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Abstract

Background: Diabetes is a chronic condition that necessitates regular monitoring and self-management of the patient’s blood
glucose levels. People with type 1 diabetes (T1D) can live a productive life if they receive proper diabetes care. Nonetheless, a
loose glycemic control might increase the risk of developing hypoglycemia. This incident can occur because of a variety of causes,
such as taking additional doses of insulin, skipping meals, or overexercising. Mainly, the symptoms of hypoglycemia range from
mild dysphoria to more severe conditions, if not detected in a timely manner.

Objective: In this review, we aimed to report on innovative detection techniques and tactics for identifying and preventing
hypoglycemic episodes, focusing on T1D.

Methods: A systematic literature search following the PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines was performed focusing on the PubMed, GoogleScholar, IEEEXplore, and ACM Digital Library to
find articles on technologies related to hypoglycemia detection in patients with T1D.

Results: The presented approaches have been used or devised to enhance blood glucose monitoring and boost its efficacy in
forecasting future glucose levels, which could aid the prediction of future episodes of hypoglycemia. We detected 19 predictive
models for hypoglycemia, specifically on T1D, using a wide range of algorithmic methodologies, spanning from statistics (1.9/19,
10%) to machine learning (9.88/19, 52%) and deep learning (7.22/19, 38%). The algorithms used most were the Kalman filtering
and classification models (support vector machine, k-nearest neighbors, and random forests). The performance of the predictive
models was found to be satisfactory overall, reaching accuracies between 70% and 99%, which proves that such technologies
are capable of facilitating the prediction of T1D hypoglycemia.

Conclusions: It is evident that continuous glucose monitoring can improve glucose control in diabetes; however, predictive
models for hypo- and hyperglycemia using only mainstream noninvasive sensors such as wristbands and smartwatches are foreseen
to be the next step for mobile health in T1D. Prospective studies are required to demonstrate the value of such models in real-life
mobile health interventions.

(JMIR Diabetes 2022;7(3):e34699) doi: 10.2196/34699
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Introduction

Diabetes is a recurrent condition that involves constant control
and self-management of the patient’s blood glucose. Improper
regulation of blood glucose levels in patients with type 1

diabetes (T1D) can lead to severe problems, such as kidney and
heart failure, stroke, and blindness [1]. In contrast, through
appropriate care for diabetes, a patient can live a prosperous
life. Nevertheless, an overly strict glycemic control can raise
the likelihood of developing hypoglycemia, a rapid decrease in

JMIR Diabetes 2022 | vol. 7 | iss. 3 | e34699 | p. 1https://diabetes.jmir.org/2022/3/e34699
(page number not for citation purposes)

Tsichlaki et alJMIR DIABETES

XSL•FO
RenderX

mailto:stsichlaki@gmail.com
http://dx.doi.org/10.2196/34699
http://www.w3.org/Style/XSL
http://www.renderx.com/


blood glucose levels, which may lead to coma and potentially
death if proper care is not taken immediately.

The concern of hypoglycemia is a barrier to successful
hyperglycemic control, as it encourages insulin underdoing.
Methods of reducing hypoglycemia occurrences include
instruction and counseling to increase hypoglycemia recognition
in time, as well as the development of predictive technological
approaches that could reduce the occurrences of hypoglycemia.
Blood glucose self-monitoring requires a blood sample to be
collected on many occasions throughout the day. Currently, the
use of continuous glucose monitoring (CGM) systems allows
the collection of blood glucose level information in real time.
In contrast, modern wearables can produce and analyze great
amounts of data, which is the reason why modern technologies
are frequently used in conjunction with these products to process
and retrieve valuable information from the collected data. They
also have several different monitoring capabilities, such as GPS,
heart rate, electrocardiogram (ECG), and skin temperature,
which are all important for the assessment of diabetes-related
indicators [2]. Furthermore, several key indicators for the
physical and mental health state of patients with T1D, such as
blood glucose levels, calories, physical activity, and stress level,
can be monitored by evaluating the data obtained from
wearables. The main advantage of these devices is their ability
to keep track of the patient’s daily routine in a continuous and
discreet manner without affecting their normal everyday
activities.

Artificial intelligence algorithms have been widely used to
predict diabetes or as diagnostic tools, especially for type 2
diabetes [3]. Machine learning models have been used to predict
the near future blood glucose levels and inform patients to take
appropriate actions in advance to avoid a hypo- or
hyperglycemic episode [4]. An accurate predictor could improve
the quality of life of patients with T1D.

The aim of this paper was to review the emerging detection
methods and approaches for the identification of hypoglycemia
episodes. Specifically, we investigated the methods used or
invented to improve blood glucose monitoring and increase its
effectiveness to estimate future glucose levels; this could
contribute to the prediction process of future episodes of
hypoglycemia. Overall, these methods are highly valuable based
on whether they can aid the prediction process, which is critical
in avoiding a potentially dangerous hypoglycemic episode that
could lead to major health consequences. Finally, we discuss
prediction approaches aimed at the early identification and
prevention of nocturnal hypoglycemia episodes, which could
lead to “dead-in-bed” syndrome if not identified early. These
approaches are categorized as mentioned previously, and their
proposed techniques are discussed.

Methods

Article Identification
A systematic literature search following the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)

guidelines [5] was performed. For this research, we used
PubMed, GoogleScholar, IEEEXplore, and ACM Digital Library
to find articles about technologies related to hypoglycemia
detection in patients with T1D. After exploring and combining
many search terms to ensure having the broadest results, we
used the following terms: “hypoglycemia,” “prediction,”
“detection,” “continuous glucose monitoring,” “CGM,” “type
1 diabetes,” “T1D,” “HRV,” “heart rate variability,” “machine
learning,” and “deep learning.”

Inclusion and Exclusion Criteria
The search was performed in June 2021 and was restricted to
articles from 2005 onward. In parallel, an alert was set to avoid
missing articles. References of selected articles were analyzed
to extract other related articles, and a complementary search in
Google Scholar was used to find further information when
necessary and complete the review with original works on each
subtopic identified. All the authors deliberated and agreed on
the inclusion and exclusion criteria. In case of disagreements,
these were resolved through discussion among the authors to
reach a consensus. In the first step of the screening process,
journal articles and conference papers were deemed suitable for
inclusion, whereas letters, correspondence, and review articles
were excluded from this systematic review. Articles reporting
on new glucose sensors that exhibit a linear detection range
wide enough for blood or interstitial measurement were eligible.
For prediction algorithms, the eligible articles had to report
methods for glucose prediction and present details on the data
sets used, methodology, and performance metrics. We included
algorithms that predicted glucose values in a defined prediction
horizon, as well as those that specifically predicted
hypoglycemic events up to a maximum of 24 hours in the future.
To be eligible, a study had to focus on hypoglycemia or include
hypoglycemia prediction or detection techniques based on
patient data. The patient group had to have T1D, whereas the
trials had to have a control group. Studies that described the
same methodology and technology as an already included study
without significant distinction were excluded. We excluded
trials that focused on the primary prevention of diabetes, those
targeting gestational diabetes, those pertaining to a closed-loop
or artificial pancreas system, and those that primarily focused
on type 2 diabetes.

Results

Study Selection
In total, the aforementioned literature search gave 397 results.
Of the 397 records, 382 (96.2%) were screened after the removal
of 15 (3.8%) duplicates, and 348 (87.7%) articles were excluded
as they did not meet our eligibility criteria. After reading the
full text of the remaining 34 articles, complimentary alerts
helped to add 3 more articles that were also evaluated based on
the aforementioned screening process, resulting in the inclusion
of 19 eligible articles in total. Figure 1 presents the PRISMA
flow diagram [5], illustrating the search and screening procedure
of this review.
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Figure 1. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram presenting the search and screening
strategy followed in this systematic review.

Study Characteristics
Prediction algorithms aid in further enhancement of the quality
of life of patients with T1D and their ability to avoid
hypoglycemia. They enable patients to intervene early and
successfully for the prevention of hypoglycemia episodes.
Several of the approaches introduce novel algorithms for

predicting hypoglycemia. However, only a few of them sought
to assess their clinical efficacy and advantages in real-life
settings. The details of each reviewed study are presented in
Table 1, where we report the publication, the data set used, the
technique on which the predictive model is based, and the
resulting accuracy of the model.
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Table 1. Summary of the reviewed hypoglycemia prediction approaches.

ResultTechniqueAge
(years)

Data setDurationStudy

K-nearest neighbors>1811 computer-generated
adults through UVA-Padova

T1Da Simulator

500 simulated
days

Mordvanyuk et al
[6], 2017

• Accuracy 83.64%

Autoregressive models of
higher and lower orders;
state space model

Mean 7
(SD 3)

6 patients from diabetes re-
search in children network
(DirecNet)

6 weeksPaul et al [7], 2015 • Relative error (higher autore-
gressive) –7%

• Relative error (lower autore-
gressive) –24%

• Relative error (state space)
–12%

SVMbMean 44
(SD 15)

10 male patients with T1D2 experimental
sessions for each
participant

Jensen et al [8],
2013

• AUCc-ROCd 0.962

• Sample-based sensitivity
81%

• Sample-based specificity
93%

• Event-based sensitivity 100%

Classification treeN/AMultiparameter Intelligent
Monitoring in Intensive
Care Database II

N/AeZhang et al [9],
2008

• Accuracy 86%
• Sensitivity 89.87%

LRf and RFgMean 11
(SD 10)

112 patients with T1D90 daysDave et al [10],
2020

• Sensitivity (LR) 91.85%
• Specificity (LR) 96.25%
• Sensitivity (RF) 94.20%
• Specificity (RF) 96.67%

Absolute predicted glucose
values; cumulative sum; ex-

Mean 12.5
(SD 5.5)

54 patients with T1D24 hoursEren-Oruklu et al
[11], 2010

• Sensitivity 89%, 87.5%, and
89%

ponentially weighted mov-
ing average

• Specificity 67%, 74%, and
78%

Linear projection; Kalman
filtering; hybrid infinite im-

Mean 21
(SD 7.5)

40 patients with T1DOvernightChase et al [12],
2010

• Sensitivity 84%

pulse; statistical prediction;
numerical logical algorithm

Kalman Filtering≥1819 patients with T1D 21 nightsBuckingham et al
[13], 2013

• AUC algorithm 1 71%
• AUC algorithm 2 90%
• AUC algorithm 3 89%

Support vector for regres-
sion

Mean 42
(SD 23)

15 patients with T1DFrom 5 to 22
days

Georga et al [14],
2013

• Sensitivity (30-minute hori-
zon) 92%

• Sensitivity (60-minute hori-
zon) 96%

SVM>1810 patients with T1D12 weeksBertachi et al [15],
2018

• Sensitivity 78.75%
• Specificity 82.15%

MLPh neural networks re-
gressor

Mean 46
(SD 38)

93 patients with T1D4 monthsVahedi et al [16],
2018

• Mean absolute percentage er-
ror RF regressor 27.9%

• Mean absolute percentage er-
ror MLP regressor 29.6%

Gradient boosting decision
tree

N/A1 patient with T1D1 weekMaritsch et al [17],
2020

• Accuracy 82.7%
• Sensitivity 76.7%
• Specificity 84.2%

Deep belief neural network
and restricted Boltzmann
machines

<1815 children with T1D10 hours
overnight

San et al [18],
2016

• Sensitivity 80%
• Specificity 50%
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ResultTechniqueAge
(years)

Data setDurationStudy

• 30-minute prediction horizon

(mg/dL) RMSEk 19.10;

MAEl 13.59; glucose RMSE
22.08

• 60-minute prediction Horizon
(mg/dL) RMSE 32.61; MAE
24.25; glucose RMSE 38.04

Deep neural networks;

LSTMi; artificial RNNj
Mean 50
(SD 30)

12 patients with T1D from
the OhioT1DM data set

8 weeksKuang et al [19],
2021

• RMSE 20.1 mg/dLDilated RNN and transfer
learning

Mean 49
(SD 31)

10 computer-generated
adults through the UVA-
Padova T1D Simulator and
6 patients with T1D from
the OhioT1DM data set

360 days (simula-
tion) and 8 weeks
(clinical trial)

Zhu et al [20],
2020

• Adults: glucose TIRm 93%
• Children: glucose TIR 83%

Deep reinforcement learn-
ing; double dilated RNN

>18 and
<18

10 computer-generated
adults and 10 computer-
generated children through
the UVA-Padova T1D Sim-
ulator

6 monthsLi, K, unpublished
data, October 2019

• Computer-generated patients:
RMSE <5 mg/dL

• Real patients: RMSE <10
mg/dL

LSTM and RNNN/A40 computer-generated
adults through the AIDA
Diabetes software and 9 pa-
tients with T1D from the
D1NAMO Open data set

10 days (simula-
tion) and 4 days
(clinical trial)

Munoz-Organero
et al [21], 2020

• Model validation is in
progress because of the lack
of patient data variety

Decision treeN/A1 patient with T1D5 daysRanvier et al [22],
2016

• Accuracy 99%
• Sensitivity 79%

Forward selection and linear
LR

Mean 44
(SD 15)

10 patients with T1D2 daysCichosz et al [23],
2014

aT1D: type 1 diabetes.
bSVM: support vector machine.
cAUC: area under the curve.
dROC: receiver operating characteristic.
eN/A: not applicable.
fLR: logistic regression.
gRF: random forest.
hMLP: multilayer perceptron.
iLSTM: long short-term memory.
jRNN: recurrent neural network.
kRMSE: root mean square error.
lMAE: mean absolute error.
mTIR: time in target range.

Hypoglycemia Prediction Algorithms
In a study by Mordvanyuk et al [6], authors examined 11 profiles
of patients with T1D using the UVA-Padova T1D Simulator,
which is a system developed at the Universities of Virginia and
Padova, through research purposes. In their method, they
presented the use of k-nearest neighbor on patient data, along
with details relevant to a sequence of meals, to forecast a
possible hypoglycemic or hyperglycemic episode. Their findings
indicate that the use of consecutive data can dramatically
improve the results of the prediction, especially when estimates
determine the type of meal (ie, breakfast, snack, and lunch).
Their approach obtained a sensitivity of 88% when taking into

account only carbohydrate intake, fast-acting insulin dose, and
premeal blood glucose.

In terms of blood glucose prediction, the algorithms used in
these studies include linear autoregressive and state space time
series models, classification algorithms such as the support
vector machine (SVM), classification trees, logistic regression,
and random forest [7-10]. Paul et al [7] studied the use of
generalized autoregressive conditional heteroscedasticity
(GARCHs) models on CGM profiles of young children with
T1D. They aimed to analyze glucose time series and variability,
as well as the feasibility of credible blood glucose level
prediction. The forecasting capabilities of the GARCH
methodology were compared with those of other existing
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modeling techniques, such as lower- and higher-order
autoregressive models and state space models, where the
GARCH method proved to be efficient in recognizing the
variability of the glucose profiles and in providing a more
credible prediction of short-term future blood glucose levels.

Our research was conducted specifically on patients with T1D,
who have the greatest need for this type of prediction algorithm,
as they are more complex because of their high sensitivity to
exogenous factors and their increased blood glucose variability.
In an experiment by Jensen et al [8], the authors established a
pattern classification approach to enhance real-time
hypoglycemia identification. They examined data from 10
patients with T1D, who experienced 17 insulin-induced
hypoglycemic episodes. These episodes were then analyzed to
extract characteristics, including the recent insulin intake time
and the linear regression of the CGM signal, along with other
measures (kurtosis and skewness), at different periods. The
various combinations of features were used in an SVM model,
and its performance was measured, resulting in the detection of
all 17 hypoglycemic incidents, with 1 false positive and a lead
time of 14 minutes.

Zhang et al [9] used a classification learning technique to
forecast hypoglycemic events during a 1-hour time span. A
classification tree was created using a data mining tool, and the
input data comprised blood glucose measurements and insulin
injection frequency. The accuracy and specificity of
hypoglycemia prediction for the classification tree were 86%
and 89%, respectively.

Dave et al [10] investigated 2 different approaches to effectively
detect hypoglycemic episodes. These approaches comprised
logistic regression and random forest. In their machine
learning–based hypoglycemia detection method, they used data
from 112 patients with T1D and relied on an extensive feature
extraction process to identify any possible glucose patterns.
Their final model was developed by considering linear and
nonlinear models and combining the collected features. The
proposed method correctly forecasted hypoglycemic episodes
and achieved high sensitivities close to 95% and 94% and
specificities of approximately 97% and 95% for prediction
horizons of 0 to 15 and 15 to 30 minutes, respectively.

A few studies [11,12] incorporated different algorithms to
improve the performance of their models and take advantage
of the unique qualities of each algorithm. The different
algorithms used in the included approaches were grouped based
on their similarity and are presented in Multimedia Appendix
1.

Eren-Oruklu et al [11] examined 3 different time series–based
methodologies for hypoglycemia forecasting on a data set of
54 patients with T1D. Their approach involved an exponentially
weighted moving average and cumulative sum control chart, as
well as the absolute values of the forecasted blood glucose
levels. Each patient was fitted with a Medtronic CGM device
that obtained blood glucose readings every 5 minutes. They
merged the CGM’s integrated alert with the estimated
hypoglycemia alert, through each of the 3 aforementioned
methodologies. They used a 30-minute prediction horizon,

where the methodologies scored sensitivities of 89%, 87.5%,
and 89%, respectively.

Some of the prediction algorithms used in these studies used
linear regressions or Kalman filters, which are computational
approaches that use prior data to make short-term predictions
and can also be integrated into monitoring equipment. According
to the Diabetes Control and Complications Trial [24], 55% of
hypoglycemic events occur during sleep; hence, some studies
[12,13] addressed the issue of nocturnal hypoglycemia in T1D
and argued that CGM alerts may be ineffective while the patient
is sleeping [12,13].

Chase et al [12] tracked 40 patients who wore GlucoWatch
CGM during the night, and they discovered that 71% of the
patients did not react to the alert throughout the night. They
proposed that when hypoglycemia is expected, the CGM sensor
sends a signal to the pump to cease injecting insulin. To
anticipate hypoglycemia, they used a mathematical model that
used a system that included specific prediction algorithms. These
algorithms were linear projection, Kalman filtering, hybrid
infinite impulse, statistical prediction, and numerical logical
algorithm. Through the use of current and prior glucose levels,
these algorithms forecasted hypoglycemic events. When the
number of algorithms used to forecast a hypoglycemic event
exceeded the specified voting threshold, the alert was activated.
Specifically, when 3 algorithms were used to prompt insulin
pump suspension, nocturnal hypoglycemia was avoided, with
a sensitivity of 60%. Nevertheless, using only 2 of the
algorithms, nocturnal hypoglycemia occurrences were prevented
with a sensitivity of 84%. Finally, this study discovered that
when the voting threshold increases, the prediction rate drops,
although the purpose of their proposed system was to create a
balanced ratio between nocturnal hypoglycemia forecasting and
the probability of false alarms.

A total of 3 prediction algorithm variants were examined in a
21-night randomized study conducted by Buckingham et al [13]
using a Kalman filter–based model. The experiment comprised
19 adult patients with T1D, who were already using the
MiniMed Paradigm REAL-Time insulin pump and Medtronic
Sof-sensor blood glucose sensor. Pump suspension events
occurred on 53% of the intervention nights using the final
algorithm. Preliminary effectiveness results indicated that their
final algorithm reduced nighttime hypoglycemia by
approximately 50%.

Algorithmic Inputs, Process, and Outputs
Through the increasing availability of equipment such as CGMs,
insulin pumps, and physical activity trackers, along with the
counting of carbohydrates by patients with T1D, a wide variety
of data can be collected that can be used to predict blood
glucose. Depending on the data gathered, their complexities,
and the ultimate objective of the algorithm, a variety of
methodologies were used in some of the studies, with 1 or 2
supplementary data inputs, which were typically the insulin
doses, carbohydrates, or even both. The prementioned input
data are conveniently available, as they are usually captured in
sensor-enhanced pump trials and offer sufficient precision for
modeling purposes. These 2 additional data inputs were
processed by physiological models in many of the evaluated

JMIR Diabetes 2022 | vol. 7 | iss. 3 | e34699 | p. 6https://diabetes.jmir.org/2022/3/e34699
(page number not for citation purposes)

Tsichlaki et alJMIR DIABETES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


studies [14,15,22,23] to derive additional characteristics to
determine the effects and dynamics of insulin action or meals
for a better interpretation by the prediction algorithms.

There is evidence that the inclusion of insulin and carbohydrate
data in prediction models often increases the performance of
the algorithm, even by a very small amount. However, apart
from clinical trials, in which patients are deliberately selected

based on their compliance with instructions and their ability
(eg, to count carbohydrates), such an input into a real-life
environment seems unlikely. Table 2 presents the features that
were considered and analyzed in each of the reviewed studies,
and Multimedia Appendix 2 presents the number of the
hypoglycemia prediction references based on the year of their
considered question; it is worth noting that for 2021, we have
data for the first 6 months.

Table 2. Features or characteristics considered in the predictive models.

HbA1c
d

Diabetes
durationHRVcECGbActivityMealsCarbohydratesBMI

Insulin
dosage

Glucose meter
measurements

CGMa

readingsStudy

✓✓✓✓Mordvanyuk et al
[6]

✓Paul et al [7]

✓✓✓✓Jensen et al [8]

✓✓Zhang et al [9]

✓✓✓✓✓Dave et al [10]

✓✓Eren-Oruklu et al
[11]

✓✓✓✓✓Chase et al [12]

✓✓Buckingham et al
[13]

✓✓✓✓✓Georga et al [14]

✓✓✓Bertachi et al
[15]

✓✓✓✓Vahedi et al [16]

✓✓Maritsch et al
[17]

✓✓San et al [18]

✓Kuang et al [19]

✓✓✓Zhu et al [20]

✓✓✓Li, K, unpub-
lished data, Octo-
ber 2019

✓✓✓Munoz-Organero
et al [21]

✓✓✓Ranvier et al [22]

✓✓✓✓✓✓✓Cichosz et al [23]

aCGM: continuous glucose monitoring.
bECG: electrocardiogram.
cHRV: heart rate variability.
dHbA1c: hemoglobin A1c.

In a study by Georga et al [14], the authors used data from a
recent patient profile to provide their support vector regression
model for predicting hypoglycemia incidents during sleep, as
well as in the daytime, over 30- and 60-minute time spans. With
a hypoglycemia threshold of 70 mg/dL, the patient profile
included glucose readings, meals, insulin dosage, and physical
activity along with additional elements to account for recurrent
nocturnal hypoglycemia caused by previous hypoglycemia,

exercise, and sleep. Their model was developed based on a data
set of 15 patients with T1D in an unrestricted environment.
Nocturnal hypoglycemia predictions had a sensitivity of 94%
and time delays of 5.43 and 4.57 minutes, respectively. When
physical activities were not considered, the sensitivities for
nonnocturnal events were 92% and 96% for the 30- and
60-minute horizons, respectively, with both time delays being
<5 minutes. Nevertheless, when physical activities were
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considered, diurnal sensitivity was reduced by 8% and 3% in
each time span. In conclusion, they suggested that their method
was reliable and that both nocturnal and daytime predictions
had high precision, exceeding 90%.

Activity Wearables
Another important factor influencing blood glucose levels is
physical exercise. Bertachi et al [15] examined the use of
physical activity monitors to gather data on heart rate, energy
expenditure, and the number of steps taken to improve the
prediction ability of their model. In particular, the authors
investigated the prediction of nocturnal hypoglycemia in adults
with T1D through a FreeStyle Libre CGM device and a physical
activity monitor (Fitbit Alta HR, Fitbit). In their 12-week study,
10 adults with T1D were examined under free-living conditions
at home; details about the management of T1D, CGM, and the
physical activity tracker were obtained. Supervised machine
learning algorithms were applied to the data, and prediction
models were developed to predict the occurrence of nocturnal
hypoglycemia. The authors concluded that >70% of the
nocturnal hypoglycemia could be predicted using their approach.
Specifically, the prediction of the SVM model produced the
highest scores, with a sensitivity of 78.75% and a specificity of
82.15%.

Overall, the inclusion of a patient activity signal as an input to
the algorithm can improve its predictability, which in practice
indicates that many widely available activity monitoring systems
are accurate enough to be used for this task. The potential issue
might be more technical in terms of merging different models
and examining the variability of data formats in each system
during the hypoglycemia prediction process. Other relevant
information, such as stress, medical treatment, and daily events
in the patient’s life, can be considered as potential inputs, which
could be useful in differentiating these prediction models.

Vahedi et al [16] investigated the adaption of a machine
learning–based model that predicts continuous glucose levels
and aims to prevent hypoglycemia through using physiological
and physical exercise data. They used the Medtronic MiniMed
530G insulin delivery device, along with the Enlite sensor, to
collect 4 months of physiological measures, physical activity,
and nutrition data from 93 individuals with T1D. Overall, their
findings indicated that the model’s projected glucose levels
were very close to the glucose values measured with the Enlite
sensor.

Another machine learning model was developed in an ongoing
study by Maritsch et al [17], whose objective was to identify
hypoglycemia using physiological data collected from a
wearable sensor. Specifically, 1 patient with T1D participated
in a 1-week study, wearing an Empatica E4 smartwatch to
collect physiological data and a FreeStyle Libre CGM to gather
the patient’s glucose data. The reported results indicate that
physiological data can indeed be used to infer hypoglycemic
phases; however, frequent false-positive results were observed
because of the model’s high sensitivity. However, they intend
to use artificial intelligence–based techniques to make the
classification output comprehensible for patients and incorporate
their model into wearables to alert them about impending
hypoglycemic episodes.

The ability to connect CGM, insulin pumps, and activity trackers
to a mobile device can allow for the application of multiple
variant algorithms and complex cloud-based estimations. One
of the primary aspects in common among a few of the
aforementioned prediction algorithms [6,10] is that using
carbohydrate consumption, insulin dosages, and activity tracking
data can improve accuracy over a forecast period. Finally,
integrating several models could allow for different kinds of
hypoglycemia alerts, each one designed for a certain context
(activity, sleep, and type of meal).

ECG‐Based Hypoglycemia Detection
In recent years, researchers have examined the effect of low
blood glucose levels on the electrical activity of the heart.
During hypoglycemia, studies revealed a lengthening of the QT
interval (the time elapsed between the onset of the Q wave and
the conclusion of the T wave), a rise in heart rate variability
(HRV), and alterations in cardiac repolarization. Thus,
monitoring ECG alterations can provide a noninvasive method
for detecting the beginning of hypoglycemia. The emergence
of novel ECG wearables permitted the effortless collection of
cardiac signals and paved the path for hypoglycemia
identification through ECG data and using deep learning
techniques.

In a study by San et al [18], a deep belief network (DBN) was
used to build a deep learning system for detecting the initiation
of hypoglycemia based on a patient’s ECG signal. According
to the authors, the probability of hypoglycemia in individuals
with T1D is most affected by QT interval prolongation, although
an increase in heart rate can also influence the status of the
hypoglycemic event. Specifically, their suggested DBN delivers
a high classification performance with feature transformation.
Through the efficiency testing of the system, 15 children with
T1D participated and were monitored overnight, and the findings
revealed that the suggested DBN excelled and produced higher
classification performance than other current methods, with a
sensitivity and specificity score of 80% and 50%, respectively.

Another deep learning framework for predicting blood glucose
levels was recently developed [19], which used edge inference
on a microcontroller unit. The performance of the models was
evaluated based on a clinical data set acquired from 12 patients
with T1D whose glucose was measured with a CGM, as well
as through a long short-term memory artificial recurrent neural
network. Such a system could significantly aid in T1D care and
eventually be used in various diabetes management wearables,
such as insulin pumps and CGMs.

Generally, machine learning and deep learning approaches
demonstrate significant possibilities in terms of data analysis
and prediction, and they concentrate on automatically learning
behaviors and extracting characteristics from large-scale data.
A deep learning model was developed [20] based on a dilated
recurrent neural network (DRNN) that can anticipate future
glucose levels for 30 minutes. Their DRNN model acquired a
considerably wider receptive field of neurons when dilation was
used, with the goal of capturing long-term relationships, and
they also used a transfer learning approach to take advantage
of data from various patients.
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A study (Li, K, unpublished data, October 2019) suggested a
dual-hormone delivery approach for patients with T1D using
deep reinforcement learning and based on data from the
UVA-Padova T1D Simulator [25]. In terms of the hormone
delivery strategy, they used double DRNNs; input data were
blood glucose and carbohydrates, and output was insulin and
glucagon distribution. Overall, their findings revealed that deep
reinforcement learning appeared to be helpful in developing
customized hormone delivery strategies for patients with T1D.

In another deep learning–based hybrid model [21], the authors
attempted to imitate the metabolic behavior of physiological
blood glucose techniques based on both computer-generated
and actual patient data. Furthermore, they simulated a set of
differential equations for insulin and carbohydrate intake through
a long short-term memory recurrent neural network. Results
demonstrated that their model performs better for simulated
patients because of the intricacy of the insulin and carbohydrate
intake dependence on blood glucose levels, which is restricted
to a specific cluster of parameters.

In a noninvasive approach, Ranvier et al [22] aimed to detect
hypoglycemic events based on the continuous collection of
sensed data from an off-the-shelf sensor belt; the authors based
their method on 2 distinct models. The first one leveraged a
physiological consequence of hypoglycemia, namely, an
alteration of the user ECG’s features. They additionally used
the accelerometer and breathing sensor of the belt to infer the
energy expenditure of the patient with T1D and correlated it
with the food intake to estimate the blood glucose level. They
then combined these 2 models to improve the accuracy of their
prediction.

Cichosz et al [23] proposed a novel algorithm for hypoglycemia
prediction, where they obtained data from 10 patients with T1D,
who were observed during insulin-induced hypoglycemia, and
the collected blood glucose samples were used as a reference.
Their equipment involved the calculation of ECG, lead II, and
a Minimed Guardian RT CGM, which generated a reading every
5 minutes. The extracted HRV patterns were incorporated into
a mathematical prediction algorithm along with the CGM data.
Cichosz et al [23] treated early prediction as a pattern
recognition problem based on a fixed hypoglycemia level (3.9
mmol/L). Thus, measuring blood glucose from each patient was
used as a reference to categorize each 5-minute reading into 2
groups: in healthy range blood glucose (Cn) or hypoglycemia
(Chy). Features obtained from HRV and CGM before each
blood glucose measurement were used to assess if that time
point was below the hypoglycemic threshold of 3.9 mmol/L.
As a result, a total of 903 samples were evaluated using the
proposed algorithm, with a sensitivity of 79% and an accuracy
of 99%. The algorithm was able to predict all 16 hypoglycemic
events with no false positives and had a lead time of 22 minutes
relative to the CGM device.

These studies indicate that ECG could be used in a free-living
environment to assist patients in detecting hypoglycemic
episodes. Upgraded equipment and optimized algorithms could
make certain methods more precise and simpler to deploy in
practice. Although patients with T1D might not be the first to
benefit from these technological approaches, other non-T1D

patients experiencing hypoglycemic episodes arising from other
conditions, such as endocrine, hepatic, or cardiac disorders,
could be positively affected by these ECG-based algorithms.

Discussion

Principal Findings
In the context of T1D hypoglycemia risk management, several
hypoglycemia or blood glucose level prediction approaches
were assessed in this review. Each of these approaches included
different techniques and tools that were used for blood glucose
level prediction. In general, hypoglycemia prediction algorithms
can offer a valuable alternative to patients with T1D to prevent
possible episodes, as there are many patients that experience
asymptomatic hypoglycemic episodes.

Several of the approaches reviewed have already been
incorporated into commercially available systems; that is, the
approach proposed by Bertachi et al [15] using a FreeStyle Libre
CGM device and a Fitbit Alta HR physical activity monitor,
which has been shown to effectively decrease hypoglycemic
episodes. A common key aspect of several of the evaluated
studies is that the inclusion of carbohydrate consumption data,
insulin dosages, or exercise data can enhance the accuracy of
the algorithm in the context of a defined (medium- or long-term)
forecast horizon. Furthermore, integrating various models could
allow for several stages of hypoglycemia alerts, each of which
could be tailored to a unique scenario, such as a postmeal,
postactivity, or during sleep prediction [26].

Unfortunately, there can be significant variations in accuracy
when predicting blood glucose levels. Data collection in these
types of studies can be affected by a variety of limiting factors,
including inefficient hardware, constrained health care settings,
patient noncompliance with research procedures, and barriers
because of extensive biomedical data records. These
impediments force machine learning researchers to cope with
flawed data and seek workarounds for their prediction models
[27]. Furthermore, the prediction accuracy highly depends on
the type of diabetes, the patient’s lifestyle [28], and the existence
of any other chronic disease. Some underlying mechanisms,
such as age, gender, intestinal microbiota, psychological factors,
and genetic traits, may also contribute to variations in outcomes
[29]. In addition, we noticed that many of the previously
mentioned methodologies were trained on computer-generated
patients from simulators (Li, K, unpublished data, October 2019)
[6,20,21] or on relatively restricted data sets involving strongly
competent patients [7,17,22]. These patients strictly follow the
given research guidelines or are in a monitoring environment,
which abstains from everyday life where patients mostly do not
monitor events, such as heart rate, regularly, which are usually
essential for these methodologies. We also noticed that several
methodologies used a limited number of features
[7,9,11,13,18,19]. This can have a significant impact on the
final results, as several factors can affect blood glucose levels,
each with different severity. In contrast, some studies used a
wide variety of data, such as the approach proposed by Cichosz
et al [23], in which 7 different types of features were included.
Specifically, they used CGM readings, glucose meter
measurements, insulin dosage, ECG, HRV, diabetes duration,
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and hemoglobin A1c levels and achieved an accuracy of 99%
and a sensitivity of 79%. In our opinion, to improve the overall
efficiency of these approaches, it is necessary for researchers
to obtain larger data sets and take into consideration a higher
number of features in their approaches. A gold standard data
set for glucose level prediction in patients with T1D would
assist data analysts in experimenting, comparing, and fine-tuning
their models accordingly.

CGM sensors are considered a revolution in diabetes treatment
[30], are expected to enhance data-driven strategies for
personalized diabetes therapy, and can provide real-time data
for the creation of predictive models [31]. Clinical studies of
such algorithms are projected to increase in the future as
prediction approaches are integrated into CGM systems and
other devices. Furthermore, the evolution of deep learning
algorithms trained using streaming data provides promising
results for glucose prediction [20]. The first priority for a
hypoglycemia prediction model is to alert the patient before
hypoglycemia occurs. Researchers attempted to predict
hypoglycemic episodes at various prediction horizons in the
cited studies, varying from 0 to 60 minutes. Altogether, the
advantages for patients with T1D are evident, as they are
empowered to make preventive decisions before their blood
glucose levels reach critical points [32]. As with any new
equipment, education is required to avoid the negative side
effects of overreactions.

Nevertheless, the current CGM technology has drawbacks such
as limited life span, skin irritation, adhesive problems, and
consumable expenses, which may make it unaffordable for
lifelong tracking and prediction. The challenge is to use
mainstream noninvasive sensors such as wristbands and
smartwatches to build reliable predictive models for hypo- and
hyperglycemia following the paradigm of ECG and HR sensors

available in mainstream devices and used to assist people with
cardiac conditions [33].

Limitations
This review should be interpreted within the context of its
limitations. We used a limited set of terms for the search of the
literature. Keywords for specific algorithms were not used and
we might have inadvertently omitted studies that could have
contributed to the progress made in algorithms for T1D
hypoglycemia prediction. We searched for articles in a limited
number of databases (ie, PubMed, Google Scholar, IEEE Xplore,
and ACM Digital Library), which represent the most widely
used databases internationally. We did not hand search any
studies reported in other reviews or the included studies, and
we did not assess the interrater reliability. On the basis of our
inclusion and exclusion criteria, a small number of eligible
studies was included and examined in this review, which limits
the generalizability of the findings.

Conclusions
In this systematic review, we included a wide range of
hypoglycemia prediction algorithms and systems, some of which
used specific medical or activity devices, such as CGMs and
activity trackers. Nevertheless, these approaches cannot be
recommended to patients on their own; they must be supported
by a comprehensive plan to be effective in supporting medical
care. Specifically, before deploying the right equipment or
technology to aid a patient with T1D, education and medication
management are required to decrease the probability of
developing hypoglycemia. Overall, we conclude that other
approaches to hypoglycemia prediction will be challenged
compared with the commonly used CGMs in the following
years, as they are restricted to event detection, and CGMs also
have the potential to notify patients about their blood glucose
variability.
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