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A new class of functions, called the ‘information sensitivity functions’ (ISFs), which

quantify the information gain about the parameters through the measurements/

observables of a dynamical system are presented. These functions can be easily

computed through classical sensitivity functions alone and are based on Bayesian

and information-theoretic approaches. While marginal information gain is quan-

tified by decrease in differential entropy, correlations between arbitrary sets of

parameters are assessed through mutual information. For individual parameters,

these information gains are also presented as marginal posterior variances, and, to

assessthe effect of correlations, as conditional variances when other parameters are

given. The easy to interpret ISFs can be used to (a) identify time intervals or regions

in dynamical system behaviour where information about the parameters is con-

centrated; (b) assess the effect of measurement noise on the information gain for

the parameters; (c) assess whether sufficient information in an experimental proto-

col (input, measurements and their frequency) is available to identify the

parameters; (d) assess correlation in the posterior distribution of the parameters

to identify the sets of parameters that are likely to be indistinguishable; and

(e) assess identifiability problems for particular sets of parameters.
1. Introduction
Sensitivity analysis [1] has been widely used to determine how the parameters of a

dynamical system influence its outputs. When one or more outputs are measured

(observed), it quantifies the variation of the observations with respect to the par-

ameters to determine which parameters are most and least influential towards the

measurements. Therefore, when performing an inverse problem of estimating

the parameters from the measurements, sensitivity analysis is widely used to fix

the least influential parameters (as their effect on the measurements is insignificant

and removing them reduces the dimensionality of the inverse problem) while

focussing on estimation of the most influential parameters. Sensitivity analysis is

also used to assess the question of parameter identifiability, i.e. how easy or difficult

is it to identify the parameters from the measurements. This is primarily based onthe

idea that if the observables are highly sensitive to perturbations in certain

parameters then these parameters are likely to be identifiable, and if the observables

are insensitive then the parameters are likely to be unidentifiable. However,

the magnitude of the sensitivities is hard to interpret, except in the trivial case

when the sensitivities are identically zero. Lastly, parameter identifiability

based on sensitivity analysis also assesses correlation/dependence between the

parameters—through principle component analysis [2], correlation method [3],

orthogonal method [4] and the eigenvalue method [5]—to identify which pairs of

parameters, owing to the high correlation, are likely to be indistinguishable from

each other (also see [6] and the referenced therein). Another method to assess corre-

lations is based on the Fisher information matrix [6–8], which can be derived from

asymptotic analysis of nonlinear least-squares estimators [9,10]. Ashyraliyev &

Blom [11] suggested that a singular value decomposition of the Fisher information

matrix can be used to identify linear combinations of parameters that can be well
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identified given the observables and measurement noise.

Another class of methods to assess identifiability, proposed by

Raue et al. [12–14], are based on the exploiting the curvature of

the likelihood function or the flatness of the profile likelihood,

i.e. minimization of the likelihood with respect to all parameters

but one. Li & Vu [15,16] proposed that pairwise and higher-order

correlations between the parameters may be identified by asses-

sing linear dependencies between the columns of the sensitivity

matrix [16] or the matrix of first-order partial derivatives of the

state equations [15]. Thomaseth and Cobeli extended the classical

sensitivity functions to ‘generalized sensitivity functions’ (GSFs)

which assess information gain about the parameters from the

measurements. This method has been widely used to assess

identifiability of dynamical systems [10,17–20], where regions

of high information gain show a sharp increase in the GSFs

while oscillations imply correlation with other parameters.

There are two drawbacks of GSFs: first, that they are designed

to start at 0 and end at 1, which leads to the so-called ‘force-to-

one’ phenomenon, where even in the absence of information

about the parameters the GSFs are forces to end at a value of 1;

and second, oscillations in GSFs can be hard to interpret in

terms of identifying which sets of parameters are correlated.

Based on a pure information-theoretic approach Pant & Lom-

bardi [21] proposed to compute information gain through a

decrease in Shannon entropy, which alleviated the shortcomings

of GSFs. However, since their method relies on a Monte Carlo

type method the computational effort associated with the com-

putation of information gains can be quite large. In this article,

a novel method which combines the method of Pant & Lombardi

[21] with the classical sensitivity functions to compute infor-

mation gain about the parameters is presented. The new

functions are collectively called ‘information sensitivity func-

tions’ (ISFs), which assess parameter information gain through

sensitivity functions alone, thereby eliminating the need for

Monte Carlo runs. These functions (i) are based on Bayesian/

information-theoretic methods and do not rely on asymptotic

analysis; (ii) are monotonically non-decreasing and therefore

do not oscillate; (iii) can assess regions of high information con-

tent for individual parameters; (iv) can assess parameter

correlations between an arbitrary set of parameters; (v) can

reveal potential problems in identifiability of system parameters;

(vi) can assess the effect of experimental protocol on the inverse

problem, for example, which outputs are measured, associated

measurement noise, and measurement frequency; and (vii) are

easily interpretable.

In what follows, first the theoretic developments are presen-

ted in §§2–8, followed by their application to three different

dynamical systems in §9. The three examples are chosen from

different areas in mathematical biosciences: (i) a Windkessel

model, which is a widely used boundary condition in compu-

tational fluid dynamics simulations of haemodynamics; (ii) the

Hodgkin–Huxley model for a biological neuron, which has

formed the basis for a variety of ionic models describing excitable

tissues; and (iii) a kinetics model for the influenza A virus.
2. The dynamical system and sensitivity
equations

Consider the following dynamical system governed by a set

of parametrized ordinary differential equations (ODEs):

_x ¼ f(x, u, t) with x(t0) ¼ x0, ð2:1Þ
where t represents time, x [ Rd is the state vector, u [ Rp is the

parameter vector, the function f : Rdþpþ1 ! Rd represents the

dynamics and x0 represents the initial condition at time t0. The

initial conditions may depend on the parameters, and therefore

x(t0) ¼ x0(u): ð2:2Þ

The above representation subsumes the case where the initial

condition may itself be seen as a parameter. The RHS of the

dynamical system, equation (2.1), can be linearized at at a

reference point (xr, ur, tr), to obtain

_x ¼ f(x, u, t)jr þrxf(x, u, t)jr(x� xr)þruf(x, u, t)jr(u� ur)

þrtf(x, u, t)jr(t� tr)þO(2),

ð2:3Þ

where (�)jr represents ( . ) evaluated at the reference point. Hence-

forth, in order to be concise, the explicit dependence of f(x, u, t)
on its arguments is omitted and f, without any arguments, is

used to denote f(x, u, t). Following this notation, equation

(2.3) is concisely written as

_x ¼ fjr þrxfjr(x� xr)þrufjr(u� ur)þrtfjr(t� tr)

þO(2): ð2:4Þ

The above linearization will be used in the next section to

study the evolution of the state covariance matrix with time.

Let S [ Rd�p denote the matrix of sensitivity functions for

the system in equation (2.1), i.e. S ¼ rux, or

Si,j ¼
@xi

@uj
: ð2:5Þ

It is well known that S satisfies the following ODE

system, which can be obtained by applying the chain rule of

differentiation to equation (2.1):

_S ¼ (rxf(x,u,t))Sþruf(x,u,t) with S(t0) ¼ ru(x0(u)): ð2:6Þ

The goal is to relate the evolution of the sensitivity matrix to the

evolution of the covariance of the joint vector of the state and

the parameters. Let the subscript n denote all quantities at

time tn; for example, xn denotes the state vector at time tn, Sn

the corresponding sensitivity matrix, and so on. To relate the

sensitivity matrix Snþ1 at time tnþ1 with Sn, a first-order discre-

tization of equation (2.6) is considered

Snþ1 � Sn

Dt
¼ rxfjnSn þrufjn ð2:7Þ

and, therefore, the matrix product Snþ1ST
nþ1 can be written as

Snþ1ST
nþ1 ¼ SnST

n þ SnST
n (rT

x fjn)Dtþ Sn(rT
ufjn)Dt

þ (rxfjn)SnST
nDtþ (rxfjn)SnST

n (rT
x fjn)Dt2

þ (rxfjn)Sn(rT
ufjn)Dt2 þ (rufjn)ST

nDt

þ (rufjn)ST
n (rT

x fjn)Dt2 þ (rufjn)(rT
ufjn)Dt2:

ð2:8Þ

Next, it is hypothesized that under certain conditions Snþ1ST
nþ1

can be seen as the covariance matrix of the state vector at time

tnþ1. These developments are presented in the next two sections.
3. Forward propagation of uncertainty
As the objective is to study the relationship between the

parameters and the state vector, a joint vector of all the

state vectors until the current time tn and the parameter

vector is considered. Assume that at time tn, this joint
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vector [xT
n, xT

n21, . . ., xT
0, uT]T is distributed according to a

multivariate Normal distribution as follows:
royalsocietypublishing.org
xn
xn�1

..

.

x0

u

2
666664

3
777775 � N mn ¼

mxn

mxn�1

..

.

mx0

mu

2
666664

3
777775, Sn ¼

Sn,n Sn,n�1 � � � Sn;0 Ln,u

Sn�1;n Sn�1,n�1 � � � Sn�1,0 Ln�1,u

..

. ..
. . .

. ..
. ..

.

S0,n S0,n�1 � � � S0,0 L0,u

Lu,n Lu,n�1 � � � Lu,0 Su,u

2
666664

3
777775

0
BBBBB@

1
CCCCCA: ð3:1Þ
:
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To obtain the joint distribution of [xT
nþ1, xT

n, . . ., xT
0, uT]T (all

the state vectors until time tnþ1 and the parameter vector), the

linearized dynamical system, equation (2.4), is used. Considering

the reference point (xr, ur, tr) in equation (2.4) to be (mxn
,mu, tn),

i.e. considering the linearization around the mean values of the

parameter vector and the state at time tn, one obtains

_x ¼ fjn þrxfjn(x� mxn
)þrufjn(u� mu)þrtfjn(t� tn)þO(2)

ð3:2Þ

Ignoring the higher-order terms, and employing a forward Euler

discretization, one obtains

xnþ1� xnþ fjnDtþrxfjn(xn�mxn
)Dtþrufjn(u�mu)Dt:

ð3:3Þ
Remark 3.1. xnþ1 is completely determined by xn and u,

i.e. given xn and u nothing more can be learned about

xnþ1. Hence, the forward propagation forms a Markov chain.
Remark 3.2. fjn,rxfjn,rufjn are evaluated at (mxn
, mu, tn).
Remark 3.3. In equation (3.1), Sa,b ¼ ST
b,a and La,b ¼ LT

b,a.
The joint vector [xT
nþ1, xT

n, . . ., xT
0, uT]T can be written from

equations (3.1) and (3.3) as
xnþ1

xn

xn�1

..

.

x0

u

2
6666666664

3
7777777775
�

Id þrxfjnDt Od,d Od,d � � � Od,d rufjnDt
Id Od,d Od,d � � � Od,d Od,p

Od,d Id Od,d � � � Od,d Od,p

..

. ..
. ..

. . .
. ..

. ..
.

Od,d Od,d Od,d � � � Id Od,p

O p,d O p,d O p,d � � � O p,d Ip

2
6666666664

3
7777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fn

xn

xn�1

..

.

x0

u

2
6666664

3
7777775þ

Cn

Od,1

Od,1

..

.

Od,1

O p,1

2
6666666664

3
7777777775

|fflfflfflfflffl{zfflfflfflfflffl}
gn

,
ð3:4Þ
where Iq represents an identity matrix of size q, Oq,r represents

a zero matrix of size q � r, and

Cn ¼ fjnDt�rxfjnmxn
Dt�rufjnmuDt ð3:5Þ

is a term that does not depend on xn and u. The distribution

of [xT
nþ1, xT

n, . . ., xT
0, uT]T can be written from equation (3.4) as

[xT
nþ1, xT

n , . . . ,xT
0 ,u]T � N (mnþ1 ¼ Fnmn þ gn, Snþ1

¼ FnSnFT
n ) ð3:6Þ

and the covariance Snþ1 can be expanded as

Snþ1 ¼

Snþ1,nþ1 Snþ1,n Snþ1,n�1 � � � Snþ1,0 Lnþ1,u

ST
nþ1,n Sn,n Sn,n�1 � � � Sn,0 Ln,u

ST
nþ1,n�1 ST

n,n�1 Sn�1,n�1 � � � Sn�1,0 Ln�1,u

..

. ..
. ..

. . .
. ..

. ..
.

ST
n,0 ST

n,0 ST
n�1,0 � � � S0,0 L0,u

LT
n,u LT

n,u LT
n�1,u � � � LT

0,u Su,u

2
66666666664

3
77777777775

,

ð3:7Þ

where

Snþ1,nþ1 ¼ ((Id þrxfjnDt)Sn,n þrT
ufjnL

T
n,uDt)(Id þrT

x fjnDt)

þ (rufjnSu,uDtþ (Id þrT
x fjnDt)Ln,u)rT

ufjnDt, ð3:8Þ

Lnþ1,u ¼ (Id þrxfjnDt)Ln,u þrufjnSu,uDt ð3:9Þ
and

Snþ1,j ¼ (Id þrxfjnDt)Sn, j þrufjnL
T
j,uDt

for 0 � j � n:
ð3:10Þ

If the above evolution of the covariance matrix can be

related to the evolution of the sensitivity matrix, as presented

in §2 and equation (2.8), then the dependencies between the

state vector and the parameters can be studied. This concept

is developed in the next section.
4. Relationship between sensitivity and forward
propagation of uncertainty

In this section, the relationship between the evolution of the

sensitivity matrix and the evolution of the covariance

matrix of the joint distribution between all the state vectors

until time tn and the parameters is developed. Equation

(3.8) can be expanded as follows:

Snþ1,nþ1 ¼ Sn,n þrxfjnSn,nDtþrT
ufjnL

T
n,uDt

þ Sn,nrT
x fjnDtþrxfjnSn,nrT

x fjnDt2

þrT
ufjnL

T
n,urT

x fjnDt2 þrufjnSu,urT
ufjnDt2

þLn,urT
ufjnDtþrT

x fjnLn,urT
ufjnDt2: ð4:1Þ
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Assume the following:
Sn,n ¼ SnST

n , ð4:2Þ
Ln,u ¼ Sn ð4:3Þ

and
Su,u ¼ I p: ð4:4Þ

Under the above assumptions, it can be deduced from

equations (4.1) and (2.8) that
Snþ1,nþ1 ¼ Snþ1ST

nþ1: ð4:5Þ

Furthermore, equation (3.9) reads

Lnþ1,u ¼ (Id þrxfjnDt)Sn þrufjnDt,

which, as evident from equation (2.7), is the standard forward

propagation of the sensitivity matrix. Hence

Lnþ1,u ¼ Snþ1: ð4:6Þ
Finally, the term Snþ1,n from equation (3.10) can be written as

Snþ1,n ¼ Snþ1ST
n : ð4:7Þ

From equations (4.5), (4.6) and (4.7), it can be concluded

that if the initial prior uncertainty in [xT
0, u]T is assumed to

be Gaussian with covariance

Cov
x0

u

� �� �
¼ S0 ¼

S0ST
0 S0

ST
0 I p

" #
, ð4:8Þ

then the joint vector of u, the parameters, and [xT
n, xT

n21, . . .,

xT
0]T, the state-vector corresponding to time instants [t0, t1,

. . ., tn], can be approximated, by considering only the first-

order terms after linearization, to be a Gaussian distribution

with the following covariance:
ce

15:20170871
Cov

xn

xn�1

..

.

x0

u

0
BBBBBB@

1
CCCCCCA ¼ Sn ¼

SnST
n SnST

n�1 SnST
n�2 � � � SnST

0 Sn

Sn�1ST
n Sn�1ST

n�1 Sn�1ST
n�2 � � � Sn�1ST

0 Sn�1

Sn�2ST
n Sn�2ST

n�1 Sn�2ST
n�2 � � � Sn�2ST

0 Sn�2

..

. ..
. ..

. . .
. ..

. ..
.

S0ST
n S0ST

n�1 S0ST
n�2 � � � S0ST

0 S0

ST
n ST

n�1 ST
n�2 � � � ST

0 Ip

2
6666666666666666664

3
7777777777777777775

: ð4:9Þ
Remark 4.1. Note that a prior mean for the vector [xT
0, uT]T is

assumed to be

Mean
x0

u

� �� �
¼ m0 ¼

mx0

mu

� �
ð4:10Þ

based on which the mean vector of the state will propagate

according to equation (3.3), essentially according to the forward

Euler method. While this propagated mean does not directly

influence the posterior uncertainty of the parameters, which

depends only on the covariance matrix, it is important to note

that the sensitivity terms in the covariance matrix of equation

(4.9) are evaluated at the propagated means. The propagated

mean of the joint vector [xT
n, xT

n21, . . ., xT
0, uT]T is referred

throughout this manuscript as mn ¼ [mT
xn

, mT
xn21

, . . ., mT
x0

, mT
u]T.

Remark 4.2. The required conditions presented in equations

(4.2), (4.3) and (4.4), can also be derived without temporal dis-

cretization of the sensitivity and linearized forward model.

This is presented in appendix A, which presents a differential

equation describing the evolution of the joint covariance

matrix, leading to the conditions derived above without tem-

poral discretization. Even though the method presented in

appendix A may be considered more general, the author first

conceived the idea using the arguments shown above, and

hence these ideas are presented in the main text.
5. Measurements (observations)
Having established how the covariance of the state and the par-

ameters evolves in relation to the sensitivity matrix, the next

task is to extend this framework to include the measurements.

Eventually, one wants to obtain an expression for the joint dis-

tribution of the measurements and the parameters, so that

conditioning this joint distribution on the measurements

(implying that measurements are known) will yield infor-

mation about how much can be learned about the parameters.

Consider a linear observation operator where yn [ Rm is

measured at time tn according to

yn ¼ Hnxn þ en, ð5:1Þ

where Hn [ Rm�d is the observation operator at time tn and en

is the measurement noise. Let en be independently (across all

measurement times) distributed as

en � N (Om,Yn), ð5:2Þ

where Om is a zero vector and Yn is the covariance structure of

the noise. From equations (4.9) and (5.1), it is easy to see that

[yT
n, yT

n21, . . ., yT
0, u]T follows a Gaussian distribution with the

following mean and covariance:
Mean

yn

yn�1

..

.

y0

u

2
66666664

3
77777775

0
BBBBBBB@

1
CCCCCCCA
¼ an ¼

Hnmxn

Hn�1mxn�1

..

.

H0mx0

mu

2
66666664

3
77777775

; Cov

yn

yn�1

..

.

y0

u

2
66666664

3
77777775

0
BBBBBBB@

1
CCCCCCCA
¼

An Bn

BT
n Ip

� �
, ð5:3Þ
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An ¼

HnSnST
nHT

n þYn HnSn ST
n�1 HT

n�1 � � � HnSnST
0 HT

0

Hn�1Sn�1ST
nHT

n Hn�1Sn�1ST
n�1HT

n�1 þYn�1 � � � Hn�1Sn�1ST
0 HT

0

..

. ..
. . .

. ..
.

H0S0ST
nHT

n H0S0 ST
n�1HT

n�1 � � � H0S0ST
0 HT

0 þY0

2
66664

3
77775 ð5:4Þ
rg
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and

BT
n ¼ [ST

nHT
n ST

n�1HT
n�1 � � � ST

0 HT
0 ]: ð5:5Þ

Remark 5.1. A nonlinear observation operator H in equation

(5.1), as opposed to the linear operator H, does not present

any technical challenges to the formulation as it can be line-

arized at the current mean values. Following this, in

equations (5.4) and (5.5), H would need to be replaced by

the tangent operator rHjn.
6. Conditional distribution of the parameters
The quantity of interest is the conditional distribution of

parameters; i.e. how the beliefs about the parameters

have changed from the prior beliefs to the posterior beliefs

(the conditional distribution) by the measurements. More

than the mean of the conditional distribution, the covariance

is of interest. This is due to two reasons: (i) owing to

the Gaussian approximations, the covariance entirely

reflects the amount of uncertainty in the parameters; and

(ii) while the mean of the conditional distribution depends

on the measurements, the covariance does not. The latter

is significant because a priori, the measurement values are

not known. Consequently, the average (over all possible

measurements) uncertainty in the parameters too is inde-

pendent of the measurements, and hence can be studied

a priori.
From equation (5.3), since the joint distribution of

the parameter vector and the observables is Gaussian,

the conditional distribution of the parameter vector

given the measurements is also Gaussian and can be

written as

p(u j [yT
n , yT

n�1, . . . ,yT
0 ]T) ¼ N (bn,Cn), ð6:1Þ

with

bn ¼ mu þ BT
nA�1

n ([yoT
n , yoT

n�1, . . . ,yoT
0 ]T

� [(Hnmxn
)T,(Hn�1mxn�1

)T, . . . ,(H0mx0
)T]T) ð6:2Þ

and

Cn ¼ Ip � BT
nA�1

n Bn, ð6:3Þ

where yo
i denotes the measurement value (the realization

of the random variable yn observed) at ti. Note that the

conditional covariance Cn is independent of these mea-

surement values yo
i . Furthermore, since the uncertainty

in a Gaussian random variable, quantified by the differen-

tial entropy, depends only on the covariance matrix, the

posterior distribution uncertainty does not depend on

the measurements.
7. Conditional covariance when n!1 and
when n is finite

For the asymptotic case when n!1, it can be shown that

(for proof see appendix B)

lim
n!1

Cn ¼M�1, ð7:1Þ

where M is the Fisher information matrix defined as

M ¼
Xn

i¼0

[(rT
ux ji)Y

�1
i (rux ji)]: ð7:2Þ

Furthermore, for finite n, the conditional covariance can be

written as (for proof see appendix C)

Cn ¼ Ip þ
Xn

i¼0

(ST
i HT

i Y
�1
i HiSi)

 !�1

: ð7:3Þ

Remark 7.1. Equations (7.1) and (7.3) relate to the classical

and Bayesian Cramer Rao bounds [22,23], respectively, in

estimation theory.
8. Information gain
In this section, the gain in information about the parameters by

the measurements is considered. For details of such an infor-

mation-theoretic approach the reader is referred to [21]. The

gain in information about the parameter vectoruby the measure-

ments of zn ¼ [yT
n, yT

n21, . . ., yT
0]T is given by the mutual

information between zn and u, which is equal to the difference

between the differential entropies of the prior distribution p(u)

and the conditional distribution p(ujzn). From equations (4.8),

(6.1) and (6.3), this gain in information can be written as

In ¼
1

2
ln [det (Ip)]� 1

2
ln [det (Cn)] ¼ �1

2
ln [det (Cn)], ð8:1Þ

where det (�) denotes the determinant. The above can be

expanded through equation (7.3) as

In ¼
1

2
ln det Ip þ

Xn

i¼0

(ST
i HT

i Y
�1
i HiSi)

 !" #
: ð8:2Þ

Note that the above represents the information gain for

the joint vector of all the parameters. Commonly, one is

interested in individual parameters, for which the infor-

mation gain is now presented. Let u{S} denote the vector of

a subset of parameters indexed by the elements of set S
and u{Sc} denote the vector of the remaining parameters,

the complement of set S. Hence, ufig denotes the ith par-

ameter, ufi,jg denotes the vector formed by taking the ith
and jth parameters, and so on. The conditional covariance
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matrix Cn can be decomposed into the components of u{S}

and u{Sc} as
royalsocietypublishing.o
Cn ¼
Is O
O I p�s

� �
þ
Xn

i¼0

(S{S}T

i HT
i Y
�1
i HiS

{S}
i ) (S{S}T

i HT
i Y
�1
i HiS

{Sc}
i )

(S{Sc}T

i HT
i Y
�1
i HiS

{S}
i ) (S{Sc}T

i HT
i Y
�1
i HiS

{Sc}
i )

" # !�1

ð8:3Þ
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Cn ¼
Is O

O I p�s

� �
þ

Xn

i¼0

(S{S}T

i HT
i Y
�1
i HiS

{S}
i )

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{D{S}
n Xn

i¼0

(S{S}T

i HT
i Y
�1
i HiS

{Sc}
i )

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{D{S,Sc }
n

Xn

i¼0

(S{Sc}T

i HT
i Y
�1
i HiS

{S}
i )|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D{Sc,S}
n

Xn

i¼0

(S{Sc}T

i HT
i Y
�1
i HiS

{Sc}
i )|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D{Sc }
n

2
66666666664

3
77777777775

0
BBBBBBBBBB@

1
CCCCCCCCCCA

�1

¼ Is þD{S}
n D{S,Sc}

n

D{Sc,S}
n I p�s þD{Sc}

n

" #�1

, ð8:4Þ
where s is the cardinality of S, and S{S} [ Rd�s and

S{Sc} [ Rd�(p�s) are the sensitivity matrices for u{S} and u{Sc},

respectively, i.e. S{S} ¼ ru{S} x and S{Sc} ¼ r
u{Sc } x. Given the

above decomposition, the marginal covariance of u{S} given

the measurements can be written as the Schur complement

of the matrix [I p�s þ
Pn

i¼0 (S{Sc}T

i HT
i Y
�1
i HiS

{Sc}
i )] in Cn as

follows:

C{S}
n ¼ [(Is þD{S}

n )� (D{S,Sc}
n )(I p�s þD{Sc}

n )�1(D{Sc,S}
n )]�1 ð8:5Þ

and the information gain I {S}
n as

I {S}
n ¼�

1

2
ln [det (C{S}

n )]

¼1

2
ln [(Is þD{S}

n )� (D{S,Sc}
n )

(I p�s þD{Sc}
n )�1(D{Sc,S}

n )]: ð8:6Þ

Another quantity of interest is the correlation between

two subsets of parameters u{S} and u{W}. In an information-

theoretic context this can be assessed by how much more

information is gained about the parameters u{S} in addition

to I {S}
n if u{W} was also known, i.e. the mutual information

between u{S} and u{W} given the measurements. Similar to

the procedure employed in equation (8.4), by splitting Cn

into three components for u{S}, u{W} and u{(S<W)c}, one can

write the conditional covariance C{SjW}
n of the parameters

u{S} given the measurements and, additionally, the par-

ameters u{W} as follows:

C{SjW}
n ¼ [(Is þD{S}

n )� (D{S,(S<W)c}
n )(I p�s�w

þD{(S<W)c}
n )�1(D{(S<W)c,S}

n )]�1, ð8:7Þ

where w is the cardinality of W,

D{(S<W)c}
n ¼

Xn

i¼0

S{(S<W)c}T

i HT
i Y
�1
i HiS

{(S<W)c}
i

� �
with S{(S<W)c} ¼ r

u{(S<W)c } x ð8:8Þ
and

D{S,(S<W)c}
n ¼

Xn

i¼0

(S{S}T

i HT
i Y
�1
i HiS

{(S<W)c}
i ): ð8:9Þ

The information gain I {SjW}
n about the parameters u{S}

given both the measurements and the parameters u{W} is

I {SjW}
n ¼ �1

2
ln [det (C{SjW}

n )]

¼ 1

2
ln [(Is þD{S}

n )� (D{S,(S<W)c}
n )

� (I p�s�w þD{(S<W)c}
n )�1(D{(S<W)c,S}

n )]: ð8:10Þ

Lastly, the conditional mutual information (CMI), i.e. the

additional (after the measurements are known) information

gained about the parameters u{S} due to the knowledge of

u{W} is

I {S;W}
n ¼ I {SjW}

n � I {S}
n : ð8:11Þ
Remark 8.1. I {S}
n is the gain in information about the par-

ameters u{S} given the measurements and when nothing is

known about the parameters u{Sc}.

Remark 8.2. I {SjW}
n is the gain in information about the

parameters u{S} given the measurements and the parameters

u{W}, when nothing is known about the parameters u{(S<W)c}.

Remark 8.3. In [21], the authors suggested a method to inter-

pret the information gains I {S}
n and I {SjW}

n when the set S
contained a single parameter by proposing a hypothetical

measurement device. This is not necessary in the current for-

mulation as all the distributions are approximated to be

Gaussian. Therefore, when S contains only a single parameter,

the conditional covariances C{S}
n and C{SjW}

n are scalar quantities

representing the posterior variances of the parameter u{S}.

When S contains more than one parameter, the quantities

I {S}
n and I {SjW}

n are scalars that quantify the gains in

information.
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The above developed functions for information gains

(and associated variances) are collectively referred as ‘ISFs’.

From this point onwards, the terms marginal posterior variance
or just marginal variance for a parameter subset u{S} refers to

the the variance conditioned on only the measurements,

equation (8.5), and the corresponding information gain,

equation (8.6), is referred as the marginal information gain.

Similarly, the term conditional variance is used to refer to

the variance when the measurements and additionally a

parameter subset u{W} is given, equation (8.7), and the corre-

sponding information gain is referred as the conditional
information gain, equation (8.10). Lastly, the information

shared between two subsets of parameters given the

measurements, equation (8.11), is referred as the conditional
mutual information or just the mutual information. Finally, the

vector zn ¼ [yT
n, yT

n21, . . ., yT
0]T is used to denote a collection

of all measurement vectors up to time tn.
9. Results and discussion
In this section, the theory developed above is applied to

study three dynamical systems.

9.1. Three-element Windkessel model
Windkessel models are widely used to describe arterial

haemodynamics [24]. Increasingly, they are also being used

as boundary conditions in three-dimensional computational

fluid dynamics simulations to assess patient-specific behav-

iour [20,25]. To perform patient-specific analysis, it is

imperative that the parameters of the Windkessel model are

estimated from measurements taken in each patient individu-

ally. A three-element Windkessel model is shown in figure 1a
and consists of three parameters: Rp (proximal resistance)

which represents the hydraulic resistance of large vessels; C
(capacitance) which represents the compliance of large

vessels; and Rd which represents the resistance of small

vessels in the microcirculation. Note that these models use

the electric analogy to fluid flow where pressure P is seen as

voltage and flow-rate q is seen as electric current. Typically,

inlet flow-rate qi is measured (via magnetic resonance ima-

ging or Doppler ultrasound) and inlet pressure Pi is

measured by pressure catheters. The goal then is to estimate

the parameters (Rp, C and Rd) by assuming qi is deterministi-

cally known and minimizing the difference between the Pi

reproduced by the model and the Pi that was measured.

The model dynamics is described by the following differential
algebraic equations, which may also be rewritten as a

single ODE:

_P
c ¼ _Pext þ

1

C
(qi � qo),

Pc ¼ Pven þ qoRd

and Pi ¼ Pc þ qiRp,

9>>>>=
>>>>;

, with Pi(t ¼ 0) ¼ Pi
0, ð9:1Þ

where Pi and Pc are the inlet and mid-Windkessel pressures,

respectively, (figure 1a); Pext and Pven are the reference exter-

nal and venous pressures, respectively, which are both set to

zero; and qi and qo are the inlet and outlet flow-rates, respect-

ively. The measurement model is written as follows:

yn ¼ Pi
n þ en where en � N (0,s2

noise), ð9:2Þ

where en is the noise (normally distributed with zero mean and

variance s2
noise) in measuring Pi

n to give the measurement yn at

time tn. The measurement vector, therefore, has only one

component yn¼ [yn]. The nominal values of Rp, C, Rd are 0.838

mmHg . s cm23, 0.0424 cm3 mmHg21 and 9.109 mmHg . s cm23.

Note that these units are chosen so that the results are comprehen-

sible in typical units used in the clinic: millilitres for volume and

millimetres of mercury for pressure. Figure 1b shows the inlet

flow-rate qi (taken from [20,26] where it was measured in the car-

otid artery of a healthy 27-year-old subject), and the resulting

pressure curves obtained by the solution of equation (9.1) with

Pi
0 ¼ 85 mmHg and nominal parameter values. To put a zero-

mean and unit-variance prior on the parameters, see equation

(4.8), the following parameter transformation is considered

j ¼ j0 þ 6juj where j [ {Rp,C,Rd}, ð9:3Þ

where j represents the real parameter, j0 and 6j are transform-

ation parameters, respectively, and uj represents the

transformed parameter on which a prior of zero mean and unit

variance is considered. Therefore, the prior considered on the

real parameter j has mean j0 and variance 62
j. The posterior var-

iances for the transformed parameter uj and the real parameter j

are represented by s2
u and s2, respectively. A total of 150 time-

points, evenly distributed between t¼ 0 s and t ¼ Tc (where

Tc¼ 0.75s is the time period of the cardiac cycle), are used for

the computation of ISFs and conditional variances.

Figure 2 shows the marginal posterior variances

(conditional only on the measurements, (a–c)) and the corre-

sponding information gains (d– f ) for individual parameters

at four different levels of measurement noises. The con-

ditional variances when all measurements are taken into

account, i.e. at t ¼ Tc, are also summarized in table 1. An

immediate utility of figure 2 is in identify intervals of time
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where information is concentrated about a parameter. For

example, from the first column it is clear that most of the

information about the parameter uRp
is concentrated in the

interval t [ [0.3, 0.4] as this is the interval that shows maxi-

mum reduction in the marginal variance and highest

information gain. This interval corresponds to the rising

peak of the inlet flow-rate curve, see figure 1b, and from

equation (9.1) it is clear that the parameter uRp
should have

most effect on the pressure Pi in this interval. For the par-

ameter uC, it appears from figure 2 that while information

is available in the entire cardiac cycle, larger amount of infor-

mation is concentrated in the later half of the cardiac cycle, t
[ [0.4, 0.75]. For Rd information is available throughout the

cardiac cycle. These observations have also been presented

in [20] through the computation of GSFs [27] and in [21]

through a Monte Carlo type computation of information

gain. However, as opposed to GSFs which can be non-mono-

tonic and therefore hard to interpret, the ISFs are always

monotonic. Furthermore, since the GSFs are normalized by

design, they are forced to start at 0 and end at 1, thereby

making the assessment of measurement noise difficult. On

the other hand, the effect of measurement noise is inherently

built in to the ISFs. Figure 2 quantifies how increasing

measurement noise results in a decreasing amount of infor-

mation gained about the parameters. While this behaviour

is intuitively expected, its quantification with respect to

each individual parameter is made possible with the pro-

posed method. For example, while at s2
noise ¼ 100.0 mmHg2

the conditional variance of the parameter uRp
after con-

sidering all the measurements is 0.158 square units, at

s2
noise ¼ 4900.0 mmHg2 this conditional variance is 0.887

square units. Comparing this to the prior variance of 1.0

square units, one may conclude that at measurement noise

of 4900.0 mmHg2 (standard deviation of 70.0 mmHg), the

parameter Rp is extremely difficult to identify relative to
when the measurement noise is 100.0 mmHg2 (standard devi-

ation of 10.0 mmHg). A similar argument can be made for the

parameter uC, even though its identifiability is better than

that of uRp
(uC has posterior variance of 0.672 square units

at measurement noise of s2
noise ¼ 4900.0 mmHg2). However,

the parameter uRd
appears to be well identifiable even at

s2
noise ¼ 4900.0 mmHg2 with final posterior variance of 0.07

square units. This behaviour can be explained by the fact

that measurement noise is assumed to be independent and

identically distributed with zero mean at all measurement

times. Therefore, the mean pressure is measured much

more precisely than individual pressure measurements, irre-

spective of the noise levels, as when mean/expectation of

equation (9.2) is taken, the expectation of noise component

is zero:

E[yn] ¼ E[Pi
n]þ E[en] ¼ E[Pi

n], ð9:4Þ

where E denotes the expectation operator. From equation

(9.1) and figure 1a, the inlet mean pressure is equal to the

inlet mean flow-rate times the sum of both resistances, i.e.

E[Pi
n] ¼ (Rp þ Rd)E[qi]. Approximating E[yn] by the sample

mean as (1=n)
Pn

0 yi, one obtains

1

n

Xn

i¼0

yi ¼ (Rp þ Rd)E[qi]: ð9:5Þ

As qi is assumed deterministic, from the above equation it

can be seen that Rp þ Rd is indirectly measured with high pre-

cision. As Rd is approximately an order of magnitude larger

than Rp, it is natural that Rd dominates the sum (Rp þ Rd)

and hence, irrespective of the noise levels, a large amount of

information is obtained about Rd (figure 2c,f). The order

of magnitudes of the resistances are chosen by the physics of

circulation, where the resistance of small vessels and micro-

circulation is significantly higher than that of large vessels

[20,26], and is reflected in the chosen priors for the problem.



Table 1. Prior and posterior variances (marginal and conditional) for the Windkessel model.

prior expected posterior

u-space real space (j) u-space real space (j)

mean variance mean variance variance variance std./prior-mean

parameter mu s2
u m 5 j0 s2 5 62

j s2
u s2 s/j0

observation noise, s2
noise ¼ 100.0

Rp 0 1.0 8.40 � 1021 1.60 � 1021 1.58 � 1021 2.53 � 1022 18.9%

RpjC 1.41 � 1021 2.25 � 1022 17.9%

RpjRd 8.13 � 1022 1.30 � 1022 13.6%

C 0 1.0 4.00 � 1022 4.00 � 1024 4.45 � 1022 1.78 � 1025 10.5%

CjRp 3.95 � 1022 1.58 � 1025 9.9%

CjRd 4.36 � 1022 1.74 � 1025 10.4%

Rd 0 1.0 9.11 2.03 � 101 2.73 � 1023 5.52 � 1022 2.6%

RdjRp 1.40 � 1023 2.84 � 1022 1.8%

RdjC 2.67 � 1023 5.41 � 1022 2.6%

observation noise, s2
noise ¼ 625.0

Rp 0 1.0 8.40 � 1021 0 5.32 � 1021 8.51 � 1022 34.7%

RpjC 5.04 � 1021 8.06 � 1022 33.8%

RpjRd 3.51 � 1021 5.61 � 1022 28.2%

C 0 1.0 4.00 � 1022 0 2.16 � 1021 8.64 � 1025 23.2%

CjRp 2.04 � 1021 8.18 � 1025 22.6%

CjRd 2.16 � 1021 8.63 � 1025 23.2%

Rd 0 1.0 9.11 0 1.31 � 1022 2.66 � 1021 5.7%

RdjRp 8.66 � 1023 1.75 � 1021 4.6%

RdjC 1.31 � 1022 2.65 � 1021 5.7%

observation noise, s2
noise ¼ 2500.0

Rp 0 1.0 8.40 � 1021 0 8.09 � 1021 1.29 � 1021 42.8%

RpjC 7.98 � 1021 1.28 � 1021 42.5%

RpjRd 6.75 � 1021 1.08 � 1021 39.1%

C 0 1.0 4.00 � 1022 0 5.14 � 1021 2.05 � 1024 35.8%

CjRp 5.07 � 1021 2.03 � 1024 35.6%

CjRd 5.13 � 1021 2.05 � 1024 35.8%

Rd 0 1.0 9.11 0 4.02 � 1022 8.15 � 1021 9.9%

RdjRp 3.36 � 1022 46.80 � 1021 9.0%

RdjC 4.02 � 1022 8.13 � 1021 9.9%

observation noise, s2
noise ¼ 4900.0

Rp 0 1.0 8.40 � 1021 0 8.87 � 1021 1.42 � 1021 44.8%

RpjC 8.82 � 1021 1.41 � 1021 44.7%

RpjRd 7.99 � 1021 1.28 � 1021 42.6%

C 0 1.0 4.00 � 1022 0 6.72 � 1021 2.69 � 1024 41.0%

CjRp 6.68 � 1021 2.67 � 1024 40.9%

CjRd 6.70 � 1021 2.68 � 1024 40.9%

Rd 0 1.0 9.11 0 7.05 � 1022 1.43 13.1%

RdjRp 6.35 � 1022 1.29 12.5%

RdjC 7.03 � 1022 1.42 13.1%
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Equation (9.5) and the arguments presented above imply

that a significant amount of correlation must have been built

up between the parameters Rp and Rd in the posterior distri-

bution as the sum (Rp þ Rd) is measured with high

precision. This correlation implies that if one of the parameters

Rp or Rp were known then how much additional information

can be gained about the other parameter. The CMI presented

in equation (8.11) precisely measures this additional infor-

mation. CMIs for all the three pairs of the parameters are

shown in figure 3. It is clear that at the end of the cardiac

cycle, the largest CMI is for the parameter pair uRp
and uRd

.

It is sensible to compare the magnitude of CMIs with the mar-

ginal information gains (figure 2). For example, for the case of

s2
noise ¼ 100.0, the marginal gain in information about the par-

ameter Rp is approximately 0.9 nats and the mutual
information between Rp and Rd is 0.35 nats; therefore, one

may conclude that approximately 40% extra information

about the parameter Rp is locked up in the correlation with

Rd. For the pair Rd and C, it appears that correlation is built

up in the t [ [0.0, 0.4], the diastole, and destroyed in the

remaining part, the systole, of the cardiac cycle. This can be

explained by the fact that the time-constant e2t/t, with t¼ RdC,

is the dominant parameter that governs the diastole phase

[21] leading to a built up of correlation, and as independent

information about C and Rd is acquired in systole (figure 2)

this correlation is destroyed. It should be noted that these

aspects, even without knowing the physics (or solution) of

the problem, can be naturally inferred from figures 2 and 3.

The effect of correlations can be further assessed by looking

at the conditional variances (a–c) and conditional information
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gains (d– f) as depicted in figure 4. For s2
noise ¼ 625.0, this

figure shows the conditional posterior variances and the con-

ditional information gains for individual parameters when

other parameters are given. For the parameter uRp
, it can be

seen that the conditional variance given uRd
is lower than the

marginal variance in the interval t [ [0.4, 0.75] as this is the

region where mutual information (correlation) is built between

these parameters (figure 3). Similarly, in diastole, t [ [0.0, 0.4],

it can be seen that the conditional variance of parameter uC

given uRd
is significantly lower as correlation is built up, but

this gain quickly diminishes to zero in systole, t [ [0.4, 0.75].

For the parameter Rd, as a large amount of individual infor-

mation is obtained marginally, the conditional variances are

not too different than the marginal variances. Note, that the

variances show an opposite behaviour to information gains

as a decrease in variance implies gain in information. There-

fore, even though the two measures appear to be similar,

information gain is a better measure as it can be readily

applied to cases where behaviour of a set of parameters is

required to be studied. For example, if one was interested in

the joint information again for a set of two parameters given

a third, the information gain measure will be a scalar but

the joint covariance will be a matrix. Furthermore, the relation

between conditional information gain, marginal information

gain, and mutual information is additive, see equation (8.11),

whereas the relation between conditional variance and

marginal variance is, in general, not additive. As a demon-

stration, it can be observed that the conditional information

gain curves in figure 4 can be obtained by the addition of

the corresponding curves from figures 2 and 3.
9.2. The Hodgkin – Huxley model of a neuron
The Hodgkin–Huxley model [28] describes ionic exchanges

and their relationship to the membrane voltage in a biological

neuron. This model has also been used as the basis for several

other ionic models to describe a variety of excitable tissues

such as cardiac cells [29]. The model is described by the

following ODE equations:

_Vm ¼
1

Cm

Iext � gNam3h(Vm �VNa)
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{INa

�gKn4(Vm �VK)
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{IK

� gL(Vm �VL)
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{IL

2
66664

3
77775,

_m¼ am(Vm)(1�m)�bm(Vm)m,

_h¼ ah(Vm)(1�m)�bh(Vm)h
and _n¼ an(Vm)(1�m)�bn(Vm)n

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð9:6Þ
with

am(Vm) ¼ �0:1(Vm þ 50)

exp (�(Vm þ 50)=10)� 1
,

bm(Vm) ¼ 4 exp
�(Vm þ 75)

18

� �
,

ah(Vm) ¼ 0:07 exp
�(Vm þ 75)

20

� �
,

bh(Vm) ¼ 1:0

exp (�(Vm þ 45)=10)þ 1
,

an(Vm) ¼ �0:01(Vm þ 65)

exp (�(Vm þ 65)=10)� 1

and bn(Vm) ¼ 0:125 exp
�(Vm þ 75)

80

� �
,

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

ð9:7Þ

where Vm is the membrane voltage, Cm is the membrane

capacitance, Iext is the external current applied; INa, IK and

IL are the sodium, potassium and leakage currents, respect-

ively; VNa, VK and VL are the equilibrium potentials for

sodium, potassium and leakage ions, respectively; gNa, gK

and gL are the maximum conductances for the channels of

sodium, potassium and leakage ions, respectively; and m, h
and n are the dimensionless gate variables, m, h, n [ [0, 1],

that characterize the activation and inactivation of sodium

and potassium channels. Cm is set to 1 mF cm22, and the equi-

librium potentials are defined in millivolts (mV) relative to

the membrane resting potential, ER, as follows [30,31]:

ER ¼ �75 mV,

VNa ¼ ER þ 115 mV,

VK ¼ ER � 12 mV

and VL ¼ ER þ 10:613 mV:

9>>>=
>>>;: ð9:8Þ

The inverse problem is of estimating the three parameters gNa,

gK and gL by measuring the membrane voltage Vm when a con-

stant external current Iext ¼ 20 mA cm22 is applied to the

neuron. It is well known that when a relatively high constant

external current is applied the neuron exhibits a tonic spiking

pattern in membrane voltage Vm [32–34]. With nominal par-

ameter values of gNa ¼ 120.0 mS cm22, gK ¼ 36.0 mS cm22

and gL ¼ 0.3 mS cm22, and initial conditions of Vm(0) ¼ 275

mV, m(0) ¼ 0.05, h(0) ¼ 0.6 and n(0) ¼ 0.325, this tonic spiking

behaviour, generated by solving equation (9.6), is shown in

figure 5. The observation model reads

yn ¼ Vmn þ en where en � N (0,s2
noise), ð9:9Þ

where Vmn
is the membrane voltage at time tn and en is the zero-

mean measurement noise with variance s2
noise. As only Vm is

measured the observation vector is yn ¼ [yn]. As opposed to

the Windkessel case where the effect of noise is evaluated, in
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this case the effect of number of observations, i.e. the obser-

vation frequency is evaluated. Nobs number of measurement

time-points evenly distributed in the time interval t [ [0.0,

40.0] ms are studied. Four levels of observation frequencies

resulting in four values of Nobs [ f100, 200, 400, 800g are

used while s2
noise is set to 100.0 mV2 (standard deviation of

10.0 mV). Similar to the Windkessel example the following

parametrization is used to impose zero-mean and unit-variance

priors on the parameters.

j ¼ j0 þ 6juj where j [ {gNa, gK, gL}, ð9:10Þ

where j0 is the nominal parameter value, zero-mean and unit-

variance normal distribution prior is imposed on the

transformed parameter uj, resulting in the prior distribution

imposed on the real parameter j to be a normal distribution
with mean j0 and variance 62
j. The parameters 6j are set to

10.0, 6.0 and 0.1 mS cm22 for gNa, gK and gL, respectively.

Figure 6 shows the posterior marginal variances (a–c) and

the marginal information gains (d– f ) for the three parameters

for all the four observation frequencies. In all these plots, an

arbitrarily scaled Vm(t) curve is shown in light grey for ease

of interpretation relative to Vm(t) variations. As expected,

increasing the measurement frequency results in larger

amounts of information (and consequently larger reduction

in the posterior variances). However, it is observed that the

parameters ugNa
and ugL

benefit most from an increase in

measurement frequency as opposed to the parameter ugK

which benefits only marginally. This implies that at low obser-

vation frequencies the identifiability of ugK
is good, while very

low amount of information is available for the parameters ugNa
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and ugL
. The behaviour for the parameter ugK

(figure 6b,e) shows

that the information about this parameter is concentrated

mostly in the sharp rising phase of the action potential Vm.

A similar behaviour, although less salient, is observed for the

parameters ugNa
and ugL

(figure 6a,d,c,f ). While the Hodgkin–

Huxley model is quite complex with gating variables of

different time-constants and dependence of ionic currents on

powers (up to fourth power) of the gating variables, it is

widely understood that the rising phases of the action potential

Vm are related to the sodium and potassium currents. This may

explain why information about the parameters ugNa
and ugK

is

mostly concentrated in this region. Furthermore, if we accept

that the sodium and potassium currents, in combination, are

responsible for the rising action potential, then we should

also expect a substantial amount of correlation between the

parameters ugNa
and ugK

as it should be hard to distinguish

between these two parameters. This is precisely what is

observed by the CMI analysis, figure 7, where a large

amount of mutual information is developed between these

two parameters. For the case of Nobs ¼ 100, the marginal infor-

mation gain in the parameter ugNa
, figure 6, is approximately 0.3

nats, and it is observed from figure 7 that approximately 0.7

nats of mutual information exists between ugNa
and ugK

. This

implies that the amount of information that can be gained

about ugNa
by knowing ugK

, in addition to the measurements,

is larger than the amount of information gained by just the

measurements. Indeed, as the observation frequency is

increased more information is available about all the

parameters individually. Figure 7 also shows that significant

amount of correlation is built between the parameters ugK
and

ugL
during the sharp rising part of Vm. For example, for

Nobs ¼ 200, the amount of CMI between ugK
and ugL

is approxi-

mately 0.14 nats (figure 7), approximately the same magnitude

as the marginal information gain of 0.15 nats (figure 6) for the
parameter ugL
. At the same time, since the marginal infor-

mation gain for ugK
is approximately 1.25 nats (figure 6), the

effect of this correlation, amounting to an information gain of

0.14 nats (figure 7), is not too significant for estimating ugK
.

Finally, the effect of the CMI, i.e. the correlation, can

also be seen in terms of the conditional variances and

conditional information gains as shown in figure 8 for

Nobs ¼ 200. As discussed above the correlations between the

pairs (ugNa
, ugK

) and (ugK
, ugL

) show that the conditional var-

iances are significantly lower (and the conditional

information gain is larger) for one parameter when the

other parameter is additionally known. It should be noted

that the correlations and information gains presented are

specific to the protocol, i.e. a constant external current result-

ing in tonic spiking of the neuron and only Vm being

measured. The information gains will behave differently if

the protocol is changed, for example to intermittent step

currents or continuously varying external currents. Therefore,

one application of the methods proposed in this article can be

in optimal design of experiments, where one may design the

protocol such that maximal information gain occurs for indi-

vidual parameters while CMI (correlations in the posterior

distribution) are minimized.
9.3. Influenza A virus kinetics
The final example presented is for the kinetics of the influ-

enza A virus. The following model was proposed by

Baccam et al. [35] to describe viral infection

_V ¼ pI � cV,

_T ¼ �bTV

and _I ¼ bTV � dI,

9>>>=
>>>; ð9:11Þ
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where V is the infectious virus titre (measured in TCID50

ml21 of nasal wash), T is the number of uninfected

target cells, I is the number of productively infected cells

and fb, d, p, cg are the model parameters. The parameter p
represents the average rate at which the productively

infected cells, I, increase the viral titres, and the parameter

d represents the rate at which the infected cells die. The par-

ameter b characterises the rate at which the susceptible cells

become infected and c represents the clearing rate of the

virus.

As opposed to the previous example where the initial

conditions were assumed to be known, in this example,

the initial conditions for the virus titre V0 and the

number of uninfected target cells T0 are considered

unknown and hence form the parameters of the dynamical

system. Time is measured in days (d) and the initial

condition for the number of infected cells I0 is assumed

to be known at 0.0. Hence there are six parameters

[b, d, p, c, V0, T0] in total. The nominal values of the

parameters are chosen to be b¼ 2.7� 1025 (TCID50 ml21)21

d21, d¼ 4.0 d21, p¼ 0.012 TCID50 ml21 . d21, c¼ 3.0 d21,

V0¼ 0.1 TCID50 ml21 and T0¼ 4� 108 based on the average

patient parameters identified by Baccam et al. [35]. As in

the previous examples, the following parametrization is
used to impose zero-mean and unit-variance priors on the

transformed parameters:

j ¼ j0 þ 6juj, where j [ {b, d, p, c, V0, T0}, ð9:12Þ

where uj represents the transformed version of the real par-

ameter j, j0 represents the nominal values of the parameter,

and hence with a zero-mean and unit-variance prior on the

transformed parameters uj, the prior imposed on the real par-

ameter is of mean j0 and variance 62
j. The scaling parameters 6j

are set to 9 �10206, 1.3, 0.004, 1.0, 0.03 and 2.0 � 108 for b, d, p,

c, V0 and T0, respectively, in their respective units. The solution

to equation (9.11) for the nominal parameter values is shown in

figure 9. It is observed that both the virus titre V and the

number of infected cells I increase sharply until they peak at

the 2–3 day mark. After this a decrease in both values is

observed. The number of uninfected target cells T remains

approximately constant until the 2 day mark after which a

sharp decrease (approx. 4 orders of magnitude) is observed

over the next 2 days leading to a plateau.

To study the sensitivity and information gain two cases are

considered: first, when only V is measured; and second, when

both V and I are measured. In the first case, the observation

model reads:

yn ¼ Vn þ en where en � N (0,s2
noise), ð9:13Þ
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where Vn is thevirustitreconcentration at time tn anden is thezero-

mean measurement noise with variance s2
noise¼ 2.5� 107

(TCID50 ml21)2, i.e. a standard deviation of 5� 103 TCID50 ml21.

A total of 200 measurements are evenly distributed between

0 days and 10 days for the computation of marginal variances

and information gains.

Figure 10 shows the marginal variances for all the par-

ameters in solid lines and the conditional variances for a

four pairs of parameters in dashed lines. Given the dynamics

of the problem as shown in figure 9 it is not surprising that

most of the information gain about all the parameters

occurs in t [ [0, 4] days. The parameters ub, ud and uc

appear to be well identifiable given the large decreases in

marginal variances. However, the initial conditions uV0
and

uT0
show less decrease in the variances indicating problems

in their identifiability. Finally, the parameter p appears to

be unidentifiable given that its marginal variance decreases

from 1.0 (standard deviation 1.0) to only 0.7 square units

(standard deviation 0.84 units). Figure 11 shows the mutual

information between all the pairs of the parameters, where

the parameter pairs that show a high mutual information

are plotted in dashed lines. For the parameters in these
pairs of high mutual information, (ud, uc) and (up, uT0
), the

conditional variances are plotted in figure 10. The parameter

pair (up, uT0
) is particularly interesting as the parameter up,

although unidentifiable individually, becomes very well

identifiable, owing to the large mutual information it shares

with T0, if the initial condition T0 is known. This observation

was proved through classical methods by Miao et al. [6]

where it was shown that taking higher-order derivatives of

equation (9.11) and eliminating the unmeasured variables,

T and I, one obtains the following differential equation:

d3V
dt3
¼ d2V

dt2
þ dcV þ (dþ c)

dV
dt

 !
1

V
dV
dt
� bV

� �

� dc
dV
dt
� (dþ c)

d2V
dt2

: ð9:14Þ

As the above equation does not contain the parameter p,

in the absence of any other quantity, i.e. T and I, and the corre-

sponding initial conditions, the parameter p is not identifiable.

Miao et al. [6] also reported that when T0 is known, the par-

ameter p becomes identifiable, which is consistent with the
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large mutual information. In the Bayesian approach adopted in

this manuscript, a non-zero amount of knowledge (non-infinite

variance) is inherently assumed in the prior for uT0
, which

results in a small amount of information gain (and hence a

small reduction in the marginal variance from 1.0 to 0.7

square units). This small amount of information gain is a result

of the knowledge assumed in the prior. However, it is not sig-

nificant enough to hide the identifiability problem for up. One

can choose to impose prior of higher ignorance by increasing

the prior variance of the real parameter T0 by increasing the

scaling factor 6T0
. The results for four different values of 6T0

on the marginal variance of the parameter up are shown in

figure 12b. It is clear that a higher value of 6T0
, which implies

higher ignorance in the prior for T0, results in a decreasing

amount of information gained about the parameter up. This

example shows how, without the use of classical analytical

methods, see for example those presented in [6], which may

not be easily applicable to all dynamical systems, the infor-

mation theoretic approach can provide similar conclusions

about parameter identifiability. Lastly, the classical sensitivity

of the parameter p to the measurable V is shown in figure 12a,
whose large magnitude does not indicate any problems of par-

ameter identifiability. Finally, Miao et al. [6] reported that all

the parameters of the influenza dynamical system were well

identifiable if both V and I, or both V and T were measured.

For the case when both V and I are measured, the marginal var-

iances are shown in figure 13, which too shows that no

identifiability problems persist in this case. Note that the

error structure in the measurement of I was assumed to be iden-

tical to the measurement of V, equation (9.13).
10. Conclusion
A new class of functions called the ‘ISFs’ have been proposed to

study parametric information gain in a dynamical system.

Based on a Bayesian and information-theoretic approach,

such functions are easy to compute through classical sensitivity

analysis. Compared to the previously proposed generalized

sensitivity functions (GSFs) [27] to measure such information

gain, the ISFs do not suffer from the forced-to-one behaviour

and are easy to interpret as correlations are measured through
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separate measures of mutual information as opposed to oscil-

lations in GSFs. Furthermore, as opposed to GSFs, which are

normalized, the ISFs can be used to compare information

gain between different parameters and hence can be used to

rank the parameters on ease of identifiability. They can be

used to identify regions of high information content and indi-

cate identifiability problems for parameters which show little

to no information gain, or high mutual information (corre-

lation) with other parameters. The application of ISFs is

demonstrated on three models. For the Windkessel model,

the effect of measurement noise is illustrated and it is shown

that the insights provided by ISFs are consistent with those

of a significantly more expensive Monte Carlo type approach

[21]. For the Hodgkin–Huxley model, the effect of measure-

ment frequency is illustrated, and finally, for the influenza A

virus, it is shown how, even when classical sensitivity analysis

fails to assess identifiability issues, the ISFs correctly reveal

identifiability problems, which have been analytically proven

through classical methods.
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Appendix A. Differential analysis for equivalence
of sensitivity and covariance evolution
From equation (3.2), the linearized dynamical system is

_x ¼ fjn þrxfjn(x� mxn
)þrufjn(u� mu)þrtfjn(t� tn):

ðA 1Þ
Separating the random variables u and x gives

_x ¼ rxfjnxþrufjnu
þ (fjn �rxfjnmxn

�rufjnmu þrtfjn(t� tn))|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
tn

: ðA 2Þ

Combined with trivial dynamics for the parameters _u ¼ 0,

the dynamics for the combined vector [xT, uT]T can be written

as

_x
_u

� �
|ffl{zffl}

_5

¼ rxfjn rufjn
O p,d O p,p

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

F n

x
u

� �
|ffl{zffl}

5

þ tn
O p,1

� �
|fflfflfflffl{zfflfflfflffl}

rn

, ðA 3Þ

where Oa,b represents a zero matrix of size a � b. The above is

concisely written as

_5 ¼ F n5þ rn: ðA 4Þ

For the above stochastic differential equation, it is well

known, see for example [36], that the covariance matrix of

5, denoted by J, evolves according to the following differen-

tial equation:

_J ¼ F nJþJFT
n : ðA 5Þ

Therefore, if the covariance matrix of 5n is

J ¼ Cov
x
u

� �� �
¼

Sn,n Ln,u

LT
u,n Su,u

" #
, ðA 6Þ

then J evolves according to equation (A 5) as
_J ¼
rxfjn rufjn
O p,d O p,p

" #
Sn,n Ln,u

Lu,n Su,u

� �
þ

Sn,n Ln,u

Lu,n Su,u

� � rT
x fjn Od,p

rT
ufjn O p,p

" #

¼
rxfjnSn,n þrufjnL

T
n,u þ Sn,nrT

x fjn þLn,urT
ufjn rxfjnLn,u þrufjnSu,u

LT
n,urT

x fjn þ Su,urT
ufjn O p,p

:

" # ðA 7Þ
The next task is to relate the above evolution of the covari-

ance matrix with the evolution of sensitivity matrix. From

equation (2.6), the sensitivity matrix S evolves as

_S ¼ rxfjnSn þrufjn: ðA 8Þ

Therefore, taking the transpose of equation (A 8) yields

( _S)T ¼ dS

dt

� �T

¼ d(ST)

dt
¼ ST

nrT
x fjn þrT

ufjn: ðA 9Þ

The derivative of the matrix product SST can be written as

follows:

d(SST)

dt
¼ S

d(ST)

dt
þ d(S)

dt
ST : ðA 10Þ

Substituting the derivatives from (A 8) with (A 9) into the

above equation gives

d(SST)

dt
¼ SSTrT

x fjn þrxfjnSST þrufjnST þ SrT
ufjn: ðA 11Þ
It is easy to see that if Su,u ¼ Ip, Ln,u ¼ S and Sn,n ¼ SST, then

the state covariance, Sn,n, and the cross-covariance, Ln,u, from

equation (A 7) evolve as

_Sn,n ¼ SSTrT
x fjn þrxfjnSST þrufjnST þ SrT

ufjn

¼ d(SST)

dt
ðA 12Þ

and

_Ln,u ¼ rxfjnSn þrufjn ¼ _S: ðA 13Þ
Appendix B. Asymptotic analysis of the
conditional covariance
In this section, the behaviour of the conditional covariance

matrix Cn as n! 1 is considered. From equation (5.4), An
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can be written as

An ¼ BnBT
n þ Gn, ðB 1Þ

where Gn is a diagonal matrix with elements as follows:

Gi,i ¼ Yi; 0 � i � n: ðB 2Þ

By applying the Kailath variant of the Sherman–Morrison–

Woodbury identity the inverse of An can be expanded as

A�1
n ¼ G�1

n � G�1
n Bn(Ip þ BT

nG
�1
n Bn)�1BT

nG
�1
n : ðB 3Þ

Plugging this in equation (6.3) yields

Cn ¼ I p � BT
nG
�1
n Bn þ BT

n G
�1
n Bn(Ip þ BT

n G
�1
n Bn)�1BT

n G
�1
n Bn

ðB 4Þ

¼ Ip �Dn þDn(Ip þDn)�1Dn, ðB 5Þ

where

Dn ¼ BT
nG
�1
n Bn: ðB 6Þ

The matrix D is symmetric, and can be factorized by

singular value decomposition (SVD) as follows

Dn ¼ UnFnUT
n , ðB 7Þ

with

UnUT
n ¼ Ip ðB 8Þ

and Fn is a diagonal matrix with diagonal entries equal to the

eigenvalues, li, of Dn.

Fni,i ¼ li: ðB 9Þ

Owing to the symmetric nature of Dn, all the eigenvalues are

real. Furthermore, if Dn is positive-definite then all eigen-

values are positive. Substituting Dn from equation (B 6) in

equation (B 4) yields

Cn ¼ I p �UnFnUT
n þUnFnUT

n (Ip þUnFnUT
n )�1UnFnUT

n

ðB 10Þ

¼ Ip �UnFnUT
n þUnFnUT

n (UnUT
n þUnFnUT

n )�1UnFnUT
n

ðB 11Þ

¼ I p �UnFnUT
n þUnFnUT

n (Un(Ip þFn)UT
n )�1UnFnUT

n

ðB 12Þ

¼ UnUT
n �UnFnUT

n þUnFn(Ip þFn)�1FnUT
n ðB 13Þ

¼ Un [I p �Fn þFn(Ip þFn)�1Fn]|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pn

UT
n : ðB 14Þ

In the above Pn is a diagonal matrix with the entries

Pni,i ¼ 1� li þ
l2

i

1þ li
¼ 1

1þ li
: ðB 15Þ

If the minimum eigenvalue of Dn is much larger than 1,

i.e.

min
i

li � 1, ðB 16Þ

then

Pni,i �
1

li
ðB 17Þ

and

Pn � F�1: ðB 18Þ
Consequently, equation (B 10) yields

Cn � UnF
�1UT

n ¼ D�1
n : ðB 19Þ

Finally, from the above and equations (B 5), (B 2) and (5.5),

the conditional covariance matrix can be written as

Cn �
Xn

i¼0

(ST
i HT

i Y
�1
i HiSi)

 !�1

: ðB 20Þ

It can hence be concluded that if the minimum eigenvalue

of Dn monotonically increases as n increases then

lim
n!1

Cn ¼
Xn

i¼0

(ST
i HT

i Y
�1
i HiSi)

 !�1

: ðB 21Þ

Let the eigenvalues of Dn be denoted in decreasing order as

l1(Dn)�l2(Dn)� . . . �lp(Dn). The behaviour of the minimum

eigenvalue of lp(Dn) is of concern. Note that Dn can be

written as

Dn ¼
Xn

i¼0

(ST
i HT

i Y
�1
i HiSi): ðB 22Þ

Consequently,

Dnþ1 ¼ Dn þ ST
nþ1HT

nþ1Y
�1
nþ1Hnþ1Snþ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Qnþ1

: ðB 23Þ

Dn and Qn are both symmetric matrices. Let the eigenvalues

of Qnþ1 be denoted in decreasing order as l1(Qnþ1)�l2(Qnþ1)�
. . . �lp(Qnþ1). From equation (B 19) one has

Tr(Dnþ1) ¼ Tr(Dn)þ Tr(Qnþ1), ðB 24Þ

where Tr denotes the trace. Expressed in terms of the eigenvalues

of the respective matrices, the above reads

Xp

i¼1

li(Dnþ1) ¼
Xp

i¼1

li(Dn)þ
Xp

i¼1

li(Qnþ1): ðB 25Þ

From several inequalities on the sums of eigenvalues of

Hermitian matrices, specifically the Ky Fan inequality [37,38],

one has

Xr

i¼1

li(Dnþ1) �
Xr

i¼1

li(Dn)þ
Xr

i¼1

li(Qnþ1); r � p: ðB 26Þ

Substituting r ¼ p 2 1 in equation (B 22) and subtracting it from

equation (B 21) results in

lp(Dnþ1) � lp(Dn)þ lp(Qnþ1): ðB 27Þ

Consequently, if Qnþ1 is full rank then lp(Qnþ1) . 0 and

lp(Dnþ1) . lp(Dn), ðB 28Þ

which implies that the minimum eigenvalue of Dn is monotoni-

cally increasing.

The above results are put in the perspective of classical

nonlinear regression analysis [9,10] by assuming that the

observation operator Hi is equal to identity for all i. Then,

under a further assumption that Qi ¼ (rT
uxji)Y

�1
i (ruxji) is

full-rank for all i, the conditional covariance matrix of the par-

ameter is

lim
n!1

Cn ¼M�1, ðB 29Þ

where M is the Fisher information matrix defined as

M ¼
Xn

i¼0

[(rT
uxji)Y

�1
i (ruxji)]: ðB 30Þ
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Appendix C. Conditional covariance for finite n
From equation (B 10) one has

Cn ¼ UnPnUT
n , ðC 1Þ

where Pn is given by equation (B 11). Consider the matrix

(Dn þ Ip)21, which can be expanded as

(Dn þ Ip)�1 ¼ (UnFnUT
n þ Ip)�1 ðC 2Þ

¼ (UnFnUT
n þUnUT

n )�1 ðC 3Þ

¼ (Un(Fn þ Ip)UT
n )�1 ðC 4Þ
¼ Un(Fn þ Ip)�1UT ðC 5Þ
n

¼ UnPnUT
n ¼ Cn: ðC 6Þ

Following the above and equation (B 18), the conditional

covariance matrix can be written as

Cn ¼ Ip þ
Xn

i¼0

(ST
i HT

i Y
�1
i HiSi)

 !�1

: ðC 7Þ
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