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Abstract
Marked enhancement of the fibroglandular tissue on contrast-enhanced breast magnetic resonance imaging (MRI) may affect lesion
detection and classification and is suggested to be associated with higher risk of developing breast cancer. The background
parenchymal enhancement (BPE) is qualitatively classified according to the BI-RADS atlas into the categories “minimal,” “mild,”
“moderate,” and “marked.” The purpose of this study was to train a deep convolutional neural network (dCNN) for standardized and
automatic classification of BPE categories.
This IRB-approved retrospective study included 11,769 single MR images from 149 patients. The MR images were derived from

the subtraction between the first post-contrast volume and the native T1-weighted images. A hierarchic approach was implemented
relying on 2 dCNN models for detection of MR-slices imaging breast tissue and for BPE classification, respectively. Data annotation
was performed by 2 board-certified radiologists. The consensus of the 2 radiologists was chosen as reference for BPE classification.
The clinical performances of the single readers and of the dCNN were statistically compared using the quadratic Cohen’s kappa.
Slices depicting the breast were classified with training, validation, and real-world (test) accuracies of 98%, 96%, and 97%,

respectively. Over the 4 classes, the BPE classification was reached with mean accuracies of 74% for training, 75% for the validation,
and 75% for the real word dataset. As compared to the reference, the inter-reader reliabilities for the radiologists were 0.780 (reader
1) and 0.679 (reader 2). On the other hand, the reliability for the dCNN model was 0.815.
Automatic classification of BPE can be performed with high accuracy and support the standardization of tissue classification in

MRI.

Abbreviations: BPE = background parenchymal enhancement, CAM = class activation map, dCNN = deep convolutional neural
network, FGT = fibroglandular tissue, Grad-CAM = Gradient-weighted Class Activation Mapping, MRI = magnetic resonance
imaging.
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1. Introduction

Magnetic resonance imaging (MRI) is an established technique
for breast imaging and it is used for evaluation of the breast tissue
in high-risk patients, pre-operative staging, monitoring of
chemotherapy effect, evaluation of women with breast implants,
or occult primary breast cancer.[1]

After administration of the contrast agent, both, lesions and
normal fibroglandular tissue (FGT), may enhance.[2] In some
subjects, the enhancement of the FGT, that is, the background
parenchymal enhancement (BPE), may present asymmetric and
non-diffusive distribution, as well as a suspicious dynamic
response. In those cases, the BPE can affect the diagnostic
accuracy of the lesion Breast Imaging-Reporting andData System
of the American College of Radiology (ACR BI-RADS)
classification.[3–5]

Not only technical factors (e.g., concentration of the contrast
agent, T1-weighted contrast of the sequence)[6] but also the
vascular mammary anatomy and the hormonal status are known
to affect the BPE levels.[7,8] In young patients and patients
undergoing hormonal therapy, BPE is more markedly expressed
than in other patients.[9] In order to account for the monthly
hormonal changes of the breast, breast MRI is preferably
performed during the 7th to 14th day of the menstrual
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cycle.[10,11] Moreover, to achieve a better standardization of the
BPE classification, radiologists are requested to rate the BPE
according to the BI-RADS classification[12] as minimal, mild,
moderate, or marked. However, the visual rating of the BPE in
prone to be reader-dependent; in a study from 2015, Grimm et al
reported a fair mean inter-observed reliability in the BPE
classification (Cohen’s kappa, k=0.28).[13]

Besides the relevance in the definition of the diagnostic
accuracy of breast MRI, few studies have claimed the association
between BPE and breast cancer risk.[14–16]

To overcome the problem of the human variability in the
classification of the BPE, automatic or semi-automatic methods
have been proposed. The reported technical solutions propose a
volumetric or quantitative computation of the FGT enhance-
ment.[17–19] Although those methods aim at an objective
evaluation of the BPE, the association between quantitative
parenchymal enhancement (QPE) and the BPE is only fair, due to
the lacking possibility of accounting for the intensity of the
enhancement or for the presence of spotted BPE patterns.[17]

Similarly, to the case of the BPE, also the human visual
classification of the mammographic breast density is reader-
dependent. In the case of the mammographic breast density, deep
learning has shown to provide clinically valuable classification by
relying on image pattern recognition.[20–22]

In this study, we propose the use of a deep convolutional neural
network (dCNN) for the classification of the BPE in MRI.
Performances of the algorithm were clinically validated by
comparing the classification of the algorithm on a real-world data
set with the consensus of 2 board-certified radiologists.
The breast MRI measurement is usually performed with some

margin, so before the BPE classification, the slices containing
breasts must be selected. To this end, we propose an auxiliary
model that recognizes slices depicting the breast.
2. Materials and methods

2.1. Study design and population

This retrospective study was approved by the local Ethics
Committee. All patients undergoing a breast MRI at our
institution from September 2013 to October 2015 were
considered for analysis. A total number of 149 patients was
included. The mean patient age± standard deviation was 49±6
years. Each patient was examined once.
2.2. Image acquisition

All breast MRI examinations were performed with the patient in
prone position using a 3-T unit (MAGNETOM Skyra, Siemens
Medical Solution, Erlangen, Germany) and a dedicated 4-channel
breast coil. For each patient, the imaging protocol included an
axial T2-weighted short-tau inversion recovery sequence (TR
5600ms or 8970ms, TE 70ms, inversion time 150ms, flip angle
150°, voxel 1.3mm�0.6mm�0.3mm or 0.7mm�0.7mm�2
mm) and an axial diffusion-weighted sequence (TR/TE 4300/89
ms, voxel 2.7mm�2.7mm�4mm, b-values 0, 500, 1000s/
mm2) before contrast agent injection. Thereafter, a dynamic
protocol consisting in the acquisition of a T1-weighted gradient-
echo three-dimensional fast low-angle shot sequences (TR/TE 11/
4.89ms, voxel 0.8mm�0.8mm�1.3mm) before and after
contrast agent administration (0, 1, 2, 3, 4, and 5minutes)
2

was acquired. The dose of the contrast agent was adapted to the
weight of the patient (0.1mmol/kg).
2.3. Dataset preparation

The retrieved dataset consisting in 149 studies and 11,769 MR
images was used for training 2models: the breast detectionmodel
for the recognition of slices depicting the breast, and the BPE
model for the BPE classification. The dataset contained 1169
slices depicting breast with implants and 699 without depicted
breast. For the breast detectionmodel, the whole retrieved dataset
was split into 3 categories: “breast,” “no-breast,” and
“implants.” Each category was randomly split into training,
validation, and test set at a ratio of 70%, 20%, and 10%,
respectively.
For the BPE model, 9902 single-slice MR images from 124

patients without breast implants were selected and annotated in
terms of BPE according to the BI-RADS atlas (3613 as minimal,
4282 as mild, 1556 as moderate, and 451 as marked). To balance
the number of images belonging to each BPE category, the data
were augmented by a random shifting and zooming in the range
of ±5% and by horizontal flipping. The catalog structure
containing the data sets is presented in Figure 1. The images were
preprocessed before feeding them into the neural networks by
cutting-off the one-third of their bottom part, which does not
contain breast, and by normalization the values to 0 to 1 range.
For the of BPE model, subsets of 87, 25, and 12 patients were

randomly selected for the training-, validation-, and test-
partitions, respectively. For the test partition, a subset of 100
images (25 for each BPE category) was chosen for the evaluation.
The set partitions had been selected before the model was trained.
The images used for the training of the BPE model were

annotated in consensus by 2 radiologists with more than 5 years
experience in breast imaging. In this study, this assessment is
regarded as the gold standard of the BPE class assessment andwill
be referred to as “reference.” BPE scores were assigned slice-wise
based on the image volume resulting from the subtraction of the
native fat-suppressed T1-weighted images from the first post-
contrast volume. In the case of BPE asymmetry between the left
and right side, the higher level of BPE was assigned.
2.4. Model architecture and training

Bothmodels were implemented bymeans of a deep convolutional
neural network. The network consisted of 2 densely connected
layers on top of the convolutional part of the VGG16[23] network
trained on the ImageNet dataset, which has been already
successfully applied for the assessment of medical breast
images.[24]

Both models were trained on the NVIDIA GeForce GTX1080
graphical processing unit for 100 and 120 epochs, respectively,
using the Adam optimizer.[25] To avoid overfitting, the training
process was stopped as soon as the loss function calculated for the
validation set had raised or the difference between the accuracy
for the training and validation set had exceeded 3 percent points.
Moreover, the model was saved after an epoch, after which the
validation accuracy was the highest.
For the breast detection model the categorical cross-entropy

loss function was applied. For the BPE model, a custom loss
function was applied in order to take advantage of the graduating
categories (A < B < C < D). To this end, the cross-entropy value



Figure 1. The catalog structure corresponding to the breast detection model (left) and the BPE model (right).
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for each sample was multiplied by the value of the mean square
error.
Nevertheless, the cross-entropy do not take advantage of the

gradation of the BPE categories (A<B<C<D). To take this fact
into account this fact, a custom loss function was applied.
Namely, the value of the cross-entropy loss for each sample was
multiplied by the value of the mean square error.
2.5. Statistical and clinical validation

For each model, the performances over the validation dataset
were quantified in terms of the metrics of the confusion matrix.
The performances of each model over the real-world dataset were
compared with the reference. Performances were expressed in
terms of accuracy, precision, recall, and F1-score. For each
model, the confusion matrix was computed.
The output of the algorithm on the real-world data was also

used for the clinical validation. In this case, each experienced
radiologist was requested to perform the classification on the
real-world dataset. The radiologists were blind to the results of
the previously performed consensus classification and of the
algorithm classification.
Based on the 3 classifications over the same dataset and on the

consensus decision taken as a gold standard, the inter-rater
reliability was assessed by means of the quadratic Cohen’s Kappa
coefficient (k).[26]
Table 1

Accuracy, precision, recall, and the F1-score of the breast
detection model evaluated on the real-world data.

Accuracy Precision Recall F1-score

Breast 0.96 0.92 0.96 0.94
No-breast 0.92 0.96 0.92 0.94
Implants 1.0 1.0 1.00 1.00
3. Results

3.1. Statistical validation

The statistical validation of the breast detection and of the BPE
models is reported in Tables 1 and 2, respectively. The
corresponding learning curves are presented in Figure 2. In the
case of the breast model, the training was stopped after 100
epochs, when the accuracy for the validation set reached the
plateau of 97.5%. For the BPE model, the training was stopped
3

after 150 epochs. The highest accuracy for the validation set was
achieved after the 67-th epoch, so the state of the model at that
stage was used.
After the training, bothmodels were validated on the real-world

datasets. The accuracy, precision, recall, and F1-score for each
class of the breast and the BPEmodels are reported in Tables 1 and
2, respectively. In the case of the breastmodel, the overall accuracy
was equal to 96%. Only 1 image that presented breast has been
erroneously classified to the “no-breast” category and 2 images
without breasts have been classified as depicting the breast. The
best performance has been achieved in the case of the breast with
implants. All the images from the test set that presented implants
have been correctly recognized and none has been erroneously
assigned to this group. The corresponding confusion matrix is
presented in Figure 3 in the form of a heat-map.
In the case of the BPE model, the overall accuracy was equal to

75%. Almost all misclassifications occurred only between
adjacent classes, for example, mild and moderate. The confusion
matrix corresponding to this model is presented in Figure 4.
In most cases, the confidence of the assignment to a particular

class was greater than 99% in the case of the breast model and
significantly greater than 90% in the case of the BPE model.
For the BPE model, the T1-weighted native image of 1

representative subject was superimposed onto the class activation
map (CAM) implemented using the Gradient-weighted Class
Activation Mapping (Grad-CAM) approach[27] (Fig. 5). The

http://www.md-journal.com


Table 2

Accuracy, precision, recall, and the F1-score of the BPE (back-
ground parenchymal enhancement) class model evaluated on the
real-world data.

Accuracy Precision Recall F1-score

Minimal 0.84 0.84 0.84 0.84
Mild 0.80 0.59 0.80 0.68
Moderate 0.48 0.71 0.48 0.57
Marked 0.88 0.92 0.88 0.90

Borkowski et al. Medicine (2020) 99:29 Medicine
CAM map indicates the regions on which the prediction has
been based on.

3.2. Clinical validation

Reader 1 assessed 69 real-world images in accordance with the
reference, while reader 2 correctly assessed 52 images. Therefore,
Figure 2. The loss function (bottom) and accuracy (top) plots for the training (red)
model (left) and BPE model (right).

4

the accuracy of the human experts for the dataset of 100 images
was 69% and 52%, respectively.
Figure 6 presents the inter-rater reliability expressed by the

Cohen’s Kappa for the predictions of the BPE model, assessments
done independently by 2 expert human readers (reader 1 and
reader 2) and the reference in every possible combination. The
lowest value of the kappa (0.679±0.18) was obtained for the
reliability of reader 1 and the reference, while the highest one
(0.815±0.13) was obtained for the model and the reference. The
statistics of the assessments done by each human expert and the
model are reported in Table 3. The “±” sign indicates the
confidence interval.
Figure 7 shows the same results presented in terms of each BPE

class separately, where the four-class classification problem was
translated to four one vs all classifications. The presented kappa
coefficients were obtained with regard to the reference. The
reliability of both readers was different for different BPE classes
and ranged between 0.47 and 0.71 for the first and 0.24 and 0.49
and validation (blue) set depicting the learning process of the breast detection



Figure 5. An exemplary input image with superimposed the class activation
map. The dark red regions correspond to the area that highly contributed to the
final model prediction.Figure 3. A confusion matrix for the validation of the breast detection model

using the real-world dataset.
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for the second reader. The reliability of the second reader was
lower than of the first one in the case of all BPE classes except the
minimal enhancement. The reliability of the model was higher
than of the both readers in the case of all classes except the
moderate enhancement.

4. Discussion

In this study, we implemented a fully automatic approach for the
classification of BPE categories according to the Breast Imaging
Reporting and Data System atlas and validated its clinical use by
comparing the performances of the algorithm with those of
consenting expert human readers.
The approach relies on the use of a transfer learning method.

To obtain a slice-wise classification of the BPE, a hierarchical
approach was implemented, which consisted in the use of 2
computational models: the first intended to detect slices imaging
the breast and the second performing the actual BPE classifica-
tion. The rationale behind the study is that the use of a dCNN
algorithm trained on thousands of data labeled by consenting
Figure 4. A confusionmatrix for the validation of the BPE classmodel using the
real-world dataset.
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radiologists expert in breast imaging may allow a standardized
BPE classification. Although the problem of the automatic
assessment of BPE has been already addressed by Ha et al,[28] so
far quantitative assessment of BPE based on tissue segmentation
has been proposed. To the best of our knowledge, the deep
learning approach able to mimic the human evaluation of the
whole image pattern for qualitative BPE classification has never
been published before.
The breast detection and the BPE models were trained for 150

and 120 epochs, what allowed achieving the accuracy for the
validation set equal to 97% and 90%, respectively. The
accuracies obtained for the real-world data were similar, what
indicates that the models are not over-fitted. The learning curves
for the breast detection model (Fig. 2) achieve the first plateau
after about 35 epochs. Nevertheless, the reduction of the learning
rate during the training enabled to increase the accuracy by
additional 2%, yielding a characteristic inflection of the accuracy
and loss curves. In the case of the BPE class model, the accuracy
plateau was not reached, so the dropout of the learning rate was
Figure 6. The values of the Cohen’s kappa calculated for the predictions of the
model, answer of both human readers and the consensus decision in each
possible combination.

http://www.md-journal.com


Table 3

Statistics of the answers of both radiologists and the model.

BPE class Minimal Mild Moderate Marked

Reader 1 29% 34% 29% 17%
Reader 2 26% 33% 17% 24%
Model 26% 21% 26% 27%

Borkowski et al. Medicine (2020) 99:29 Medicine
not applied. The model was saved after the 67-th epoch, when it
achieved the heist validation accuracy. As a comparison, the
accuracy of human readers was 69% and 52%. Such discrep-
ancies between experienced radiologists confirm the need of the
standardization.
As shown in Figure 6, almost all misclassifications done by the

BPE model occurred only for adjacent categories. Since the BPE
classification guidelines are subject to a human interpretation,
there is no ground truth behind a given image and this kind of
disagreement is common between different radiologists and even
between 2 assessments of the same specialist.[29] Therefore, a
more relevant way to assess the model is to compare the inter-
rater reliability expressed by the Cohen’s kappa coefficient. The
kappa coefficient obtained for the agreement between both
experts and each expert with the model 0.793±0.15, 0.804±
0.14, and 0.768±0.16, respectively. These values are consistent
with values assessed in other studies, which ranged between 0.73
and 0.93,[29–31] and confirm that expert readers achieve an
almost perfect agreement with the consenting classification. As
compared to the reference, the inter-rater reliability of the model
is higher (0.815) than that of the experienced radiologists (0.78
and 0.679). These findings suggest that deep convolutional neural
Figure 7. The values of the Cohen’s kappa for both radiologists (blue and red) an
with regard to the reference.
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networks are a reliable and standardized tool in the assessment of
the background parenchymal enhancement in MRI. The class
activation map presented in Figure 5 shows that the BPE model
classifies the images based on the image region that contain the
most important information and ignores the background, what
confirms the above conclusion.
The possible source of the bias in the assessment of the BPE

class is that the different BPE classes are not equally common.
The lower enhancement classes occur more often than
the higher ones, as can be seen from the review of 650
breast MRI examinations described by Abramovici and
Mainiero[32] and in other studies.[30,32] This fact is reflected
in the statistics of the radiologists’ answers, as reported in
Table 3. The readers classified the images to the lower classes
more frequently, even though the BPE classes in the test
dataset were equally represented. Since the neural network
model has been trained on a balanced dataset, it is free from
this kind of bias.
The main limitation of our study is a limited number of studies,

what has been mitigated by application of the transfer learning
and data augmentation; possible bias of the human experts in the
BPE class assignment, what to some extent, has been mitigated by
taking the consensus decision as the reference; and finally, the fact
that all studies were performed in 1 institution using the same
MRI scanner. Validation of the model using images from other
institutions is proposed for the future study. Another limitation is
the relatively small size of the real-world dataset. This
representative set was a trade-off between robust statistics and
the limited reading-time of human experts. However, in the case
of a balanced class distribution, the potential bias is expected to
be less severe.[33]
d the model (green) calculated for each BPE class separately. The results were



Borkowski et al. Medicine (2020) 99:29 www.md-journal.com
5. Conclusion

In conclusion, the MRI breast images can be effectively classified
according to their background parenchyma enhancement, by
means of a deep convolutional neural network. The neural
network is at least as accurate as an experienced radiologist.
Moreover, their predictions are standardized and not influenced
by the effect of the intra-reader discrepancy. The convolutional
part of the VGG16 network can serve as an effective feature
extractor for breast MRI, even though it was not trained on
medical images.
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