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Abstract: While acoustic streaming patterns in microfluidic channels with rectangular cross-sections
have been widely shown in the literature, boundary-driven streaming fields in non-rectangular
channels have not been well studied. In this paper, a two-dimensional numerical model was
developed to simulate the boundary-driven streaming fields on cross-sections of cylindrical fluid
channels. Firstly, the linear acoustic pressure fields at the resonant frequencies were solved from
the Helmholtz equation. Subsequently, the outer boundary-driven streaming fields in the bulk of
fluid were modelled while using Nyborg’s limiting velocity method, of which the limiting velocity
equations were extended to be applicable for cylindrical surfaces in this work. In particular, acoustic
streaming fields in the primary (1, 0) mode were presented. The results are expected to be valuable to
the study of basic physical aspects of microparticle acoustophoresis in microfluidic channels with
circular cross-sections and the design of acoustofluidic devices for micromanipulation.

Keywords: acoustic streaming; boundary-driven streaming; cylindrical channel; limiting velocity
method; acoustofluidics; microfluidics; micromanipulation

1. Introduction

Ultrasonic particle manipulation (UMP) is a contactless method that is well-suited for
micromanipulation in microfluidic systems. Most UPM devices that are shown in literature use
standing waves to manipulate particles for applications, such as patterning [1–4], focusing [5–7], and
separation [8–10] of microparticles. When a standing wave field is established in a microfluidic channel,
the movements of particles suspended in the fluid medium are determined by two main forces, i.e.,
the acoustic radiation force (ARF) and the acoustic streaming (AS) induced drag force, which scale
with the volume and diameter of the particle, respectively. In most UPM devices, ARF is the main
engine for particle manipulation, while the AS effects are mostly regarded as disturbances as they
usually place a lower limit on the particle size that can be manipulated by the ARFs [11]. In general,
the two main forces could balance when the particle size reaches a certain value, which is, for example,
approximately 1.6 µm at a frequency of 1 MHz [12]. However, structured AS vortices have also been
designed to bring particles to desired positions for many microfluidic applications [13–15].

The AS field in a microfluidic channel of particular interest is generally dominated by
boundary-driven streaming, which arises from the absorption of acoustic momentum flux in the
viscous boundary layer [16]. Another type of well-known streaming pattern, the Eckart streaming [17],
generally requires acoustic absorption over a longer distance, e.g., multi-wavelengths, than those that
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are typically found in microfluidic channels [18]. The journey of boundary-driven streaming theory
started from Rayleigh [19], who derived equations for the AS field between two infinite walls outside
the viscous boundary layer, which is, thus, nowadays commonly referred to as ‘outer streaming’ or
‘Rayleigh streaming’. Schlichting [20] later found that each outer streaming vortex is associated with a
vortex confined to the boundary layer, being known as ‘inner streaming’ or ‘Schlichting streaming’.
An analytical solution for solving both the inner and outer streaming fields that were generated by an
one-dimensional standing wave in rectangular channels were derived by Hamilton et al. [21], who
showed that inner and outer streaming vortices co-exist in wide channels, while outer streaming
vortices could disappear in sufficiently narrow channels. Nyborg [22] found that, in wide channels,
the AS velocity at the extremity of the inner vortex (the limiting velocity (LV)) can be approximated as
a function of the linear acoustic velocity field and the outer streaming can be effectively predicted by
taking the LV as a slip boundary condition. With the rapid progress of experimental and computational
techniques, recent experimental [23] and modelling [24] works have shown excellent agreement with
predictions that are based on these well-established theories.

New boundary-driven streaming patterns that cannot be explained by Rayleigh’s theory have
been observed in the bulk of fluid in addition to the classical Rayleigh streaming whose orientations
are generally perpendicular to the driving boundaries and the transducer radiating surfaces in
experimental UPM devices. Typically, in thin-layer UPM devices with high aspect-ratio rectangular
fluid channels, AS vortices with orientations parallel to the driving boundaries and the transducer
radiating surfaces, thus called ‘transducer-plane streaming’, have been experimentally observed [24–26].
Through three-dimensional (3D) numerical simulations while using Nyborg’s limiting velocity method
(LVM), it was found that they were closely related to the local active intensity fields, which tend
to circulate when the local acoustic field is a superposition of certain standing and travelling wave
components [27,28].

While boundary-driven streaming fields in microfluidic channels with rectangular cross-sections
have been extensively studied in literature, less attention has been paid to those in microfluidic channels
with non-flat boundaries [29]. In this work, we present numerical simulations of boundary-driven
streaming on cross-sections of a cylindrical cavity in a square glass capillary, which has been recently
used for two-dimensional (2D) focusing of microparticles [30]. Particularly, Nyborg’s LV equations
have been extended for predicting outer streaming fields in cylindrical fluid channels.

2. Theory of Acoustic Streaming

In the following, we use bold fonts to represent vectors to distinguish them from scalar quantities
described with normal-emphasis fonts. The derivation of basic acoustic and streaming equations has
been widely presented in literature. For a homogeneous isotropic fluid, the continuity and momentum
equations for the fluid motion are [31]

∂ρ

∂t
+∇·(ρu) = 0, (1)

ρ

(
∂u
∂t

+ u·∇u
)
= −∇p + µ∇2u +

(
µb +

1
3
µ
)
∇∇·u, (2)

where ρ is the fluid density, t is time, u is the fluid velocity, p is the pressure, and µ and µb are the
dynamic and bulk viscosity coefficients of the fluid, respectively.

While using the perturbation theory [32,33], the fluid density ρ, pressure p, and velocity u are
expressed as

ρ = ρ0 + ρ1 + ρ2 + · · · , (3)

p = p0 + p1 + p2 + · · · , (4)

u = u1 + u2 + · · · , (5)
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where the subscripts 0, 1, and 2 represent the static (absence of ultrasonic excitation), first-order, and
second-order quantities, respectively.

Substituting Equations (3)–(5) into Equations (1) and (2) and while taking the first-order into
account, Equations (1) and (2) become

∂ρ1

∂t
+ ρ0∇·u1 = 0, (6)

ρ0
∂u1

∂t
= −∇p1 + µ∇2u1 +

(
µb +

1
3
µ
)
∇∇·u1. (7)

Repeating the above procedure, while considering the first- and second-order, and taking the time
average of Equations (1) and (2), the continuity and momentum equations are then turned into

∇·ρ1u1 + ρ0∇·u2 = 0, (8)

− ρ0u1∇·u1 + u1·∇u1 = −∇p2 + µ∇2u2 +
(
µb +

1
3
µ
)
∇∇·u2, (9)

where the upper bar · indicates the time average of the quantity below.
In most UPM devices where the dimensions of the fluid channel are much larger than the

boundary layer thickness and, thus, only the outer streaming fields are usually of interest, the 2D or
3D boundary-driven streaming fields in the bulk of the fluid channel can be effectively predicted while
using Nyborg’s LVM. In such models, Equations (8) and (9) can be further simplified to [34]

∇·u2 = 0, (10)

−∇p2 + µ∇2u2 = 0. (11)

3. Numerical Model

Here, we consider a cylindrical fluid channel with radius r = 0.45 mm (the size of fluid channel
recently reported for particle manipulation [30]), where the theoretical resonant frequency of first
resonant mode, the (1, 0) mode, is around 1 MHz. In this work, for numerical efficiency, a 2D
reduced-fluid model representing a cross-section of the cylindrical cavity, as shown in Figure 1, was
considered and Nyborg’s LVM was applied to simulate the outer streaming fields in the bulk of the
fluid. Reduced-fluid models and the LVM have been widely used for predicting boundary-driven
streaming fields in UPM devices [25].
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Figure 1. A two-dimensional reduced-fluid model (right), which takes a cross-section of a cylindrical
cavity (left), was considered. r is the radius of the cross-section of the channel; θ is the angle of a point
on the boundary; and, τ and n represent the tangential and inward normal directions of the point on
the boundary, respectively.
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3.1. Extention of the Limiting Velocity Method

Nyborg’s LVM, which derives two tangential LV components on a 2D vibrating surface, is valid if
the radius of curvature of the surface is large when compared to the thickness of boundary layer [22].
It was later modified by Lee and Wang to a more generalized version [35]. In 3D xyz Cartesian
coordinates, for example, on a planar surface normal to z, the two tangential LV equations are [25]

uL = −
1

4ω
Re

{
u1

du∗1
dx

+ v1
du∗1
dy

+ u∗1

[
(2 + i)∇·u1 − (2 + 3i)

dw1

dz

]}
, (12)

vL = −
1

4ω
Re

{
u1

dv∗1
dx

+ v1
dv∗1
dy

+ v∗1

[
(2 + i)∇·u1 − (2 + 3i)

dw1

dz

]}
, (13)

where ω is the angular frequency, Re{·} represents the real part of the quantity inside, u1, v1, and w1

are the x, y, and z components of the first-order acoustic velocity vector, u1, and the superscript, ∗,
represents the complex conjugate. We assume here that the boundary of the circular domain is a
summation of infinite number of segments, of which each could be approximated to a tiny straight
line (or a single point), where the LVM might be applicable, to make this method valid to the case
presented in this work.

As described in the right part of Figure 1, the position of each point on the boundary can be
described by the radius r and an angle θ, as calculated from

θ = tan−1
(

z
y

)
. (14)

Additionally, the unit vectors in the tangential (τ) and inward normal (n) directions (Figure 1) of a
boundary point can be expressed as

τ̂ = −ŷ sinθ+ ẑ cosθ, (15)

n̂ = −ŷ cosθ− ẑ sinθ, (16)

where ·̂ represents the unit vector in the direction below. Accordingly, the tangential and normal
components of the first-order acoustic velocity, v1τ and w1n, at a given point and their gradients in the
tangential and normal directions, can be expressed as

v1τ = −v1 sinθ+ w1 cosθ, (17)

w1n = −v1 cosθ−w1 sinθ, (18)

dv1τ

dτ
= −

dv1τ

dy
sinθ+

dv1τ

dz
cosθ, (19)

dw1n
dn

= −
dw1n

dy
cosθ−

dw1n
dz

sinθ. (20)

In this 2D model, the outer streaming fields in the bulk of the fluid are only driven by the tangential
component LV, which is

vτL = −
1

4ω
Re

{
v1τ

dv∗1τ
dτ

+ v∗1τ

[
(2 + i)

(
dv1τ

dτ
+

dw1n
dn

)
− (2 + 3i)

dw1n
dn

]}
. (21)

While combining Equations (14) and (17)–(21), the distribution of LV on the circular boundary of
the fluid channel can be obtained.



Micromachines 2020, 11, 240 5 of 11

3.2. Numerical Implementations

The numerical simulations were implemented in the finite element software COMSOL [36], run
on a HP EliteBook 820G4 running Windows 10 (64-bit), which was equipped with 8 GB RAM and
Intel (R) Core (TM) i7-7500U processor of clock frequency 2.7 GHz. It takes about 20 s to complete the
steps below.

Firstly, a ‘Pressure Acoustics, Frequency Domain’ interface was applied to simulate the first-order
acoustic pressure field p1 under different excitations (shown below) from the Helmholtz equation

∇
2p1 +

ω2

c2 p1 = 0, (22)

where c is sound speed in the fluid, and the first-order acoustic velocity vector field u1 from the
momentum conservation equation

ρ0
∂u1

∂t
+∇p1 = 0. (23)

The resonant frequency was predicted from an frequency sweep study, which finds the frequency
that gives the maximum Eac (the average acoustic energy density in the model regime) [25].

Subsequently, to simulate the second-order acoustic streaming fields, a ‘Laminar Flow’ interface
was used to solve Equations (10) and (11). The LV field that was derived from Equation (21) was
applied to the circular boundary as a slip velocity boundary condition.

Table 1 shows the parameters used in simulations.

Table 1. A summary of model parameters.

Parameters Value Units

Radius of cylindrical cavity 0.45 mm
Mesh size 9 µm

Dynamic viscosity of water 1.01 mPa·s
Density of water 999.6 kg/m3

Speed of sound in water 1481.4 m/s

4. Results and Discussion

4.1. Boundary-Driven Acoustic Streaming in Rectangular Channels

Prior to demonstrating the results in the model that is shown in Figure 1, for comparison, the
boundary-driven acoustic streaming fields in a fluid channel with a rectangular cross-section of similar
size are introduced. As presented in Figure 2b, a 2D model with dimensions of 0.9 × 0.3 mm2,
a cross-section of a 3D rectangular fluid channel (Figure 2a), was considered. With different driving
conditions, vertical (Figure 2c) and lateral (Figure 2e) standing wave fields could be generated on
cross-sections of the fluid channel, thus resulting in different outer streaming patterns. In these 2D
models, as indicated with red arrows and uL in Figure 2d,e, the main limiting velocity fields for these
two modes are working on different boundaries, thus generating two different outer streaming patterns
on cross-sections of the fluid channel.
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Figure 2. Numerical simulations of boundary-driven acoustic streaming fields in a fluid channel with
rectangular cross-sections. (a) A typical three-dimensional (3D) rectangular fluid channel (where fluid
goes in the x direction); (b) a two-dimensional (2D) reduced-fluid model representing a cross-section of
(a); (c) a vertical half-wavelength standing wave field, generated by a harmonic vibration of the bottom
boundary at f = 2.469 MHz; (d) the outer streaming field for mode (c); (e) a lateral half-wavelength
standing wave, generated by a harmonic vibration of the right boundary at f = 0.823 MHz; and, (f) the
corresponding outer streaming field in mode (e). Colors in (c–f) represent magnitudes (white for
maximum and black for zero). uL is the limiting velocity.

4.2. Boundary-Driven Acoustic Streaming in Circular Channels

In this section, numerical simulations of boundary-driven streaming patterns in the model
described in Figure 1 were studied. As an example, here we present the outer streaming fields in the
primary (1, 0) mode, which has been shown to be responsible for 2D microparticle focusing in a recent
work [30].

4.2.1. Mesh Size-Dependency Study

As shown in the insets in Figure 3, a uniform distribution of triangular mesh elements was
considered, because it is not necessary to resolve the boundary layer in this work. A mesh
size-dependency study was conducted to determine the mesh size that is required for high accuracy
to reduce the mesh-induced numerical error. Figure 3 plots the modelled average acoustic energy
densities of the first mode in the whole fluid domain in models with different mesh sizes ranging from
9 µm to 49 µm. It can be seen that a stable solution could be achieved with a decrease of mesh size.
For all the mesh sizes presented, a difference of ~12% on the average acoustic energy density was
found between the two models with the smallest and the largest sizes, and a mesh size of ~40 µm
could be used in simulations if allowed a 5% mesh-induced error. However, a maximum mesh size of
9 µm was used in the following simulations based on the high efficiency of this numerical model, to
allow for modes that are more complex than the simple one explored in the dependency study (i.e., for
modes higher than the basic (1, 0) mode) (it takes only ~20 s to complete all the acoustic and streaming
simulations with this mesh size).
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4.2.2. Acoustic Pressure and Streaming Fields

We choose to present the modelled acoustic pressure and streaming fields in the first mode here,
i.e., the (1, 0) mode, to demonstrate the applicability of our numerical model described in Section 3
on the simulation of outer streaming fields in cylindrical channels. Figure 4 plots the modelled
acoustic pressure, LV, and acoustic streaming fields in the first mode under four different boundary
vibrations. It can be seen that, when compared to the corresponding patterns in a microfluidic channel
with a rectangular cross-section (e.g., Figure 2), similarities and differences can both be seen. On the
one hand, the main characteristic of the modelled outer streaming field is shown to be similar to
the Rayleigh streaming in rectangular channels: (i) each streaming vortex occupies a quadrant of
2D fluid domain; and, (ii) on the driving boundaries, where the LVs are applied to the acoustic
streaming velocities direct from acoustic pressure nodes to adjacent antinodes. On the other hand,
the outer streaming patterns in a circular domain can be more diverse than those in a rectangular
domain. It can be seen from Figure 2 that only two half-wavelength standing wave patterns (i.e.,
those shown in Figure 2c,e) (and thus two outer streaming patterns) could be generated in a fluid
channel with rectangular cross-sections. However, as shown in Figure 4, four different (1, 0) modes
were generated from four different boundary vibrations and, thus, four different outer streaming
patterns were formed. They are ‘different’ patterns, because different trajectories would be seen if
particles of streaming-dominated motions, e.g., nano-sized particles, were introduced in the fluid
channel. Furthermore, the orientation of the single pressure nodal line could range from 0 to π if the
full set of boundary vibrations were considered (only two axisymmetric boundary vibrations can
result in a same acoustic pressure distribution). Different ultrasonic excitations can result in different
vibrations of channel walls and, thus, theoretically, all of these different modes could be excited in a
real experimental device.
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boundary vibrations (highlighted in red); (b) acoustic pressure magnitudes (Pa); (c) limiting velocity
distributions; and, (d) acoustic streaming magnitudes (m/s) and vector (black arrows) fields. The
magnitudes presented were obtained from a vibrating amplitude of 0.1 mm/s.

4.2.3. Trajectories of Microparticles

Here, we show here the trajectories of microparticles of different sizes driven by the two main
forces, i.e., the acoustic radiation force Fr and streaming-induced drag force Fd to examine the effects of
acoustic streaming on the microparticle acoustophoresis in a cylindrical channel, using (where the two
main forces are calculated from the Gorkov [37] and Stokes equations, respectively)

d
dt

(
mpv

)
= Fr + Fd, (24)

Fr = ∇

4πr3

3

3
(
ρp − ρ f

)
2ρp + ρ f

Ekin −

1−
ρ f c2

f

ρpc2
p

Epot


, (25)

Fd = 6µπr(u2 − v), (26)

where mp is the particle mass, v is the particle velocity, r is particle radius, Ekin = 0.25ρ f |u1|
2 and

Epot =
∣∣∣p1

∣∣∣2/
(
4ρ f c2

f

)
are the time-averaged kinematic and potential energy density, ρp = 1155 kg/m3

and ρ f = 999.6 kg/m3 are the density of the particle and fluid, and cp = 1962 m/s and c f = 1481.4 m/s
are the sound speed in particle and fluid.

As examples, it is presented the trajectories of microparticles of 10 µm and 1 µm in diameter of
the mode that is shown in Figure 4 (b1). As shown, the movements of these two particle species are
distinct from each other (Figure 5). For both cases, an array of microparticles was released into the
fluid domain within area −0.4 ≤ x ≤ 0.4 mm and −0.4 ≤ y ≤ 0.4 mm at t = 0, and the trajectories of
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microparticles at three other time intervals, 0.1, 1, and 5 s, were presented. It can be seen that, under the
effects of both acoustic radiation and streaming-induced drag forces (with the pressure and streaming
magnitudes presented in Figure 4(1)), 10 µm particles were firstly rapidly moved to the pressure nodal
line and then focused to the channel center by the acoustic radiation forces. On the pressure nodal line,
the acoustic streaming-induced drag forces work against microparticle focusing. However, for the
smaller 1 µm particles, their movements were dominated by the streaming-induced drag forces and,
thus, the trajectories were following the acoustic streaming vortices.
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5. Conclusions

In conclusion, we have shown here that with some modifications the LVM can also be applied to
predict the outer streaming fields in fluid channels with curved surfaces. The variations of modes and
outer streaming fields on cross-sections of a cylindrical cavity have been modelled by considering an
easy-to-use 2D reduced-fluid model. When compared to the acoustophoretic motion of microparticles
observed in experiments, the simulation of a full-device model might provide better prediction of the
boundary vibrations and, thus, the standing wave and boundary-driven acoustic streaming patterns,
due to the diversity of acoustic wave fields that could be generated in a real experimental device.
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