrated and is well documented [19,25–28]. Specifically, the technique has
been shown to be capable of classifying carcinoma subtypes and of identifying LN metas-
tases of carcinomas [19,29–31]. However, studies on the classification of lymphomas are
relatively scarce, and normal LNs as controls have rarely been included [14,17,18,22,32,33].
In addition to the classification of lymphoma subtypes, it has been shown that molecu-
lar alterations may be detected by deep learning algorithms on histopathological tissue
sections [17].

The abovementioned studies on lymphoma classification have in common that they
showed that lymphoma subtyping is possible with high accuracy (often >90%) using deep
learning techniques when 2–4 lymphoma subtypes are included for classification. In this
regard, our study is comparable as we included normal LNs as a control and two common
NHL subtypes of B-cell lineage. In line with these previous studies, our BACC was >95%.

Direct comparison of the different studies in terms of methodology is somewhat
difficult, as, in addition to the included entities, the number of cases, the study design, the
image input parameters, the architecture of the respective networks, and the evaluation
were highly heterogeneous.

https://www.tensorflow.org/guide/data
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Commonly, deep learning studies require a large set of images, but there is no consen-
sus on the minimum number of cases that should be included. The previously reported
studies on lymphoma subtyping included between 34 and 259 cases per entity and a
total of 2560 to 850,000 image patches [14,22,32]. One study included 867 DLBCL cases,
but their algorithm was mainly designed to separate DLBCL and samples not related to
lymphoma [16]. In our study, we included a total of 629 patient samples and 84,139 image
patches, making it that with the highest case number on lymphoma subtyping by deep
learning to date.

Currently, the use of a training, validation, and test sets is advocated. The deep
learning algorithm is trained and optimized using the first two sets. The test set should only
be used for final classification. This setup was used by most investigators on lymphoma,
including our own, but not in all previous studies [22].

The patch size of the final images ranged between 16 × 16 px and 800 × 800 px in
most studies [31]. Currently, there is no standard regarding the size of the image patches,
but it seems fair to argue that, if the size is smaller in terms of cytological features and if
the size is larger, the architecture is better represented. Some of the variation in pixel size is
due to different magnifications used [18]. Often, images are either extracted at ×200 or, as
in our study, at ×400 [22]. In this regard, it is important to note that previous investigations
on the classification of follicular lymphoma versus reactive follicular hyperplasia, both
processes that show prominent architectural changes, included rather low magnifications
to ensure architectural representation [18]. As SLL/CLL and DLBCL show very distinct
cell morphologies, we used a higher magnification (400×) to have a better cytological
representation of the respective cell types. During the annotation, we tried to avoid
a prominent representation of the tissue edge from the tissue cores, thereby ensuring
transferability to whole slides. Although not explicitly tested, we would expect our
algorithm to achieve similar results on whole-slide images, as the image patches from TMA
cores and from whole slides are comparable.

Moreover, different CNN architectures have been applied in previous studies. We
decided to use the EfficientNet framework because it achieved a high top-1 accuracy of
84.3% on the ImageNet dataset, while being smaller and significantly faster than network
architectures achieving comparably high accuracy rates on the same dataset [34]. The
EfficientNet architectures use a compound scaling method to balance width, depth, and
resolution of a network, and they have successfully been applied to histopathological
image classification tasks [35]. Computational time might be an important factor not only
for training models, but also for application in routine diagnostics. In this regard, it would
be beneficial to find an equally fast way to use CPUs in a routine context, especially because
these have a low inference time and most computers worldwide are not equipped with
a GPU.

Lastly, there is also no established standard for evaluation. Most authors used a major-
ity vote where the class with the highest probability was chosen as the final result [22,32].
If multiple magnifications were included, the final result was calculated by averaging
the respective single results [18]. We believe that, if multiple classes are included in an
algorithm, it might not be enough to calculate the final result on the basis of a majority vote.
If, for example, the algorithm is trained on three diseases, the random chance for each class
would be 33.3%. In the given example, a doubtful result of 34% probability for one class
would trigger this class to be labeled as the final result. The application of quality control
limits has previously been proposed and applied [19]. In the abovementioned lymphoma
studies, only one group used the quality control limits at the image patch level to create
heatmaps at the patient level, but this method was not applied for the final classification
result [18]. For applications in the routine diagnostic setting, the implementation of quality
control measures is important in our opinion. We tested the effect of quality control limits
at the image patch and patient level and achieved not only an increase in accuracy, but also
automatic screening for cases with doubtful results that need further review.
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In a routine diagnostic scenario, a small and resource-sparing panel of confirmatory
immunohistological and/or molecular methods could be ordered after confirmation of
the deep learning result by a pathologist. Specifically, in cases where LNs are reviewed
for metastasis of carcinomas by pathologists with low expertise in terms of hematological
neoplasia, our algorithm could raise alertness for an underlying hematological neoplasm
such as SLL/CLL [36].

The limitations of our study are the sample size, the number of included entities, and
the process for hyperparameter tuning. Herein, we examined a total of 629 cases. Following
the random separation into training, validation, and test sets, only 378 cases were included
in the training set. SLL/CLL and DLBCL may both be morphologically different, and
many variants and specific morphological features are recognized in the current World
Health Organization classification [3]. In this regard, it must be noted that some subsets of
SLL/CLL may show extensive plasmacytoid appearance [37], may exhibit large confluent
proliferation centers, i.e., not the equivalent of Richter transformation [38], or may show
differences in proliferative activity and prognosis according to IGH gene homology with a
germline sequence [39]. Likewise, there are specific forms of DLBCL such as the activated
B-like and germinal center B-like subtypes that have distinct morphological, immunohisto-
logical, and genetic characteristics [40]. As a function of the described variations which are
mainly due to distinct molecular changes, it becomes clear that a limited number of cases
and extracted image patches per patient can only display a fraction of the overall possible
morphological spectrum of SLL/CLL and DLBCL, as well as their reactive changes. Our
model was trained to detect only two B-NHLs. Therefore, it cannot be expected that the
algorithm will reliably classify other types of B-NHLs, lymphomas of T-cell origin, or
Hodgkin lymphomas that were not trained in the current study. Moreover, a small number
of tumor cells per image patch may be a limiting factor, and the minimal number of tumor
cells per image patch needed for a reliable result is currently not clear. It is possible that the
misclassification of SLL/CLL patient samples as normal lymph nodes occurred, even when
applying high-quality control thresholds, due to the fact that neoplastic cells represent
only a fraction of the overall image area. Our algorithm showed 100% sensitivity and
specificity for the detection of DLBCL, but slightly lower sensitivity for SLL/CLL. For
screening purposes, it would be desirable to achieve a high sensitivity for lymphoma in
order to avoid false negatives, while specificity is less important if additional investigations
will be performed. Whereas the introduction of quality thresholds reduced the number
of misclassified patients to 3%, the overall problem of lower sensitivity, particularly for
SLL/CLL, remained. Considering the abovementioned statements, the application of deep
learning for NHL classification must always be conducted under the supervision of a
pathologist to avoid misdiagnosis and potentially harmful consequences for patients.

5. Conclusions

In the present study, we trained an efficient CNN architecture on scanned histopatho-
logical slides and showed that the classification of tumor free LNs, SLL/CLL, and DLBCL
is possible with high accuracy. The application of deep learning techniques for histopatho-
logical routine diagnostics should be pursued.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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