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Abstract
Genome graphs can represent genetic variation and sequence uncertainty. Aligning
sequences to genome graphs is key to many applications, including error correction,
genome assembly, and genotyping of variants in a pangenome graph. Yet, so far, this
step is often prohibitively slow. We present GraphAligner, a tool for aligning long reads
to genome graphs. Compared to the state-of-the-art tools, GraphAligner is 13x faster
and uses 3x less memory. When employing GraphAligner for error correction, we find it
to be more than twice as accurate and over 12x faster than extant tools.
Availability: Package manager: https://anaconda.org/bioconda/graphaligner and
source code: https://github.com/maickrau/GraphAligner

Keywords: Genome graphs, Sequence alignment, Pangenome, Error correction, Long
reads

Background
Graphs provide a natural way of expressing variation or uncertainty in a genome [1, 2].
They have been used for diverse applications such as genome assembly [3–5], error cor-
rection [6–8], short tandem repeat genotyping [9], structural variation genotyping [10],
and reference-free haplotype reconstruction [11]. With the growing usage of graphs,
methods for handling graphs efficiently are becoming a crucial requirement for many
applications.
Sequence alignment is one of the most fundamental operations in bioinformatics and

necessary for a wide range of analyses. Aligning a sequence to a sequence is a well-studied
problem with many highly optimized tools [12–15]. In contrast, aligning sequences to
graphs is a newer field and practical tools only start to emerge, where most of the existing
tools are specialized for one purpose such as error correction [6–8], or hybrid genome
assembly [4]. The VG toolkit [16] provides a set of general-purpose tools to work with
genome graphs. Although VG is capable of mapping long reads to graphs, it was tuned for
aligning short reads, leading to slow runtimes for long read alignment. In summary, there
is presently a lack of general-purpose tools for aligning long third-generation sequencing

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-020-02157-2&domain=pdf
http://orcid.org/0000-0003-2971-267X
http://orcid.org/0000-0002-9376-1030
mailto: m_rautiainen@hotmail.com
mailto: tobias.marschall@hhu.de
https://anaconda.org/bioconda/graphaligner
https://github.com/maickrau/GraphAligner
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Rautiainen and Marschall Genome Biology          (2020) 21:253 Page 2 of 28

reads to graphs. Given the wide range of applications, including sequence assembly, error
correction, and variant calling, and the steep decline in prices for long read sequencing,
closing this gap is critical.
Outside of the bioinformatics community, an algorithm for aligning sequences to an

arbitrary graph with unit costs was already discovered in 2000 in the context of hyper-
text searching by Navarro [17]. An important property of Navarro’s algorithm is that the
runtime depends only on the number of nodes and edges and the length of the query
sequence. Thus, complex cyclic graphs are (asymptotically) just as easy as simple linear
graphs of the same size. Recently, it was proven that the runtime of Navarro’s algorithm
is in fact optimal unless the strong exponential time hypothesis is false [18]. In 2002, par-
tial order alignment [19] (POA), a special case of Navarro’s algorithm for acyclic graphs,
was published for multiple sequence alignment. Although POA is defined only for acyclic
graphs, it can be extended to cyclic graphs by unfolding cyclic components, which is the
approach taken by the VG toolkit [16] and ExpansionHunter [9]. The practical efficiency
of this unfolding depends on the read length, and the graph topology and complex cyclic
areas can lead to very large unfolded graphs [20]. V-Align [20] aligns to cyclic graphs,
but its runtime depends on the graph’s feedback vertex set size. Some tools use heuristic
approaches for aligning to de Bruijn graphs using depth-first search [6, 8, 21]. Navarro’s
algorithm has recently been generalized to arbitrary costs as well [22]. Our previous work
[23] combined Navarro’s graph alignment algorithm with Myers’ bit-parallel algorithm
[24], leading to speedups in practice between 5x-20x, but this algorithm is designed to
compute the full dynamic programming table, making it unsuitable for aligning many
reads to a large reference graph.
In contrast, most practical tools use a seed-and-extend strategy. Seeding depends on

finding matches between the read and the graph and necessitates indexing the graph
in some manner. Although asymptotically optimal algorithms for graph alignment are
known, the lower bound for indexing a graph is currently unknown. K-mer-based indices
have been used in many de Bruijn graph alignment tools [6, 21, 25]. The Positional
Burrows-Wheeler transform [26] is a method for indexing multiple sequence alignments
between genomes, which can be viewed as a special class of graph genomes. Indexing vari-
ation graphs is challenging because the number of possible paths can be exponential in
the number of variants encoded. Typical approaches to handle this problem are to index
only some of the variation by limiting the indexed paths either heuristically [16, 27, 28]
or by using panels of known haplotypes [29, 30]. A recent method avoids the exponential
blowup by dynamically indexing the graph and the reads, thereby exploiting that there can
be exponentially many paths in the graphs, but not in the set of reads to be queried [31].

Contributions Here, we provide the first algorithm for banded sequence-to-graph align-
ment that scales to align noisy long reads to de Bruijn graphs of whole human genomes.
We also apply a simple minimizer [32]-based seeding method which exploits the fact that
long reads almost always span simple areas of the genome, unlike short reads which are
more prone to being entirely embedded within a variation-rich area.
We describe our sequence-to-graph long read alignment tool GraphAligner.

GraphAligner is designed to work with arbitrary graphs instead of specializing for one
type of graph. We compare GraphAligner to minimap2 [13] for linear alignment and to
the vg toolkit [16] for aligning to variation graphs. To show how better alignmentmethods
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improve downstream applications, we present a pipeline for error-correcting long reads
based on graph alignment, which we compare to existing methods based on the same
principle. Although using a similar process as existing tools, the better alignment strategy
leads to an order of magnitude speedup and error rates less than half of the current state-
of-the-art for whole human genome data. As another application, we present a simple
genotyping pipeline based on building a pangenome graph and aligning long reads to it.

Results
Comparison to linear aligners

Regular sequence-to-sequence alignment is a special case of sequence-to-graph align-
ment, where the graph consists of a linear chain of nodes. We compare GraphAligner to
a well-optimized sequence-to-sequence aligner, minimap2 [13], in whole human genome
read alignment. We simulated 20x coverage reads from the GRCh38 reference using
pbsim [33] with default parameters. We filtered out reads shorter than 1000 bp and reads
containing any non-ATCG characters. Then, we aligned the reads to the reference using
both minimap2 and GraphAligner. Then, we evaluated the mapping accuracy. We adopt
the criteria used in the minimap2 evaluation [13] and consider a read correctly mapped if
its longest alignment overlaps at least 10% with the genomic position from where it was
simulated.
Table 1 shows the results. GraphAligner and minimap2 both align approximately

as accurately, with minimap2 aligning slightly more reads correctly (95.0% vs 95.1%).
GraphAligner takes about 3× the runtime ofminimap2, which we consider to be amodest
overhead for a tool able to handle graphs in comparison to a highly optimized sequence-
to-sequence mapping tool. Note that minimap2 is faster than commonly used competing
tools, such as BWA-MEM [14], by more than one order of magnitude [13].

Aligning to a graph with variants

In this experiment, we evaluated the mapping accuracy to a graph with variants. We
used the chromosome 22 reference (GRCh37) and all variants in the Thousand Genomes
project phase 3 release [34]. We constructed a variation graph from the reference and
the variants using vg [16], producing a graph of chromosome 22 with 2,212,133 variants,
containing on average one variant every 15 base pairs in the non-telomeric regions (the
variant graph). Then, we simulated reads of varying lengths from the chromosome 22 ref-
erence sequence (GRCh37) using pbsim [33] with the default CLR parameters and aligned
them to the graph with GraphAligner. We consider a read correctly mapped if its longest
alignment overlaps at least 10% with the genomic position from where it was simulated
and evaluate the number of reads correctly aligned. We also aligned the same reads to
the chromosome 22 reference without variants (the linear graph) with GraphAligner to
differentiate between reads which could not be aligned due to variants and reads which
could not be aligned due to other reasons such as short read lengths leading to missed

Table 1 Results of the linear comparison experiment

Aligner Reads correctly aligned CPU-time (HH:mm:ss) Peak memory (Gb)

minimap2 95.1% 44:26:58 20.0

GraphAligner 95.0% 127:16:34 72.1

Simulated reads were aligned to the GRCh38 reference genome with minimap2 and GraphAligner
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Fig. 1 Fraction of reads correctly aligned at varying read lengths for the variant graph and the linear graph.
Left: reads simulated from the GRCh37 reference. Right: reads simulated from de novo assembled contigs of
HG00733

seeds. In addition to the reads simulated from the reference, we also simulated reads from
de novo diploid assembled chromosome 22 contigs of the individual HG00733 [35]. This
was done to test alignment accuracy on reads with realistic variants.
Figure 1 shows the results. The left part of the figure shows alignment accuracy for the

reference simulated reads. For comparison purposes, the blue curve represents the results
from mapping reads simulated from GRCh37 back to the (linear) reference genome and
hence indicate the performance that can be achieved in an idealized setting. When align-
ing to the variant graph, 95% of the reference simulated reads are correctly aligned once
read length grows above 1200 base pairs. At 1500 base pairs, 97.0% of the reads are cor-
rectly aligned to the variant graph. The right part of Fig. 1 shows the accuracy for reads
simulated from de novo assembled contigs. Expectedly, the alignment accuracy for reads
simulated from contigs is worse than for reads simulated from the reference (GRCh37)
when aligning to the linear reference, but similar when aligning to the graph with vari-
ants. The results show that GraphAligner is capable of aligning long reads accurately to a
variation-rich graph.

Comparison to vg

In this experiment, we compared GraphAligner and vg [16] for aligning long reads. We
used the graph from the previous experiment containing the chromosome 22 reference
and all variants in the Thousand Genomes project phase 3 release [34]. We simulated
reads from the chromosome 22 reference using pbsim [33] with default parameters. Then,
we aligned the simulated reads to the graph using GraphAligner and vg.
Table 2 shows the results. GraphAligner aligned 96.6% of reads correctly, which is con-

sistent with the results of the variation graph experiment. In contrast, vg aligned 93.8% of

Table 2 Results of the comparison to vg

Aligner Reads correctly aligned CPU-time (HH:mm:ss) Peak memory (Gb)

vg index – 1:07:44 12.1

vg map 93.8% 3:13:15 4.1

GraphAligner 96.6% 0:19:30 3.6

Simulated reads were aligned to a chromosome 22 variation graph using both GraphAligner and vg
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reads into the correct genomic region. However, we found that some of the alignments by
vg were not consistent with graph topology, that is, the alignment traversed through nodes
which are not connected by an edge. In some cases, the alignment “looped back” into the
same reference area multiple times and even covered both alleles of a variant (Additional
file 1: Figure S2). We did not evaluate howmany of vg’s alignments were inconsistent with
graph topology. GraphAligner’s runtime and peak memory includes both indexing and
alignment. Despite including the indexing phase, we see that GraphAligner is almost ten
times faster than vg’s mapping phase.When including vg’s indexing as well, GraphAligner
is over thirteen times faster than vg. Peak memory use is three times smaller.

Variant genotyping

We implemented a simple variant genotyping pipeline for long reads. First, a list of refer-
ence variants and a reference genome are used to build a pangenome graph using vg [16].
Then, long reads are aligned to the pangenome graph with GraphAligner. Finally, vg is
used to genotype the variants according to the long read alignments.
We tested our variant genotyping pipeline using 35x coverage PacBio hifi reads from

the individual HG002 [36], using the Genome in a Bottle (GIAB) benchmarking variant
set version 3.3.2 for GRCh38 [37] as the ground truth. We tested three different scenar-
ios: first, an ideal scenario where we use the variants in the GIAB variant set to build the
graph; second, a more realistic scenario where we used variants from a different source,
using the variant set by Lowy-Gallego et al. [38] called from the GRCh38 genome using
the data from phase 3 of the Thousand Genomes Project (1000G) to build the graph; and
third, using the variants from 1000G to build the graph but only evaluating the accuracy
on variants which occur in both the 1000G and the GIAB variant set (1000G+GIAB). The
reason for using the three different scenarios is that the genotyping pipeline cannot call
novel variants; instead, it only genotypes variants which are already in the list of reference
variants. This separates errors caused by the pangenome approach, and errors caused
by imperfect reference variant set; the GIAB scenario will show how the pipeline would
behave if the reference variant set was perfect, while the 1000G scenario will show the
performance with a realistic, imperfect reference variant set and the 1000G+GIAB sce-
nario will show the performance in a realistic setting for those variants that the pipeline
could in principle genotype.
We evaluated the genotyping accuracy using RTG Tools vcfeval [39], which computes

precision and recall for all variants, SNPs only and non-SNPs only. vg produces a confi-
dence for each variant, and the evaluation produces a precision-recall curve for different
confidence thresholds. We selected the threshold with the highest F-measure and report
the precision and recall for that threshold. We evaluated the results in the Genome in a
Bottle high confidence regions from all chromosomes in each scenario.
Table 3 shows the results. The genotyping accuracy is high in the GIAB scenario, but

lower in the 1000G scenario. This shows that the choice of variant set affects the accuracy
noticably with the F-measure dropping from 0.985 to 0.930. However, when excluding
variants that the pipeline could not genotype even in principle, the F-measure is 0.970.
This shows that a large part of the missing recall in the 1000G scenario is from variants
that are not included in the reference variant set.
Although previous publications [36] have shown performance exceeding the results in

Table 3, the genotyping experiment shows an example use case for GraphAligner. The
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Table 3 Results of the variant genotyping experiment

Scenario Variants Precision Recall F-measure

GIAB All 0.9929 0.9774 0.9851

SNP 0.9994 0.9840 0.9916

Non-SNP 0.9518 0.9353 0.9435

1000G All 0.9694 0.8806 0.9229

SNP 0.9806 0.9352 0.9574

Non-SNP 0.8462 0.5417 0.6606

1000G+GIAB All 0.9685 0.9712 0.9699

SNP 0.9801 0.9797 0.9799

Non-SNP 0.8556 0.8893 0.8721

major limitation of the pipeline is that it cannot call novel variants, instead only genotyp-
ing known variants. We did not try varying the parameters of vg’s genotyping module or
otherwise adjusting the genotyping process, which is tuned for short read genotyping and
may not be optimal for long reads.

Error correction

We have implemented a hybrid error correction pipeline based on sequence-to-graph
alignment. Aligning reads to a de Bruijn graph (DBG) is a method of error correcting long
reads from short reads [6, 7]. The idea is to build a DBG from the short reads and then
find the best alignment between the long read and a path in the DBG. The sequence of
the path can then be used as the corrected long read.
Zhang et al. [40] performed an evaluation of 16 different error correction methods.

Based on their results, we chose FMLRC [8] as a fast and accurate hybrid error corrector
for comparison. We also compare to LoRDEC [6] since our pipeline uses the same overall
idea.
LoRDEC [6] builds a de Bruijn graph from the short reads, then aligns the long reads

to it using a depth-first search and uses the path sequence as the corrected read. FMLRC
[8] also aligns the reads to a graph, except instead of building one de Bruijn graph; it uses
an FM-index which can represent all de Bruijn graphs and dynamically vary the k-mer
size. FMLRC then corrects the reads in two passes, using different k-mer sizes. Our error
correction pipeline is similar to LoRDEC. Figure 2 shows the pipeline.We first self-correct
the Illumina reads using Lighter [41], then build the de Bruijn graph using BCalm2 [42],
align the long reads using GraphAligner with default parameters, and finally extract the
path as the corrected read.

Fig. 2 Overview of the error correction pipeline. The circles represent data and the rectangles programs
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Due to fluctuations and biases of Illumina coverage, some genomic areas are impossi-
ble to correct with short reads even in principle. Our pipeline has two modes: either we
output the full reads, keeping uncorrected areas as is; or clipped reads, which remove
the uncorrected areas and split the read into multiple corrected sub-reads, if needed.
In the results, we present the full reads as “GraphAligner,” and the clipped reads as
“GraphAligner-clip.” We similarly report “LoRDEC” as full reads and “LoRDEC-clip” as
clipped reads. FMLRC does not offer an option to clip the reads, so we report only the full
reads.
To evaluate the results, we use the evaluation methodology from Zhang et al. [40]. The

long reads are first corrected, and then, the evaluation pipeline is run for both the raw
reads and the corrected reads. The first step of the evaluation is removing reads shorter
than 500 bp. Note that the reads are removed during the evaluation step, that is, they are
corrected in the initial correction step and different reads may be removed in the uncor-
rected and corrected sets. After this, the remaining reads are aligned to the reference
genome. The alignment yields several quality metrics, including number of aligned reads
and base pairs, read N50, error rate, and genomic coverage. Here, we report error rate as
given by samtools stats instead of alignment identity. Resource consumption is measured
from CPU time and peak memory use.We use the E. coli Illumina+PacBio dataset (E. coli,
called D1-P + D1-I by Zhang et al.) and theD. melanogaster Illumina+ONT dataset (Fruit
fly, called D3-O + D3-I by Zhang et al.) from Zhang et al. [40]. In addition, we use whole
human genome PacBio Sequel1 and Illumina2 data fromHG00733, randomly subsampled
to 15x coverage for PacBio and 30x for Illumina. We use the diploid assembly from [43]
as the ground truth to evaluate against for HG00733. We did not include LoRDEC in the
fruit fly or HG00733 experiments as the results in [40] show that FMLRC outperforms
it in both speed and accuracy. Although we use the same evaluation method, our results
are slightly different. This is due to two factors: First, Zhang et al. use LoRDEC version
0.8 with the default parameters, while we use version 0.9 with the parameters suggested
for E. coli in the LoRDEC paper [6]. Second, Zhang et al. use FMLRC version 0.1.2 and
construct the BWTwith msBWT [44], while we use version 1.0.0 and construct the BWT
with RopeBWT2 [45] as recommended by the FMLRC documentation.
Table 4 shows the results. The amount of aligned sequence is similar in all cases. For the

PacBio data sets, the amount of corrected sequence is lower than the uncorrected input
sequence, while for ONT, the amount of corrected sequence increases during correction.
This is consistent with the observation that insertion errors are more common than dele-
tions in PacBio and vice versa for ONT [47]. The number of reads is noticeably higher,
and the N50 is lower for the clipped modes for both LoRDEC and GraphAligner, showing
that most reads contain uncorrected areas and clipping the reads reduces read contiguity.
In addition, the fruit fly and human experiments show that clipping the reads significantly
reduces the genome fraction covered by the reads. The clipping is more pronounced in
the more complex genomes, with the reads in the whole human genome dataset being
on average cut into four pieces, around 4% of the genome lost due to clipping and a
large reduction in read N50. We see that GraphAligner is about 30x faster and 2.7x more
accurate than LoRDEC for E. coli. GraphAligner is over four times faster than FMLRC
in all datasets. When not clipping reads, GraphAligner’s error rate is slightly worse then

1SRA accession SRX4480530
2SRA accessions ERR899724, ERR899725, ERR899726
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Table 4 Results of the error correction experiment

Dataset Method # Reads Bases
(Mbp)

Aligned
reads (%)

Aligned
bases (%)

N50
(bp)

Genome
fraction (%)

Error
rate (%)

CPU time
(hh:mm:ss)

Peak
memory
(GB)

E. coli Original 85460 748.0 97.0 92.0 13990 100 13.1237 - -

PacBio LoRDEC 85316 716.5 97.9 92.9 13484 100 1.3902 10:11:28 5.0

LoRDEC-clip 129754 654.5 99.9 99.8 8206 100 0.0881 10:11:28 5.0

FMRLC 85260 706.5 97.7 94.8 13364 100 0.3016 4:16:43 2.6

GraphAligner 85271 710.7 97.7 93.9 13411 100 0.5057 0:23:08 5.8

GraphAligner-
clip

91909 673.9 99.9 99.8 12146 100 0.0240 0:23:08 5.8

Fruit fly Original 642255 4609.5 84.4 82.5 11956 98.77 16.1650 - -

ONT FMRLC 641956 4646.9 89.6 85.1 12087 98.62 2.3250 65:17:52 9.2

GraphAligner 640548 4653.7 90.7 85.6 12109 98.63 1.2433 15:12:30 11.9

GraphAligner-
clip

762073 4188.3 99.3 94.7 8698 97.86 0.7087 15:12:30 11.9

HG00733 Original 2394990 48801.0 95.6 92.8 33109 95.27 13.5384 - -

PacBio FMRLC 2392533 48229.9 98.3 92.7 32823 95.19 7.1210 2222:13:44 234.5

GraphAligner 2390656 48216.2 98.1 94.6 32879 94.89 3.3510 174:54:13 76.7

GraphAligner-
clip

8252956 42292.0 99.8 98.3 7973 91.91 1.3503 174:54:13 76.7

Reads shorter than 500 base pairs are discarded. The remaining reads were aligned to the reference using minimap2 [13], and the
statistics were given by samtools [46] stats, except N50 which is calculated by a script from Zhang et al. [40] and resource use
which are measured by “/usr/bin/time -v”

FMLRC for E. coli (0.51% vs. 0.30%), but substantially better forD. melanogaster (1.2% vs.
2.3%) and human (3.4% vs. 7.1%). For the human genome HG00733, GraphAligner hence
produces over two times better error rates while the runtime is over twelve times faster.
Our pipeline is a large improvement in runtime over the state-of-the-art. The error rates

are competitive for simpler genomes and significantly better for more complex genomes.
We hypothesize that the two-pass method used by FMLRC can in principle enable bet-
ter correction than a single k-mer size graph, but FMLRC’s performance with the larger
genomes is limited by their alignment method, while GraphAligner can handle the more
complex genomes. When using the clipped mode, that is, when only considering parts
of the reads that have been corrected, the accuracy in the corrected areas can approach
or exceed the accuracy of short reads. This emphasizes the value of this clipped mode
to users. The main source of errors are in fact uncorrected areas without sufficient short
read coverage.

Discussion
We have presented GraphAligner, a tool for aligning long reads to sequence graphs.
Although GraphAligner is designed for graphs, it can also align to trivial linear graphs.
Despite being slower than the highly optimized minimap2 tool, it is still faster than widely
used linear mappers such as bwa [14]. In non-trivial variation graphs, GraphAligner
outperforms vg by a factor of 13 in runtime.
GraphAligner is presently geared towards aligning long reads, which was our focus due

to the absence of methods for this. The results in “Aligning to a graph with variants”
section show that although GraphAligner can accurately align long reads in graphs con-
taining large amounts of variation, the current seeding strategy can systematically fail to
handle short reads in variation-dense regions. However, the core algorithmic components
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of GraphAligner could likely be used to also align short reads. To this end, we plan to inte-
grate GraphAligner with PSI [31], a novel seeding approach that we developed recently to
facilitate efficient and full-sensitivity seed finding across node boundaries.
As sequence alignment is a very fundamental operation and long reads are rapidly

becoming more affordable to produce, we anticipate that GraphAligner will be used
widely and will improve the performance and runtime of many downstream applications.
Here, we have shown one example of this with our error correction experiment, where
our pipeline improves on the state of the art and enables correcting long reads in mam-
malian scale genomes to high accuracy. It would be possible to combine GraphAligner’s
alignment with the FM-index-based graph as used by FMLRC, which might yield an error
correction pipeline as fast as andmore accurate than our current results, which is an inter-
esting avenue for future developments. We have also shown an example use case of using
GraphAligner and vg for genotyping with long reads. The genotyping pipeline uses the vg
genotyping module which is tuned for short reads. Adjusting the genotyping method to
optimize the performance for long readsmight be an another interesting avenue for future
development. Other applications such as graph-based hybrid genome assembly also align
reads to a graph, either explicitly [4] or by reducing the problem to sequence-to-sequence
alignment [5]. It is likely that improved alignment methods will lead to improved results
here as well, and we are currently investigating this further. In recent work, GraphAligner
has also been employed for mapping long-read RNA-seq data to splice graphs [48], high-
lighting the breadth of possible use cases. Lastly, GraphAligner might enable scaling the
haplotype-resolved genome assembly method that we demonstrated for yeast genomes
[11] to mammalian genomes.

Conclusions
We have implemented the sequence-to-graph alignment tool GraphAligner. As genome
graphs become more common, efficient methods for aligning reads to genome graphs
become more important. GraphAligner is able to work with a wide range of graphs,
including graphs with overlapping as well as non-overlapping node sequences, and
accepts GFA as well as vg graph formats. GraphAligner is competitive with well-
optimized linear aligners when aligning to a linear genome, and outperforms existing
graph alignment tools 13x in runtime. We have implemented a long read error correction
pipeline using GraphAligner and showed that the method outperforms the current state-
of-the-art, with a more than 2x improvement in error rate and over 12x improvement in
runtime for whole human genomes.

Methods
Figure 3 shows an overview of GraphAligner. One IO thread reads sequences, which are
passed to an arbitrary number of worker threads. Each worker thread aligns reads one
at a time. The alignment algorithm uses a seed-and-extend method. Seeds are found by
matching the read with the node sequences and then extended independently of each oth-
ers with a bit-parallel banded dynamic programming algorithm. Finally, the primary and
supplementary alignments are selected and passed to a second IO thread, which writes
the results to a file.
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Fig. 3 Overview of GraphAligner. Reads are aligned independently of the other reads. Seed hits are found by
matching the sequence of the read to sequences inside nodes (small blue and green bars). Seed hits are
clustered in locally acyclic parts of the graph and scored. Seed hits are then extended (small dotted boxes)
with a banded dynamic programming algorithm, using Viterbi’s algorithm to decide when to clip the
alignment (red X). Each seed hit can result in an alignment (blue and green paths). Alignments that overlap
with an another, longer alignment in the query sequence are classified as secondary. Secondary alignments
are discarded by default (red X) but can be included in the output with an optional parameter. The output is
then written to a file either as alignments or corrected reads

Data formats

WedesignedGraphAligner to use themost common file formats, and specifically be inter-
operable with vg [16] to leverage existing graph-based operations and pipelines. Graphs
are inputted either in the binary vg graph format [16] or the human-readable graphical
fragment assembly (gfa) format [49]. By allowing gfa, GraphAligner is moreover able to
handle graphs with exact overlapping node labels, which is presently not supported by
the vg file format, representing for example de Bruijn graphs. Reads are inputted in fasta
or fastq and optionally gzip-compressed. Alignments are outputed in vg’s binary gam for-
mat, a generalization of SAM/BAM format [46] to graphs, and its equivalent text-based
JSON format. Alignments can also be outputed in the GAF format [50], a generalization
of minimap’s PAF format [49] to graphs.
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Graphmodel

GraphAligner inputs bidirected graphs [51, 52], which are capable of representing genome
graphs commonly used in bioinformatics, including de Bruijn graphs [42, 53], assembly
graphs [3, 54, 55], pangenomes [1], and variation graphs [2, 16]. Bidirected graphs model
the double-stranded nature of DNA. The sequence is stored in the nodes, which can be
traversed in two directions; either left to right (forward) with the node label or right to left
(backward) with the reverse complement of the label. We notate a traversal’s orientation
as + for the forward traversal and − for the backward traversal. The edges connect to
either the left end or the right end of a node. A path through a bidirected graph enters a
node from one end, traverses through the node, and then leaves via an edge in the opposite
end. Formally, a bidirected graph can be defined as aGb = {Vb,Eb ⊆ (Vb ×{+,−}×Vb ×
{+,−} × N), σb : Vb → �n}, where Vb is the set of nodes, Eb contains a set of bidirected
edges connecting ends of two nodes with an overlap, and σb is a function assigning a node
label to each node in Vb. We define the opposite of an orientation as +̄ = − and −̄ = +.
A bidirected edge (v1, o1, v2, o2, n) is equivalent to (v2, ō2, v1, ō1, n), and we define that the
set Eb contains both equivalent edges if the input graph contains either of them. We use
the notation s̄ to mark the reverse complement of a string s = �n.
The bidirected graph is first converted into a directed node-labeled graph which we call

the alignment graph. The alignment graph is defined as a directed graph Ga = (Va,Ea ⊆
(Va ×Va), σa = Va → �n), where Va is the set of nodes, Ea is a set of directed edges, and
σa assigns a node label to each node in Va.
The bidirected graph allows an overlap between edges, representing for example over-

lapping k−1-mers of a de Bruijn graph, or the read overlap in an assembly graph. Here, we
consider the edges to be labeled by the number of overlapping nucleotides. When travers-
ing via an edge with an overlap of n nucleotides, the path must skip the first n nucleotides
of the target node. The overlaps can also vary between edges. Edge overlaps are handled
by chopping the node into pieces at each overlap boundary. The alignment graph then has
edges connecting the end of a node to the chopped boundary of the neighbor. This allows
a path that ends at one node to enter the neighboring node without traversing the overlap
twice. Figure 4 shows an example of the edge chopping for edges with variable overlaps.
Formally, given a bidirected node v and a set of incoming left edges E+ =

{(u1, {+,−}, v,+,m1), (u2, {+,−}, v,+,m2), ...}, we define a set of forward breakpoints
B+
v = {0,m1,m2, ..., |σb(v)|}, and given the set of incoming right edges E− =

{(u1, {+,−}, v,−,m1), (u2, {+,−}, v,−,m2), ...} define a set of backward breakpoints B−
v =

{0,m1,m2, ..., |σb(v)|}. We also define a function f : (Vb, o ∈ {+,−},Bo
v) → Va which

assigns each tuple of bidirected node, orientation, and breakpoint position (except |σb(v)|)
to one alignment graph node. Given the sorted sets of breakpoints, each successive
pair of forward breakpoints m,m′ ∈ B+

v causes a node to be inserted to the alignment
graph with the label σa(f (v,+,m)) = σb(v)[m,m′) representing the forward traversal,
and each successive pair of backward breakpoints m,m′ ∈ V−

v adds one node with the
label σa(f (v,−,m)) = ¯σb(v)[m,m′) representing the backward traversal. We also add
edges from f (v,+,m) to f (v,+,m′) and from f (v,−,m) to f (v,−,m′). Then, each bidi-
rected edge e = (v1, o1, v2, o2,m) adds two edges to the alignment graph: one from
f (v1, o1, |σb(v1)|) to f (v2, o2,m) and another from f (v2, ō2, |σb(v2)|) to f (v1, ō1,m). In addi-
tion to the breakpoints added by the edges, we also add a breakpoint every 64 base pairs
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Fig. 4 Converting a bidirected graph with variable edge overlaps to an alignment graph. Top: a bidirected
graph with three nodes. The edges are labeled by their overlap. The red-colored bars represent the same
sequence, which should not be duplicated during traversal. Similarly, the orange-colored bars represent the
same sequence. Bottom: the alignment graph created from the top graph. The colors of the base pairs show
how they match between the two graphs, with each sequence in the original graph represented by the
same color in the alignment graph twice, once for the forward strand and once for the reverse complement.
Similarly to the bidirected graph, the red and orange bars represent the same sequences. There are two
subgraphs, one representing the forward traversal (top) and one the backward traversal (bottom) with
reverse complemented node labels. Each edge introduces a breakpoint in the target node, splitting the node
at the boundary of the overlap. The alignment graph then connects the ends of the overlap such that the
overlapping sequence is only traversed once

to each node because this makes it easier to encode the alignment graph node sequences
using 64-bit words.
A node in the bidirected graph with l nucleotides adds 2� l

64� nodes to the alignment
graph, � l

64� for the forward traversal, and � l
64� for the backward traversal, and each edge

can split up to two nodes and add up to four edges in the alignment graph. The number
of nucleotides in the alignment graph is exactly twice the number of nucleotides in the
bidirected graph. Therefore, the transformation produces an alignment graph whose size
is within a constant factor of the bidirected graph.
During conversion, we also construct a mapping between the bidirected graph and the

alignment graph. The mapping contains arrays N : Va → Vb, describing for each node in
the alignment graph which node in the bidirected graph it was created from; O : Va → N

describing the alignment graph node’s offset within the bidirected node; and D : Va →
{+,−} describing the orientation of the alignment graph node within the bidirected node.
Using these arrays, we define a function pos : (Va,N) → (Vb,N, {+,−}) which maps
each base pair (encoded as a node and offset) in the alignment graph to a base pair and
orientation in the bidirected graph as

pos(v, o) =
{

(N[ v] ,O[ v]+o,D[ v] ) if D[ v]= +
(N[ v] , |σ(N[ v] )| − (O[ v]+o) − 1,D[ v] ) if D[ v]= −
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Additionally, we store an array A : Vb → (Vn
a ,Vn

a ), mapping each bidirected node to
the pair of alignment graph nodes which represent its forward and backward traversals.
Taken together, the tables described above define a bijection between base pairs in

the alignment graph, and combinations of a base pair and orientation in the bidirected
graph, enabling positions to be unambiguously converted between the two graph repre-
sentations. Given the two graphs and the mapping, GraphAligner aligns the read to the
alignment graph and then converts the alignment back into the bidirected graph.
Both the read and the graph are allowed to contain ambiguous nucleotides (B, R, N,

etc.) The alignment extension considers two ambiguous nucleotides a match if any of the
possible nucleotides match; e.g., R (A or G) matches W (A or T) because both of them
could be A, but R (A or G) does not match Y (C or T) because there is no overlap. Only
the non-ambiguous characters A, T, C, and G are used for seeding.

Seed hit finding

The first part of the seed-and-extend algorithm is finding seed hits. Here, we define seeds
as exact matches between a read and a node sequence, but other definitions exist in the
literature. Methods for finding exact matches between a read and paths in a graph have
been developed [27–29, 31]. GraphAligner uses a simple method for transforming text
matching in graphs to text matching in strings. Instead of matching reads to paths in the
graph, reads are matched to node sequences in the graph. The nodes can be treated as
a collection of strings which enables using efficient string matching algorithms. Reverse
complement matches are also allowed. Figure 5 shows an example of matching a read to
nodes in a graph. Note that we use the node sequences from the original bidirected graph,
not from the directed alignment graph. The matching position is then converted from the
bidirected graph to the alignment graph.
This approach finds only seed hits which are entirely contained in a node. For the spe-

cial case of de Bruijn graphs, we hence find hits of length up to k due to the overlap
between the nodes. However, in general, it misses seeds which cross a node boundary. As
the results of the experiment in “Aligning to a graph with variants” section show, this is
not an important limitation for long reads in practice, because long reads almost always
touch linear parts of the graph, which usually leads to at least one seed hit.

Fig. 5 Seeding. Top: A graph with four nodes. Middle: The node sequences are extracted from the nodes.
The arrows represent a mapping between the strings and nodes. Bottom: A read. Highlighted in red: Matches
between the read and a string are converted into a match inside a node using the mapping
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GraphAligner’s default method for finding matches is by usingminimizers [32]. A win-
dow of w base pairs is slid through the text and the smallest k-mers of each window
according to a hash function are picked as the minimizers.
Building the minimizer index from a graph is multithreaded. Given n threads, each

thread picks nodes one at a time and finds the minimizers in that node. The minimizers
store the k-mer, the node ID, and the position within the node. The threads divide the
minimizers into n buckets, implemented as parallel queues, based on the modulo of their
k-mer. After all nodes have been processed, each thread picks one bucket and builds a
bucket index from it. The minimizers in the bucket are first sorted based on their k-mer.
Then, a bitvector representing different k-mers is built. The bitvector is set at indices
where the current k-mer is different from the previous k-mer. A rank-select structure
is built from the bitvector. Then, a minimal perfect hash function [56] is built to assign
each k-mers to the rank of the first k-mer in the bitvector. Figure 6 shows the pipeline
for indexing a graph. The most frequent fraction x of minimizers is not used for seeding,
with default x = 0.02%.
To query a k-mer, first the appropriate bucket index is found using the modulo of the

k-mer. Then, the minimal perfect hash function is used to query the rank of the k-mer.
The rank-select structure is then used to find the index in the sorted array where the k-
mer is stored. Since the minimal perfect hash function can produce false positive hits for
k-mers which were not used in constructing it [56], existence of the k-mer is verified by
checking that the stored k-mer is equal to the queried k-mer. The number of occurrences
of the k-mer can be checked in constant time by querying the index of the next-ranked
bit. To retrieve the positions, the sorted k-mer array is iterated at the appropriate range.
The index is implemented with succinct data structures from the SDSL library [57] and
minimal perfect hashing from BBHash [56].
When finding seed hits, first a maximum number of seeds is calculated using a seed

density parameter d. All k-mers of the read are queried to find matches and their frequen-
cies. Given a read of length l and the seed density parameter d, only the least frequent ld
minimizer hits are kept. In case of ties, all minimizers with frequency equal to the ld’th
minimizer are kept.
The default values use k = 19, w = 30, d = 5. These values are tuned for aligning

reads to de Bruijn graphs with k = 63. We have noticed that good parameters for align-
ing reads to a de Bruijn graph lead to poor alignment quality on variation graphs, and
good parameters on variation graphs lead to high runtimes on de Bruijn graphs without
improving alignment quality. For variation graphs, we instead recommend the parameters
k = 15, w = 20, d = 10, which are the parameters used in the linear comparison exper-
iment, variant graph experiment, and comparison to vg experiment. We have observed
that the shorter k-mer size improves seed clustering in variation graphs, while provid-
ing no improvement in de Bruijn graphs. We hypothesize that this is due to the chains of
bubbles in de Bruijn graphs being too short for seed clustering to provide large improve-
ments. Even shorter k-mer sizes did not lead to improved alignment accuracy in variation
graphs. Shorter k-mer sizes also increase runtime due to more seeds being processed.
In addition to the built-in seeding methods, seeds can be inputted from a file, allowing

an arbitrary external method to be used for seeding. The seeds must then be provided in
GAM format [16], containing a position in the read, a position in the graph, and a match
length.
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Fig. 6 Building a minimizer index from a graph. Only the nodes of the graph are considered when building
the index, and edges are ignored. Each node has an ID and a sequence. At the start, all nodes are labeled as
unprocessed. Threads pick nodes one at a time from the pool of unprocessed nodes, and find minimizers in
the node sequence. Then, the threads distribute the minimizers into buckets according to the modulo of
their k-mer. Once all nodes have been processed, the threads proceed to index the buckets. Each thread
picks one bucket and indexes it into a bucket index. The bucket index contains an array of the minimizers in
that bucket sorted by the k-mer, a bitvector representing indices where a k-mer is different from the previous
one, and a minimal perfect hash function which assigns each k-mer to the rank of the bit which represents
the first instance of that k-mer in the sorted array

Finally, GraphAligner has a mode for aligning without seeds. In this case, the extension
algorithm is initialized with the entire first row of the dynamic programming table being
considered and then proceeding as usual (see later sections for details). In this way, the
alignment algorithm would implicitly scan the whole graph. The runtime is dependent on
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the graph size, so this mode is only practical for graphs up to a few million base pairs in
size.

Seed hit clustering

Typical alignment approaches [13] chain seeds to find the approximate position of the
alignments. For linear sequences, seed chaining is solved with the co-linear chaining prob-
lem that exploits the fact that calculating the distance between seeds in a linear sequence
is trivial. However, for graphs, the distance between seeds can be ambiguous as there are
multiple paths connecting the seeds, and finding the distance in a graph is computation-
ally more expensive than in a linear sequence [58]. GraphAligner clusters seed hits within
acyclic subgraphs called chains of superbubbles.
A superbubble [59] is an induced acyclic subgraph with one unique entrance node, one

unique exit node, and some amount, possibly zero, of internal nodes. All nodes in the
superbubble are reachable from the entrance node, and all nodes reach the exit node.
A superbubble must contain no edges from an internal node to a node outside of the
superbubble or edges from outside the superbubble to an internal node. Superbubbles
are defined only by the graph topology, and the node labels are irrelevant. Figure 7 shows
examples of superbubbles. We use the algorithm fromOnodera et al. [59] to detect super-
bubbles. Note that the superbubbles are found from the directed alignment graph, not
from the original bidirected graph.
Given two superbubbles, we say that they belong in the same chain if the end node of

one superbubble is also the start node of the other. Superbubbles may be chained this
way to longer chains, and we say that they form a chain of superbubbles. In addition
to superbubbles, we treat tips and small cycles as special cases that are included in the
chain of superbubbles. An important property of a chain of superbubbles is that they
induce an acyclic subgraph. The nodes can therefore be assigned linearized positions.
GraphAligner arbitrarily picks one node in the chain of bubbles as the start node and then
performs a breadth-first search along the chain to assign a linear position to each node.
The pseudocode for the linearization is in Algorithm 1.
Given a chain of superbubbles, we can assign all seed hits in the chain a linear position.

A position at offset o of node v is assigned a linearized position D[ v]+o. Then, chaining
algorithms for linear sequence alignment can be used for chaining the seed hits. We use

Fig. 7 A chain of superbubbles containing three superbubbles. The solid circles are nodes connected by
directed edges. The dashed circles show the three superbubbles. The three superbubbles start and end at A
and B, B and C, and C and D, respectively. The three superbubbles form one chain of superbubbles since they
share start and end nodes
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Algorithm 1 Assigning linear positions to nodes in a chain of superbubbles
1: Input: an alignment graph (V ,E, σ) and a set of nodes C
2: Output: array D with the linearized distance for each node in C
3: set all nodes in C as unvisited
4: S ← an empty stack
5: S.push(an arbitrary node from C, 0)
6: while S is not empty do
7: (v, x) ← S.pop() 	 x is the linearized distance
8: if v has been visited or v /∈ C then
9: continue

10: D[ v]← x
11: set v to visited
12: for u : (v,u) ∈ E do 	 out-neighbors of v
13: S.push(u, x + (|σu|))
14: for u : (u, v) ∈ E do 	 in-neighbors of v
15: S.push(u, x − (|σv|))

the seed clustering algorithm fromminimap [49], not to be confused with the seed chain-
ing algorithm from minimap2 [13], to assign seed hits to clusters. Here, we briefly recap
the seed clustering algorithm from minimap. Given a seed hit with position r in the read
and a linearized position b in the chain of superbubbles, define the diagonal position of
the seed hit as d = r − b. Then, two seeds in the same chain of superbubbles whose diag-
onal positions d1 and d2 are within a cutoff c = 100, that is, |d1 − d2| ≤ c, are connected
together. The transitive closure of the connected seeds is the cluster.
Then, seed hits are scored according to their cluster size and uniqueness, with matches

that occur fewer times in the graph weighted higher. Given a seed hit whose sequence
occurs x times in the graph, and a maximum occurrence m, the unclustered score of the
seed hit i is s′i = m − x. Then, given a cluster C, we calculate the number of base pairs in
the read covered by at least one seed cC . The score of a seed hit that belongs in cluster C
will then be si = s′i + cC .
The seed hits are ordered based on their clustered scores and extended from best scor-

ing to worst scoring. Since the seed hits are not clustered arbitrarily across the graph,
but only in simple subgraphs, the seed hit clustering is not used for limiting the paths
explored or deciding when to end the alignment. The alignment algorithm used for
the extension step instead decides which paths to explore and when to end the align-
ment (detailed in the “Extension”, “Bit-parallel operations”, “Banded alignment on graphs”,
“Storing a partial DP matrix”, and “Partial alignments” sections). Seeds included in
alignments from previously explored seeds are skipped.
Finally, a seed extension density e parameter is used for choosing how many seed hits to

extend. Given a read of length l and the extension density parameter e, seeds are extended
starting from the highest scoring seed until le seed hits have been extended, with ties also
extended. Seeds which are skipped due to being included in a previous alignment do not
count against this limit. This filter is applied after the seed hits have been clustered and
scored. The default values for e is e = 0.002 for de Bruijn graphs and e = 1 for variation
graphs.
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Extension

GraphAligner uses a dynamic programming (DP) algorithm to extend the seeds. The
starting point of the DP is the well known Needleman-Wunsch algorithm for sequence
alignment [60]. This algorithm has been generalized to sequence-to-graph alignment by
Navarro [17]. In a previous work [23], we further generalized Myers’ bit-parallel method
[24] to sequence-to-graph alignment to improve the runtime.
In short, the algorithm calculates a DP matrix whose scores describe the edit distance

of an alignment ending at a specific position in the read and a specific position in the
graph. The calculation proceeds in a sliced manner, first calculating a horizontal slice of
the topmost 64 rows, then calculating the next topmost slice and so on. For details on
how to calculate the DP matrix for graphs in a bit-parallel manner, we refer the reader
to [23]. In the following, focus on describing the extensions over this previous work that
were necessary to make GraphAligner scale to large graphs: first, a faster algorithm for
merging bitvectors; second, how to apply banded alignment [61] to graphs, reducing the
area in the DP matrix which needs to be calculated and greatly reducing runtime and
memory use; and third, how to efficiently store a partial DP matrix of a graph.

Bit-parallel operations

The DP extension algorithm requires merging bitvectors at nodes with an in-degree of at
least two. In our previous work [23], we described anO(logw) algorithm for merging two
w-bit sized bitvectors. We have refined this operation further and created an algorithm
which is much faster in practice but with a theoretically slower runtime of O(w). In prac-
tice, the O(w) algorithm takes on average around 50 instructions per merge, while the
O(logw) algorithm takes on average around 300 instructions per merge for 64-bit bitvec-
tors. The code and detailed explanation of the merging algorithm is Additional file 1:
Section A.

Banded alignment on graphs

In sequence-to-sequence alignment, banded alignment [61, 62] is a technique for speed-
ing up the alignment while guaranteeing that the optimal alignment is still found as long
as the number of errors is small. The idea is that given a start position of the alignment
and a maximum edit distance, a diagonal parallelogram is selected, and the DP matrix is
calculated only inside the parallelogram [62]. Formally, given a banding parameter b and
a start column p, a cell at row x and column y is calculated if |x + y − p| ≤ b. The width
of the parallelogram is 2b, and the optimal alignment is guaranteed to be found if it has
at most b errors. The runtime of the alignment is now O(nb) where n is the length of the
query sequence. The runtime no longer depends on the size of the reference, leading to a
large speedup.
The parallelogram technique cannot be used in graphs due to the non-linear structure.

At each fork, the parallelogram should continue to both paths. This would mean that the
size of the band could grow very large, and the bookkeeping involved in tracking the band
would introduce heavy overhead, possibly exponential to the size of the graph.
Recently, a dynamic banding approachwas proposed for linear sequence alignment [63].

The approach allows the band to move during the alignment based on the scores of the
alignment. Themethod requires calculating the DPmatrix in an antidiagonal order, which
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cannot be easily extended to graph alignment since the antidiagonal is ambiguous for
forks.
Instead, we introduce a novel dynamic banding approach based on the scores in the

DP matrix. The principle is that for each row, we find the minimum score m and define
a cell to be inside the band if its score is at most m + b. This handles arbitrary graph
topologies with very little bookkeeping and no special cases. Figure 8 shows an example.
Since the band depends on the minimum score in a row, which is initially unknown, we
do not initially know which parts of the DP matrix are included in the band. Instead, we
“discover” the minimum score and the edges of the band as we calculate the DP matrix.
To find the edge of the band, cells must be calculated until their score is higher thanm+b,
at which point the cell is out of band.
Figure 9 shows how the dynamic score-based banding handles different topological fea-

tures. At each fork, the band spreads to all out-neighbors. This explores the different
paths the alignment could take, while the score comparison implicitly limits how far the
exploration proceeds.
The dynamic banding introduced here is not symmetric between the query and the ref-

erence. That is, when aligning two linear sequences, the band will be different depending
on which sequence is the query and which is the reference. However, the sequence-to-
graph mapping algorithm already introduces an asymmetry since the graph must be the
reference.
Due to the bitvector-based calculation, the implementation is slightly different from

the theoretical description above. The band is defined over blocks in the DP matrix (see
Fig. 10) instead of individual cells in the DP matrix. In addition, a block’s minimum score

Fig. 8 Left: regular banded alignment with b = 3. The reference is on top and the query on the left. The gray
cells are inside the band and are calculated. The blue line shows the traceback of the optimal alignment.
Right: score based banding with b = 1. The reference is on top and the query on the left. The gray cells are
inside the band and the blue line is the traceback. The red-circled cells are the minimum for each row, which
are discovered during the calculation of the matrix and define whether a cell is inside the band or not; a cell is
inside the band if its score is within b of the minimum score in the same row. The cells with a number on a
white background are calculated to discover the end of the band, but they are not inside the band and are
ignored when calculating the next row. The band can wander around the DP matrix and change size,
automatically spreading wider in high error areas and narrower in low error areas. Note that the score-based
banding parameter is 1 in comparison to 3 in the regular banding to the left. The implementation uses a
coarser band of 64 x 64 blocks instead of individual cells
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Fig. 9 Dynamic score-based banding applied on a graph. Top: an alignment graph. Bottom: The DP matrix
for aligning a read to the above graph. The arrows show the correspondence between nodes in the graph
and columns in the DP matrix. The dotted lines separate the nodes. The gray area represents parts of the DP
matrix which are calculated, and the parts in the white area are not calculated. At each fork, the band spreads
to all out-neighbors. The score-based banding implicitly limits the exploration of the alternate paths; as the
scores in the alternate paths become worse than the optimal path, the explored part shrinks until finally the
exploration stops completely. The blue line shows the backtrace path

is compared to the minimum score in the last row of a 64-row slice. That is, for each 64-
row slice, the minimum score m is found. Then, a block in the DP matrix is inside the
band if the score of any cell in the block is at mostm + b.
Since b represents a score difference, the score guarantee is now stronger than in the

linear case. The optimal alignment is found as long as the optimal alignment’s score at
any row is within b of the minimum score of that row. This trivially includes the case that
the optimal alignment has b errors.
However, the size of the band is no longer bounded by b. This means that the score-

based banding can lead to an impractically large band in certain cases. In an unrealistic
extreme case, a fully connected graph will be entirely included in the band even with b = 1
and regardless of the graph size. But also in practice, human whole genome de Bruijn
graphs contain highly complex subgraphs (Additional file 1: Figure S1). In this example,
including all cells with a low score difference will contain a very large part of the subgraph,
increasing both runtime and memory use. To handle these cases, we introduce a second
banding parameter, the tangle effort C. This determines howmuch effort the DP extension
spends in tangled areas of the graph. As we calculate the DP matrix, we keep track of how
many cells have been calculated in the current slice. Once this number grows above C, we
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Fig. 10 Sparse storage of the DP matrix. Each node is stored in blocks of 64 rows and up to 64 columns. The
scores of the corner cells (solid black) are stored explicitly, using 4 bytes per cell. The border cells (gray) are
stored with a score difference, using 2 bits per cell. The middle cells (white) are not stored

stop calculating the current slice, keep the scores as they are, and move to the next slice.
This bounds the runtime in tangled regions. However, this is a heuristic method which
depends on the assumption that the correct path will be calculated before false positive
paths.
In our previous work [23], we used the minimum changed value to decide the order in

which we calculate the DP matrix. If the parameter C is not given, the DP extension uses
the minimum changed value as described in the earlier work. However, if the parameter
C is given, we use a different order, theminimum changed priority value of a cell to decide
the order. We define the priority value of a cell based on the observed error rate of the
best alignment so far. We calculate the observed error rate e based on the minimum score
of the last calculated slice. Given a minimum score s at row y, the observed error rate is s

y .
With an error rate e, a DP cell at rowm with a score of k has a priority value of k

e − m, or
64k−m if e ≤ 1

64 . When recalculating a column, the changed priority value of a cell is the
priority value of a cell in that column which changed, and theminimum changed priority
value of a column is the minimum of the changed priority values. The intuition is that the
priority value of a cell describes “how good” the alignment at a cell is; a value of 0 means
as good as the best alignment so far, negative is better than that and positive worse than
that. The minimum changed priority value is essentially a greedy heuristic for exploring
the most promising paths first. The result is that the minimum changed priority value
leads to a higher probability of correctly aligning through a tangle than the minimum
changed value when the tangle effort is limited. Without a limit on the tangle effort, using
the minimum changed priority value would lead to the scores eventually converging to
the same values as the minimum changed value, but the worst-case runtime bounds are
worse than for the minimum changed value.
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Storing a partial DPmatrix

In sequence-to-sequence alignment, the banded DP matrix can efficiently be stored as a
two-dimensional matrix with 2b diagonals, where b is the width of the band. However, in
sequence-to-graph alignment, the banded matrix cannot be stored contiguously due to
the non-linear nature of graphs. We conceptually treat the DP matrix as a sparse three-
dimensional matrix, with one dimension for node ID, one for node offset, and one for
read offset.
The implementation stores the DPmatrix as a hash table from node IDs to a sparse rep-

resentation of the alignment between a substring of the read and the sequence of a node.
The sparse representation explicitly stores scores at the “bottom corners,” and the score
differences between the left, right, and bottom “border cells.” Figure 10 shows an exam-
ple of this. The middle cells are not stored at all. Instead, the explicitly stored cells allow
recalculating the middle cells when needed. This only happens when recalculating cyclic
areas, which requires recalculating the middle cells anyway, and during the backtrace,
which requires recalculating only the path taken by the backtrace. The sparse representa-
tion requires 56 bytes per node, plus memory overhead from the hash table, while using
the same data representation that the bit-parallel calculation uses and having no runtime
overhead from compression or conversion between different formats. For comparison,
the information theoretic lower bound for storing all cells in the DP matrix for one node
with optimal compression is log2 364∗64

8 ≈ 812 bytes and storing only the border cells is
log2 364+64+62

8 ≈ 38 bytes.

Partial alignments

Previously, software such as BLAST [12] have used the X-drop heuristic [64] to end align-
ment. In the X-drop heuristic, the algorithm keeps track of the highest alignment score
seen so far. Once the scores within the current row to be calculated drop below a cutoff
defined on the highest alignment score and a parameter, the alignment is ended and the
cell with the highest alignment score is used to start the backtrace. The X-drop heuris-
tic requires using local alignment with a scoring scheme where higher values are better
alignments, and it is not trivial to correctly extend it to the unit costs required by the
bit-parallel algorithm.
During alignment, we use Viterbi’s algorithm [65] to estimate the correctness at each

slice boundary. That is, we seek to estimate the probability that the slice contains the cor-
rect alignment. The observations of the algorithm are the minimum scores at the end of
each slice. Conceptually, we use a hidden Markov model with two hidden states, which
are labeled “correctly aligned” and “wrongly aligned”. We model the emissions and tran-
sition probabilities such that the correctly aligned state outputs an error rate of 20% and
the wrongly aligned an error rate of 50%. These error rates were selected empirically by
aligning Oxford Nanopore (ONT) reads to either the correct or the wrong genomic posi-
tion, using the assumption that the errors of reads to be processed are at most as high as
for these ONT reads. The probabilities of the correct and wrong states and their prede-
cessor states are calculated for each slice during alignment. After calculating slice n + 1,
we define slice n as guaranteed correct if the predecessor of the wrong state in slice n + 1
is the correct state in slice n. The intuition behind this is that any alignment in slices n+1
and later, correct or wrong, must backtrace through the correct state at slice n, so the read
is correctly aligned at least until that point.We also similarly define a slice n as guaranteed
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wrong when predecessor for the correct state in slice n + 1 is the wrong state in slice n.
Figure 11 shows an example of this.
We use the correctness estimate to vary the banding parameters. We use two param-

eters, an initial banding parameter b and a ramp banding parameter B > b. Once the
probability of the wrongly aligned state is higher than the probability of the correctly
aligned state, we backtrace to the last guaranteed correct slice, switch to the higher ramp
banding parameter, and re-align until we have reached the original slice. Note that this is
a looser condition than reaching a guaranteed wrong slice.
We also use the Viterbi estimate to end the alignment. Once we have reached a guar-

anteed wrong slice, the extension can no longer produce anything useful. In this case, we
backtrace to the last correct slice and return the partial alignment of the read up to that
position.
After extending the seed hits, we are left with a list of partial alignments. We then

select a non-overlapping subset of primary and supplementary alignments in a heuristic
manner. We greedily pick alignments from longest to shortest and include an align-
ment as long as it does not overlap with a previously picked alignment. The primary
and supplementary alignments are then written as output. The overlapping alignments
are considered secondary and discarded by default, with an optional switch to output
secondary alignments as well.

Experimental setup

All experiments were ran on a computing server with 48 Intel(R) Xeon(R) E7-8857
v2 CPUs and 1.5Tb of RAM. Every program was given 40 threads in the command

Fig. 11 An example of using Viterbi’s algorithm for estimating correctness per slice. The error rates of the
minimum alignment per slice (not shown in figure) are the observations. The numbers represent the
probability of the alignment being in the specific state at the specific slice. The arrows represent the
predecessor state for each state in each slice. Slice 2 is guaranteed correct since the predecessor for the
wrong state in slice 3 is through the correct state. Similarly, slice 4 is guaranteed wrong since the predecessor
for the correct state in slice 5 is through the wrong state. None of the other slices are guaranteed correct or
wrong. The final backtrace will consider slices 0, 1, and 2 correctly aligned and slices 3 to 5 wrongly aligned,
and only the sequence in slices 0–2 will be reported in the alignment
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line invocation. Runtime and memory use was measured with “/usr/bin/time -v” in all
experiments.
In the linear comparison experiment, we ran minimap2 with the command “minimap2

-x map-pb -a -t 40,” corresponding to the recommended parameters for PacBio reads
and 40 threads. We ran GraphAligner with “GraphAligner -t 40 -x vg,” using 40 threads
and our recommended parameters for variation graphs. We used minimap2 version 2.17-
r941 and GraphAligner version 1.0.11. Reads were considered to be correctly aligned if
the position of their longest alignment overlapped at least 10% with the genomic position
from where the read was simulated.
In the variant graph experiment, we constructed the graph with the command “vg con-

struct -a -r chr22.fa -v chr22.vcf -p -t 40 -m 3000000.” We ran GraphAligner with the
command “GraphAligner -t 40 -x vg,” using 40 threads and our recommended parameters
for variation graphs. We used GraphAligner version 1.0.11. The genomic interval of the
alignment was calculated only from the parts of the alignment which covered a reference
node. That is, parts of the alignment path which corresponded to a non-reference vari-
ant were ignored, and the reference interval was taken as the minimum and maximum of
the reference positions covered by the alignment. Reads were considered to be correctly
aligned if the position of their longest alignment’s genomic interval overlapped at least
10% with the genomic position from where the read was simulated.
To evaluate the alignment accuracy of the reads simulated from de novo assembled

contigs, we lifted over their coordinates to the GRCh37 reference chromosome 22 using
minimap2 [13]. We first aligned the assembled contigs to the reference with minimap2,
then used “paftools.js liftover” from minimap2 to lift over the coordinates of the simu-
lated reads from the contigs to the reference. We evaluated alignment accuracy only for
the reads which could be lifted over. The de novo assembled contigs were separated by
haplotype, and results were evaluated separately per haplotype. However, the right side of
Fig. 1 shows the average results across both haplotypes. The average was plotted instead
of separate haplotypes because the results for individual haplotypes differed at most 0.3%
and the curves could not be distinguished visually.
In the vg comparison experiment, we used the graph from the variant graph experiment.

We ran GraphAligner with the command “GraphAligner -t 40 -x vg,” using 40 threads
and our recommended parameters for variation graphs. For vg, we first preprocessed the
graph as suggested by vg documentation with the commands “vg mod -X 256” and “vg
prune.” The runtime of the preprocessing was not included in the results. We indexed the
graph with the command “vg index -t 40 -x chr22.xg -g chr22.gcsa” using 40 threads to
construct the indices required for mapping. We mapped the reads with the command “vg
map -t 40 -m long,” using 40 threads and parameters for long read alignment. We used
vg version 1.23.0. Read alignment accuracy was evaluated the same way as in the varia-
tion graph experiment. Note that the evaluation method only distinguished whether the
read alignment overlapped with the correct genomic interval and does not evaluate the
correctness otherwise. In particular, alignments whose path in the graph is not consis-
tent with graph topology, such as aligning to both branches of a SNP (Additional file 1:
Figure S2), could still be counted as “correctly” aligned.
In the genotyping experiment, we constructed the pangenome graph using vg with

the command “vg construct -a -r reference.fa -v variants.vcf -p -t 40 -m 30000000” and
detected snarls using the command “vg snarls graph.vg > graph.snarls.” We aligned the
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reads using GraphAligner with the command “GraphAligner -t 40 -x vg,” using 40 threads
and our recommended parameters for variation graphs. We genotyped the sample by first
running “vg pack -x graph.vg -g alignments.gam -o alignments.pack,” and then “vg call
graph.vg -k alignments.pack -r graph.snarls -v variants.vcf -s HG002”, using the default
genotyping method with the default parameters. We used the Genome in a Bottle callset
version 3.3.2 for GRCh38. We used the version 2a (release 20190312) of the variant set
from Lowy-Gallego et al. [38].We used vg version 1.23.0 and GraphAligner version 1.0.11.
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