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Abstract
Biological membrane remodeling is central to living systems. In spite of serving as “containers” of whole-living systems 
and functioning as dynamic compartments within living systems, biological membranes still find a “blue collar” treatment 
compared to the “white collar” nucleic acids and proteins in biology. This may be attributable to the fact that scientific lit-
erature on biological membrane remodeling is only 50 years old compared to ~ 150 years of literature on proteins and a little 
less than 100 years on nucleic acids. However, recently, evidence for symbiotic origins of eukaryotic cells from data only on 
biological membranes was reported. This, coupled with appreciation of reproducible amphiphilic self-assemblies in aqueous 
environments (mimicking replication), has already initiated discussions on origins of life beyond nucleic acids and proteins. 
This work presents a comprehensive compilation and meta-analyses of data on self-assembly and vesicular transformations 
in biological membranes—starting from model membranes to establishment of Influenza Hemagglutinin-mediated membrane 
fusion as a prototypical remodeling system to a thorough comparison between enveloped mammalian viruses and cellular 
vesicles. We show that viral membrane fusion proteins, in addition to obeying “stoichiometry-driven protein folding”, have 
tighter compositional constraints on their amino acid occurrences than general-structured proteins, regardless of type/class. 
From the perspective of vesicular assemblies and biological membrane remodeling (with and without proteins) we find 
that cellular vesicles are quite different from viruses. Finally, we propose that in addition to pre-existing thermodynamic 
frameworks, kinetic considerations in de novo formation of metastable membrane structures with available “third-party” 
constituents (including proteins) were not only crucial for origins of life but also continue to offer morphological replication 
and/or functional mechanisms in modern life forms, independent of the central dogma.
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Introduction

The discovery of enzymes as cellular constituents was a 
major landmark in the history of science (Kühne 1877). Prior 
to this discovery, appreciation of “small” single cells as liv-
ing units, having the ability to appear de novo, was also cou-
pled with the belief that only living cells (called ferments) 
had a “magical” ability to carry out a variety of chemical 
transformations at ambient conditions. This “magic” was 
a signature of life. The fact that all enzymes were proteins 
(believed for more than a century after first use of the word 
“enzyme” by Kühne) immediately put the onus of biological 
replication (and evolution of living systems since the origins 
of life) on proteins. These were molecules found in all living 
cells and, now known to be responsible for all biochemical 
reactions. More than half-a-century later, this onus shifted 
to DNA subsequent to remarkable work of Griffith (1928), 
Oswald et al. (1944), Chargaff (1950), Hershey and Chase 
(1952), Rosalind Franklin, and Maurice Wilkins, that led to 
often called “discovery-of-the-century”, i.e., structure of 
DNA by Watson and Crick (1953). Almost another half-
a-century later, discovery of catalytic functions of RNA by 
Altman and Cech (Kruger et al. 1982; Guerrier-Takada et al. 
1983) initiated discussions on an RNA-world hypothesis for 
origins of life (Cech 2012). In a span of ~ 100 years covered 
above, views on molecular basis of origins of life,  biological 
replication, and evolution of biological systems shifted from 

proteins to DNA to possibly DNA and RNA. Emerging 
from this time span, functional manifestations of proteins 
now define “phenotypes” and nucleic acids are considered 
as indicators of biological relatedness in experimental as 
well as evolutionary time scales (Woese et al. 1990). All 
this while, biological membranes (specifically their lipid 
constituents), in spite of being the “third front” in living 
systems, i.e., beyond nucleic acids and proteins, continue 
to remain as comparatively passive components in origins 
of life and biological evolution (Bansal and Mittal 2015). In 
fact, a common “textbook” visualization of cell membranes 
comes from Singer and Nicolson (1972)—the fluid-mosaic 
model in which a mosaic of non-phospholipid entities (e.g., 
integral proteins) is embedded in a phospholipid bilayer act-
ing as two-dimensional viscous fluid. More than a decade 
later, a phenomenological thermodynamic perspective with 
a purely mechanical emphasis resulted in a mattress model 
(Mouritsen and Bloom 1984)—a cell membrane was visual-
ized as an elastic mattress of lipids with non-lipid impurities 
(e.g., proteins) embedded as localized springs (with distinct 
elasticities) in the mattress. While neither of the above mod-
els focused on heterogeneous details (e.g., local curvatures), 
they allowed visualization of “average” cell membranes 
through specific organizational frameworks; the former 
providing some features relevant to nano-scales while lay-
ing foundations for the well-appreciated asymmetry in cell 
membranes. Over the years, these models have transformed 
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into a more mosaic view of cell membranes by incorporat-
ing localized, often transient, interactions (including those 
involving peripheral membrane and cytoskeletal proteins 
along with components of extracellular matrix) resulting in 
distributions of heterogeneous domains/rafts with different 
relative mobilities (Jacobson et al. 1995; Nicolson 2013; 
Almeida 2014; Nicolson and Ferreira de Mattos 2021). 
However, the above visualizations of cell membranes, while 
increasingly attributing active roles to their lipid compo-
nents, still do not consider those lipids in contexts of origins 
of life and biological replication (Mittal et al. 2020).

Some of the earliest work on development of model 
membrane systems (Bangham and Horne 1964; Bangham 
et al. 1965), transitioning into development of liposomes 
(Bangham 1972), indicated close similarities to behavior of 
biological membranes—on the level of whole cells as well as 
intracellular organelles. In fact, the early excitement of being 
able to replicate both biological structures and their behavior 
in absence of proteins and nucleic acids is well captured by 
the following representative statement from Bangham and 
Horne (1964): Certainly the lesions produced in the model 
membrane of lecithin–cholesterol are commensurate with the 
damage obtained in biological cells when either saponin or 
lysolecithin is used as a lytic agent. In spite of the above and 
a sustained interest in the possibilities of creating “simple”  
protocells and life-like properties from “non-living” 
 materials (Rasmussen et al. 2004; Mittal 2009), biological 
replication as a “property” still resides only in the domain 
of the central dogma. In this context, it needs to be appreci-
ated that literature on experimental kinetics and thermody-
namics of membrane remodeling, starting from protein-free 
systems to protein-mediated transitions/transformations, is 
only ~ 50 years old. In contrast, there are over 100 years of 
literature on proteins and a little less than 100 years of lit-
erature on nucleic acids. Therefore, it is not surprising that 
exploration of possible biological replication mechanism(s) 
offered by self-assembling lipid systems in aqueous environ-
ments, free from nucleic acids and proteins, is very recent 
(Mittal et al. 2020; Steinkühler et al. 2020, 2021). However, 
proper analyses of scientific literature on remodeling in 
self-assembled membranes and/or vesicular transformations 
opens up possibilities of “phenotypic” and/or “functional” 
replication mechanisms in nucleic acid- and protein-free 
aqueous environments. Further, transitional events recorded 
during protein-mediated membrane remodeling show avail-
ability of kinetic windows where thermodynamic constraints 
may become available for (re)creation of structures and/
or functions in protein-free systems. In this regard, one of 
the most biologically relevant and ubiquitous membrane 
remodeling events is membrane fusion. From the variety of 
structural and transformational aspects involved in fusion 
of bilayers, to kinetic and thermodynamic considerations 

during morphological transitions, membrane fusion covers 
almost all “variables” pertaining to membrane remodeling.

In this work, we comprehensively analyze literature on 
assembly and transformations in biological membranes, 
starting from protein-free vesicular transformations and cul-
minating in protein-mediated membrane remodeling, with a 
focus on membrane fusion. To every extent possible, we have 
collected  data from original experimental literature (that has 
withstood the test of time and scrutiny) instead of relying on 
specific interpretations of that data presented in numerous 
reviews. While highlighting and appreciating some land-
mark experimental results on kinetics and thermodynamics 
of protein-free vesicular systems, we  discuss the emergence/
establishment of Influenza Hemagglutinin (HA, also spelled 
as Haemagglutinin) as a prototypical membrane fusion 
protein. In fact, HA is arguably as important for under-
standing molecular-level functioning in biology from the 
perspective of ubiquitous membrane remodeling dynamics  
crucial for life, as have been enzyme systems from the per-
spective of the protein folding problem. We discuss how 
HA-mediated membrane fusion systems have attained sig-
nificance in biology similar to that of enzymes that provided 
“functional assays” (e.g., ribonuclease and chymotrypsin) 
and were responsible for opening the gates of current under-
standing on structure and function of proteins (Anfinsen 
1972). Next, we make a comprehensive comparison of vari-
ous biological vesicular systems—enveloped mammalian 
viruses, extracellular, and intracellular vesicles, especially 
based on size and certain physico–chemical properties in 
context of biological membrane remodeling. Finally, we lay 
the foundations of development of a theory on how kinetic 
transitions in membranes may be “stabilized” by proteins 
toward formation of dynamic, yet metastable, structures 
away from equilibrium configurations preferred by the same 
membrane constituents in aqueous systems. Such structures 
play integral roles in living systems and understanding their 
formation is crucial toward gaining insights into origins of 
life, biological self-assembly, and replication.

Protein‑Free Vesicular Assemblies, 
Transformations, and Membrane 
Remodeling

Table 1 compiles sizes of vesicular assemblies (and transfor-
mations) formed (and reported) in some pivotal experimental 
studies with specific lipid compositions in aqueous systems. 
Each of these studies represent significant methodological 
and/or analytical advances, including experimental assays 
and their interpretations. While the pre-1975 studies mostly 
relied on freeze fracture and electron microscopy techniques 
for visualization of membranes assemblies and vesicular 
transformations, phase behaviors of lipid mixtures were 
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quantitated using differential scanning calorimetry or spec-
tra of spin labels distributions that depended on membrane 
phases. By 1980, protein-free systems had developed enough 
to be able to provide interesting insights into “functional” 
aspects of biological membranes, such as permeability, in 
addition to visible mimicking of compartmental morpholo-
gies observed in cells. Subsequent to refinements in methods 
of liposomal preparations, 1980 to 1990 was a remarkable 
decade resulting in development of crucial membrane fusion 
assays for varying liposome sizes (size represents curvature, 
especially in smaller assemblies). Contents mixing assays 
using  Tb3+/dipicolinic acid, carboxyfluorescein, drug mol-
ecules, enzymatic substrates, and a variety of different sized 
molecules transferring between fusing compartments were 
developed. In addition, lipid mixing assays (not listed in 
Table 1), namely—dequenching of the self-quenched R18 
(Octadecyl Rhodamine B) upon lipid mixing (Struck et al. 
1981), FRET between N-(7-nitro-2,1,3-benzoxadiazol-
4-yl)—Rhodamine subsequent to lipid mixing between 
bilayers separately labeled with NBD-PE and N-Rh-PE 
(Hoekstra et al. 1984) and the Pyrene excimer assay (Steg-
mann et al. 1993) were also established. The Pyrene assay 
overcame some of the limitations of the earlier lipid mixing 
assays such as non-specific probe transfer on close apposi-
tion of bilayers. A key achievement in this period was the 
development of rigorous kinetic frameworks (e.g., Bentz 
et al. 1983a, 1983b) and thermodynamic constraints (e.g., 
Lentz et al. 1987) required to properly interpret data on 
vesicular preparations and their utilization in membrane 
remodeling experiments. Analytical tools clearly extracting 
distinct kinetics of aggregation, lipid mixing, contents mix-
ing, and final extents of measurements (fusion) from the data 
were developed. Specifically noted was the fact that neither 
were vesicular assemblies at thermodynamic equilibrium, 
nor did the end points of assays depict thermodynamic end 
points of membrane remodeling. These rigorous quantitative 
treatments of experimental data on fusion of protein-free 
lipid bilayers (and later protein-mediated membrane fusion) 
laid the foundations for a variety of subsequent studies on 
protein-mediated remodeling of biological membranes 
directly or indirectly, including the Nobel-accorded (in 
2013) efforts on discoveries of machinery regulating vesicle  
traffic, a major transport system in our cells. (Malhotra et al. 
1988; Perin et al. 1990; Sollner et al. 1993; Hata et al. 1993; 
Weber et al. 1998).

By early 1990s, developments in (and more accessibil-
ity of) fluorescence microscopy (epifluorescence followed 
by confocal) allowed direct visualization of vesicular 
assemblies, phase separations, and dynamics of membrane 
remodeling. Thus, as is evident from Table 1, substantial 
contributions emerged out of work on preparation and 
visualization of GUVs. This allowed experimental verifi-
cation, and further development, of concepts such as line Li
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tension, mean/Gaussian curvatures, bending rigidity, and 
tilt/splay in lipids that are predominantly theoretical (but 
physically important). Start of the new century brought 
progress toward quantitative visualization of transitions 
and distributions of different phases in individual mem-
brane assemblies compared to populations of assemblies. 
Important phase diagrams of defined amphipathic mixtures 
self-assembling into membranes in aqueous environments 
continue to emerge out of such progress till date. Inter-
estingly, the last couple of entries in Table 1 represent 
a somewhat cyclical nature of scientific exploration—(i) 
the work of Steinkühler et al. (2018) is reminiscent of the 
seminal work of Chernomordik et al. (1987) that investi-
gated different stages of electric field-driven morphologi-
cal transitions and curvature formations in planar bilayers 
and (ii) the work of Spustova et al. (2021) is reminiscent 
of the seminal work of Wilschut et al. (1980), Nir et al. 
(1982), and Bentz et al. (1983b); spontaneous vesicula-
tion and “subcompartment” formation on removing  Ca2+ 
observed recently may be simply interpretable as the dom-
inance of reverse rate constants in the older studies that 
used  Ca2+ as an inducer for creation of larger assemblies 
(fusion products) from smaller vesicles. Nevertheless, 
the recent studies allow a much better appreciation of the 
original literature from 1980s, especially for interpreting 
experimental results on protein-free vesicular assemblies, 
their transformations, and overall membrane remodeling 
in the context of origins of life and structural replication 
mechanisms (of biological compartments) independent of 
the central dogma.

In addition to the above, some very recent methodo-
logical advances provide fascinating ways to address a key 
limitation of previous vesicular assemblies. Unlike cell 
membranes, liposomal membranes are devoid of mem-
brane asymmetry. Bhatia et al. (2018) overcame this limi-
tation by inducing (transient) asymmetry in GUV bilay-
ers by utilizing small amounts of glycolipids (ganglioside) 
GM1 whose local concentrations in respective monolayers 
changed due to desorption of GM1 from the outer mon-
olayer as a result of extravesicular “dilution” by prepa-
ration buffer. Subsequently, Bhatia et al. (2020) induced 
(transient) asymmetry in osmotically balanced GUVs with 
encapsulation of a sugar different from the extravesicular 
sugar in the suspension solution, thereby varying local 
hydration environments of the inner and outer monolay-
ers. Such innovative approaches resulting in remarkable 
protein-free vesicular assemblies and transformations are 
gradually pushing “in vitro” systems closer to mimicking 
previously “unmatched” features of living cells (“in vivo” 
systems).

From Advent of Liposomes to Development 
of Experimental Assays for Membrane 
Fusion

Figure 1 shows a timeline from the advent of liposomes to 
development of experimental assays for membrane fusion; 
initially in protein-free and later applied to protein-medi-
ated membrane fusion experiments. By early 1970s, model 
membrane systems had been developed from a variety of 
amphipathic mixtures in different aqueous environments 
(Bangham 1972). While experimental work on “functional” 
manifestations (e.g., permeability, rupture/repair) of these 
model membranes continued, theoretical frameworks and 
mechanistic models involving physico–chemical proper-
ties of amphipathic molecules in aqueous systems emerged. 
Today, conceptual formulations of (i) the hydrophobic effect 
(Tanford 1973; Tanford 1978; see legend to Fig. 1) and, (ii) 
shape parameters for amphipathic molecular constituents 
(Israelachvili et al. 1976) of assemblies in aqueous environ-
ments (e.g., micelles, bilayers), have the same significance in 
understanding of biological membranes as secondary struc-
tures are significant in understanding of protein structures. 
In fact, such is the remarkable validity and applicability of a 
theoretical concept such as shape parameter that it is found 

Fig. 1  Timeline from advent of liposomes to development of experi-
mental systems and assays for membrane assemblies and fusion 
(see text for details). The timeline captures some of the key original 
experimental advances—from the first liposomes in the 1960s, to the 
latest protein-free vesicular assemblies involving “electroformation” 
of GUVs from heterogenous SUVs (Bhatia et  al. 2015) along with 
inducing of transient bilayer asymmetries by varying intra- and extra- 
vesicular conditions (Bhatia et  al. 2018, 2020). Here, it is pertinent 
to enforce the importance of properly interpreting the hydrophobic 
effect—the term “hydrophobic interaction” neither implies any force 
nor is it a real “interaction”—it is actually exclusion by water. In 
absence of an aqueous environment, “hydrophobic” molecular enti-
ties do not show any tendency to interact with each other. Thus, while 
the word “hydrophobic” may appear to imply phobia from water, 
experimentally and scientifically it represents only exclusion from/by 
liquid water (anecdotally interpretable as water’s phobia for such mol-
ecules/entities rather than the other way around). The figure is drawn 
only for illustration purposes and not to any scale
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to be a molecular signature of bilayer constituents even in 
simulations of flat bilayers (Bansal and Mittal 2013).

The 1980s also saw complementation of membrane 
fusion between curved membranes by visualization of flat 
planar bilayers spontaneously formed by defined composi-
tions in aqueous environments with the help of Teflon and 
similar materials serving as substrates/surfaces. Chernomor-
dik et al. (1987) utilized/developed one such experimental 
assembly for recording structural transitions during mem-
brane fusion between two planar bilayers while coupling 
their experimental findings with a theoretical stalk model 
(Kozlov and Markin 1983). In fact, on one hand, the work 
of Wilschut et al. (1980), Bentz and Nir (1981a, b) created 
the foundations for combining theoretical and experimental 
kinetics in membrane fusion. On the other hand, Cherno-
mordik et al. (1987), Ellens et al. (1989) and Siegel (2008) 
created the foundations for combining theoretical and exper-
imental thermodynamics of remodeling during membrane 
fusion. Next, as introduced earlier, developments in fluores-
cence microscopy allowed direct and visual measurements 
of membrane fusion. In this direction, Blumenthal, Zimmer-
berg and colleagues, utilized erythrocytes [red blood cells 
(RBCs)] and RBC “ghosts” fusing with HA-expressing cells 
for direct monitoring of events occurring during biological 
membrane fusion (Morris et al. 1989; Sarkar et al. 1989; 
Herrmann et al. 1993). This was possible since glycophorins 
on RBCs are heavily sialated and sialates serve as receptors 
for HA. The above was made possible by development of 
the HA-expressing cell—RBC ghost experimental system 
by Doxsey et al. (1985) and Sambrook et al. (1985). With 
this, the era of studies on membrane fusion of protein-free 
lipid bilayers transitioned to predominantly protein-mediated 
membrane fusion. The basic fundamentals of experimental 
assays pioneered during that time continue to serve till date, 
with liposomes (especially SUVs representing curvature-
related parameters in bilayers, and LUVs) and protein-free 
lipid systems (“lipid nanosystems”) shifting in relevance as 
drug delivery vehicles in subsequent times (Meers 2022).

In relation to the above, it is pertinent to note that later 
applications involving X-ray (diffraction, scattering) and/
or neutron scattering have allowed a high-resolution struc-
tural characterization of protein-free lipid bilayers further 
validating and/or confirming earlier findings. While pre-
dominantly using flat model membranes, these experiments 
have resulted in quantitative estimates for bilayer interaction 
forces (Wong et al. 1999a, b) along with properties such as 
membrane thickness, degree of heterogeneity, tilt, bending 
moduli and phase separations etc. (Karmakar and Raghuna-
than 2005; Kamal and Raghunathan 2012; Tristam-Nagle 
2015; Nagle 2017). Specific high-resolution visualizations 
of spatial organizations and/or local curvatures and/or suit-
ability of membrane systems for (or resistant to) remodeling 
continue to complement/confirm earlier results obtained 

from relatively low-resolution assays and observations (see 
lower left panels “2002-till date” in Fig. 1). For example, on 
one hand Yang and Huang (2002, 2003) were able to directly 
visualize a “static” stalk formation in dehydrating lipid 
membrane stacks. On the other hand, Salditt and colleagues 
captured transient “dynamic” stalk formations, presenting 
them as structural fusion assays, in aligned multi-lamellar 
stacks of protein-free-lipid membranes (Aeffner et al. 2012; 
Scheu et al. 2021).

Influenza HA‑Mediated Membrane Fusion: 
Establishment of a Prototypical Fusion 
System

In the late 1960s, first reports pertaining to internalization 
of several viruses (Type 2 Parainfluenza virus, Influenza 
virus, New Castle Disease virus, Herpes Simplex virus, 
and Sendai virus) by different cells came from light micros-
copy (Howe et al. 1967) and electron microscopy (Howe 
et al. 1967; Morgan and Howe 1968 and references there 
in). These studies did indicate events such as “binding,” 
“fusion,” “penetration,” and “uncoating” of virus particles 
with different cells—based on protocols involving incuba-
tion of virus particles at 4 °C for “binding” and raising the 
temperature to 37 °C for “penetration” into cells. Using a 
similar protocol and electron microscopy, Haywood (1974) 
reported “fusion” and “penetration” of Sendai virus into 
ganglioside containing model membranes, presumably to 
avoid cell culture-related artifacts. However, artifacts per-
taining to sample preparation and/or image acquisition in 
all the above experiments were still difficult to segregate. 
It is interesting to note that Sendai virus, known to induce 
syncytia in cell cultures, does not require low pH for mem-
brane fusion. Influenza virus did not induce similar syncy-
tia but was shown to “penetrate” target membranes in the 
above studies. Clearly something was amiss in experimental 
protocols. To this end, Helenius et al. (1980) followed by 
White and Helenius (1980) reported low pH-driven mem-
brane fusion by the Semliki Forest virus (SFV), using assays 
involving cells and liposomes, but free of possible artifacts 
in the earlier studies. The fusion assays were “end-point” and 
comparatively robust. Catalytic activity of enzyme trapped 
in liposomes on viral RNA subsequent to fusion and inhibi-
tion of viral infectivity in cells treated with lysosomotropic 
agents (that increased lysosomal pH) were indirect assays 
compared to direct kinetic assays (Table 1). However, the 
experiments were ground-breaking for discovering the need 
for low pH “trigger” required for SFV membrane fusion. 
The aftermath was unequivocal demonstration of low pH-
induced membrane fusion by Influenza and the Vesicular 
Stomatitis viruses—the experimental assay was formation 
of cell syncytia (White et al. 1981).
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Figure 2 shows the timeline for establishment of Influenza 
HA as a prototypical membrane fusion protein (note that 
the figure also includes crucial pre-influenza HA experi-
ments also for completeness). Ectodomain of HA was the 
first membrane fusion protein whose crystal structure was 
solved (Wilson et al. 1981). The solved structure was that 
of bromelain-cleaved HA at neutral pH and the remaining 
decade (plus some more years) went into consistent efforts to 
decipher low pH conformation(s) of HA. A key development 
was creation of HA-expressing fibroblast cell lines (Doxsey 
et al. 1985; Sambrook et al. 1985) that allowed development 
of HA-mediated cell–cell membrane fusion systems trig-
gered by low pH. This resulted in some exemplary experi-
ments monitoring double-labeled RBC ghosts fusing with 
HA-expressing cells when exposed to low pH. Experimental 
protocols developed for model membrane fusion systems 
were now directly applied to HA-mediated fusion. Con-
venient size of the cell–cell fusion system allowed real-
time monitoring of fusion events using patch clamp, lipid 
mixing, and contents mixing assays. Influential discoveries 
on sequence of events, from flickering pores allowing ion 
transfer, to lipid mixing, to opening, and expansion of fusion 
pores during protein-mediated membrane fusion, were made 
(Sarkar et al. 1989; Spruce et al. 1989; Tse et al. 1993; Zim-
merberg et al. 1994; Leikina et al. 2004). These were accom-
panied by periodic experiments of Influenza virus fusing 
with liposomes (e.g., Stegmann et al. 1995). However some 
key questions remained: what was(were) the exact role(s) 
of HA in fusion? What was the architecture of the fusion 
site? These questions were reflective of almost a century-old 
investigation on how proteins work as enzymes (see “Intro-
duction” section).

To this end, Ellens et al. (1990) conducted one of the 
most seminal experiments, which introduced experimental 

transformation of fundamental concepts of three-dimen-
sional chemical reaction stoichiometry from solutions to 
lesser dimensions (in this case surface reactions). Monitor-
ing fusion of fibroblasts expressing different surface den-
sities of HA to same target membranes was equivalent to 
laboratory titrations aimed at uncovering chemical reaction 
stoichiometries in solutions. And the results were astound-
ing—HA surface density was not linearly related to the 
extents of fusion observed. Ellens et al. (1990) unambigu-
ously showed involvement of more than one HA in fusing 
membranes and allowed development of the first estimates of 
the architecture of a protein-mediated membrane fusion site 
(Bentz et al. 1990). However, a more accurate estimation of 
the fusion site architecture required kinetic data in addition 
to extents. Further, assignment of specific roles to individual 
HA molecules in the fusion site required knowledge of low 
pH structure of HA. In regards to the latter, a remarkable 
computationally driven prediction by Carr and Kim (1993) 
was confirmed by solving of low pH crystal structure of 
HA, called TBHA2 (shown at 1994 in Fig. 2, explained in 
figure legend). The structure not only showed one of the 
most dramatic conformational changes discovered in any 
protein till that date, but also provided possible mechanisms 
for membrane fusion along with an experimentally verifiable 
concept of “metastable” states in general protein folding. 
This was followed by a series of experiments that gener-
ated invaluable kinetic data on HA-mediated membrane 
fusion with a variety of experimental systems—first fusion 
pore formation in cell-planar bilayer fusion (Melikyan et al. 
1995), virus-liposome fusion at different pH values, with 
different strains of Influenza with different target membranes 
(Shangguan et al. 1996), and cell–cell fusion (Danieli et al. 
1996; Blumenthal et al. 1996). Kinetic data generated above 
was comprehensive since (a) it used the same standardized 

Fig. 2  Timeline for establishment of Influenza HA as a prototypical 
membrane fusion protein and development of experimental assays 
for studying HA-mediated membrane fusion (see text for details). 
Wilson et  al. (1981) solved the structure of bromelain-cleaved HA 
(called BHA) at neutral pH—the first structure shown is from PDB 
(Berman et al. 2000) PDB ID: 5HMG (Wilson et al. 1981; Weis et al. 
1990); the second structure, called TBHA2, shown is PDB ID: 1HTM 

(Bullough et  al. 1994) which is trypsin + thermolysin + bromelain—
cleaved HA at low pH. Overall interpretation from 5HMG and 1HTM 
is that HA is a trimer with each monomer having two subunits—HA1 
responsible for receptor binding and HA2 responsible for membrane 
fusion. The figure is drawn only for illustration purposes and not to 
any scale
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HA-expressing cell lines or quantitatively well-characterized 
Influenza virus particles and (b) it came from diverse, but 
equally important methods, for monitoring different steps of 
membrane remodeling during fusion till that date, i.e., elec-
trophysiological measurements, lipid mixing, and contents 
mixing assays. Interestingly, individual interpretations of the 
data did not appear to converge on the same (or even simi-
lar) architecture of the fusion site - differences attributable 
to different measurements (single-first-fusion-pore-event vs 
single-cell–cell-fusion-membrane-conductivity vs single-
cell–cell–lipid/content mixing vs population-cell–cell–lipid-
mixing vs population-virus–liposome–lipid/content mixing).

Remarkably, a mass-action model initially developed 
by Bentz (2000a), extended by Mittal and Bentz (2001), 
followed by Mittal et al. (2002b), was able to extract an 
unambiguous consensus architecture of the HA-mediated 
membrane fusion site from the above comprehensive 
kinetic datasets (Bentz and Mittal 2003). Specific roles 
were assigned to receptor-bound HA and free HA at the 
fusion site while incorporating cryo-EM based data of 
Shangguan et al. (1998) on low pH induced inactivation 
(i.e., fusion incompetence) of influenza virions. The emer-
gent “textbook” picture defined a minimal aggregate size 
(ω = minimum number of HA molecules aggregated to form 
a fusion site) and a minimal fusion unit (n = minimum HA 
molecules required to undergo the dramatic conformational 
changes observed from BHA to TBHA2 for creation of the 
first fusion pore). Based on the data, receptor-bound HA 
molecules were not a part of the “n” (minimal fusion unit) 
and assisted in creation of restricted fusion site that eventu-
ally expands. The significance of this mass-action model to 
HA-mediated membrane remodeling during fusion is argu-
ably akin to that of Michaelis–Menten kinetics in enzyme 
function—with an additional advantage of the primary 
parameters in the fusion model, i.e., ω and n, being mecha-
nistic (in contrast to VMax and KM which are phenomeno-
logical). While the above was focused on arriving at the 
architecture of HA-mediated membrane fusion site from the 
perspective of HA molecules, Chernomordik et al. (1997, 
1998) carefully dissected lipidic intermediates formed dur-
ing HA-mediated merger of bilayers using cell–cell fusion 
assays—with fascinating approaches that involved arresting 
or promoting membrane curvature-based remodeling dur-
ing HA-mediated fusion by addition of exogenous lipids 
with different shape parameters to the experimental system. 
By combining electrophysiological measurements, lipid, 
and contents mixing assays, Chernomordik and colleagues 
were able to create “textbook” visualizations for protein-
mediated membrane remodeling events during HA-mediated 
membrane fusion. This concluded a comprehensive series 
of analytical and experimental efforts with identification of 
distinctions between HA-mediated membrane remodeling 
during hemifusion and fusion of bilayers (Mittal et al. 2003). 

Importantly, apart from establishing Influenza HA-mediated 
membrane fusion as a prototypical system, the analytical and 
experimental advances described in this section (and shown 
in Fig. 2) continue to serve as reliable tools in understand-
ing protein-mediated remodeling during membrane fusion 
in general, till date.

From Influenza HA‑Mediated Membrane 
Fusion to Other Enveloped Mammalian 
Viruses

Table  2 lists the morphological and size variations in 
enveloped mammalian viruses, along with respective viral 
membrane proteins (VMPs, with subunits wherever appli-
cable) responsible for receptor binding to the host and/or 
membrane fusion with the host. Here, an important point 
to note is that similar to classifications of general proteins 
into alpha, beta, and alpha/beta classes (Mittal and Acharya 
2012; 2013), VMPs are also classified (into Classes I, II, 
III) based on alpha-helical and beta-sheet contents (White 
et al. 2008; Backovic and Jardetzky 2009; Modis 2014). 
Here, we do not focus on those classifications. However, we 
list several common themes emerging from HA-mediated 
membrane remodeling, which are applicable to all of viruses 
listed in Table 2:

1. Lipidic intermediates in protein-mediated membrane 
remodeling during fusion by enveloped viruses are the 
same (though with kinetic variations), regardless of 
structural variations in VMPs (Zaitseva et al. 2005).

2. All VMPs, without exception, have a “fusion peptide”—
an amphipathic/hydrophobic stretch of amino acids that 
plays a key role in destabilizing viral and/or target mem-
branes. Gething et al. (1986) first established the impor-
tance of this peptide by demonstrating that even a single-
point mutation in HA fusion peptide renders the whole 
protein ineffective in membrane fusion. Length of this 
fusion peptide can be 10–25 residues (Bentz and Mittal 
2000) and it is generally hidden/buried in the “soluble” 
ectodomain of VMPs before fusion. Exposure of this 
fusion peptide is a result of conformational changes in 
response to some trigger (e.g., receptor binding of VMP 
or lowering of pH).

3. Metastable conformations of VMPs—initial confor-
mations of VMPs undergo irreversible conformational 
changes (i.e., final conformations are more “stable”) 
resulting in membrane fusion. The paradigm of natively 
occurring less stable conformations in natural proteins, 
emerging from HA, is in contrast to expectations based 
on findings of Anfinsen (1972). Thus, the concept of 
“metastability” in the initial conformations of VMPs 
appropriately reconciles the post-fusion conforma-
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Table 2  Enveloped mammalian viruses

Name Family Shape Size (nm) VMP(Su) Reference(s)

Influenza Virus Orthomyxoviridae  ~ Spherical, Pleomorphic 80–120 HA (HA1/HA2) Elford et al. (1936), Stanley 
(1944), Shangguan et al. 
(1998), Harris et al. (2006)

FIV Orthomyxoviridae Filamentous Len 250–30,000;
Dia ~ 80

HA (HA1/HA2) Ada and Perry (1958), 
Calder et al. (2010), Vijay-
akrishnan et al. (2013), 
Dadonaite et al. (2016)

NCDV Paramyxoviridae Pleomorphic 200–300 HN, F Silverstein and Marcus 
(1964), Nagai et al. (1976), 
Ganar et al. (2014)

HPIV Paramyxoviridae Pleomorphic 150–250 F, HN Howe et al. (1967), Hu et al. 
(1992), Lawrence et al. 
(2004)

SendaiV Paramyxoviridae Pleomorphic 150–200 HN, F(F1/F2) Scheid and Choppin (1974)
Measles Virus Paramyxoviridae Pleomorphic, ~ Spherical 120–250 H, F Wild et al. (1991), Colf et al. 

(2007)
EIAV Retroviridae Pleomorphic, ~ Spherical 80–120 Env Tajima et al. (1969); Rice 

et al. (1990)
HIV(T1) Retroviridae  ~ Round  ~ 120 Env (gp160/120/gp41) Chan et al. (1997), Harvey 

et al. (2007)
VSV Rhabdoviridae  ~ Cylindrical L ~ 190, D ~ 85 VSV-G Kelley et al. (1972), Ge et al. 

(2010)
Rabies Virus Rhabdoviridae  ~ Cylindrical L ~ 180, D ~ 75 G Anilionis et al. (1981), 

Tordo and Poch (1988)
HSV 1 Herpesviridae IC, “Spikey” Envelope  ~ 225 gB, gC, gD, gH/L Sarimento et al. (1979), 

Ligas and Johnson (1988), 
Herold et al. (1991), 
Forrester et al. (1992), 
Grünewald et al. (2003)

EBV Herpesviridae Pleomorphic  ~ 150–200 gH-gL-gp42 complex, 
gp350/220

Nemerow et al. 
(1987), Borza and Hutt-
Fletcher (2002), Peng et al. 
(2010), Nanbo et al. (2018)

CMV Herpesviridae Spherical, Pleomorphic 150–200 gB, gH, gM, gL Landolfo et al. (2003), 
Schauflinger et al. (2013)

SFV Togaviridae  ~ Spherical 70 E1, E2, E3 Garoff et al. (1974), Mancini 
et al. (2000)

SinV Togaviridae  ~ Spherical  ~ 60 E1, E2 Dalrymple (1976), Choi 
et al. (1991)

HBV Hepadnaviridae Spherical 42 HBsAg (S, M, L) Pasek et al. (1979), Tiollais 
et al. (1981)

RSV A Pneumoviridae Spherical, Filamentous  ~ 150 G, F, SH Mufson et al. (1985), Feld-
man et al. (1999)

TBE V Flaviviridae IPC*, ~ Spherical  ~ 50 E, prM (pr/M) Chambers et al. (1990), Yu 
et al. (2008), Füzik et al. 
(2018)

DenV Flaviviridae IPC*, ~ Spherical  ~ 50 E Chen et al. (1996), Kuhn 
et al. (2006)

WNV Flaviviridae IPC*, ~ Spherical  ~ 50 E, M Mukhopadhyay et al. (2003), 
Kanai et al. (2006)

HCV Flaviviridae IPC*, ~ Spherical  ~ 50 E1, E2 Yu et al. (2007)
ZikaV Flaviviridae IPC*, ~ Spherical  ~ 50 E, M Sirohi et al. (2016), Kosty-

uchenko et al. (2016)
OHV Hantaviridae Spherical/Oval 90–120 GN, GC Antic et al. (1992), Xu et al. 

(2007)
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tional irreversibility with Anfinsen’s thermodynamic 
view. This also results in “activation” and “inactiva-
tion” of VMPs—Priming for irreversible conformational 
changes by triggers (e.g., low pH or receptor binding) 
in presence of target membranes leads to membrane 
fusion and in absence of target membranes inactivates 
virus particles. Till date, only rabies virus G protein has 
emerged as an exception—it exhibits reversible confor-
mational changes and can catalyze multiple rounds of 
fusion (Gaudin et al. 1991).

4. Occurrence of coiled coils or “n”-helix-bundles or hair-
pins in VMPs—these structural/conformational motifs 
are either present in pre-fusion metastable conforma-
tions or in many cases are a result of conformational 
changes in VMPs coupled with pre- to post-membrane 
fusion events (Bentz 2000b). These conformational 
motifs are often credited for ensuring close apposition 
of membranes (overcoming hydration barriers and/or 
generating local curvatures at fusion sites to facilitate 
membrane fusion).

5. Fusogenic aggregates/Fusion machines or units—mul-
tiple VMP molecules assemble together to create the 
required architecture of a membrane fusion site. Incom-
plete or different VMP assemblies lead to hemifusion or 
no fusion.

6. Leaky fusion—protein-mediated membrane fusion can 
be leaky, but only for very small molecules.

7. Data obtained from population assays for membrane 
fusion can be directly mapped to single-fusion events 
or single cell–cell fusion measurements (Mittal et al. 
2002a). Interestingly, for several other systems in biol-
ogy, such as single-molecule experiments, this still 
remains a challenge.

8. Local membrane environments (e.g., cholesterol enrich-
ment or specific membrane domains) around VMPs are 
important in modulating their membrane fusion activi-
ties (Hess et al. 2005, 2007; Biswas et al. 2008; Yang 
et al. 2015; Lee et al. 2021).

In addition to (and preceding the above), VMPs play 
crucial role(s) in close apposition of viral membranes with 
target membranes—this close apposition requires compen-
sating for, followed by overcoming of, the hydration barriers 
between the outer monolayers of the two fusing bilayers. 
While being a general aspect of biological membrane fusion, 
this involves local dehydration coupled with possible crea-
tion of transient hydrophobic defects required to be “healed” 
by exchange (or flip-flop) of outer monolayer lipids and/or 
protein fragments (Tieleman and Bentz 2002; Witkowska 

ASFV African Swine Fever Virus, DenV Dengue Virus, EbolaV Ebola Virus, EBV Epstein–Barr Virus, EIAV Equine Infectious Anemia Virus, 
FIV Filamentous Influenza Virus, GlyFP, MCP* Glycosylated Fibrous Proteins, Major Capsid Protein covering an inner viral membrane (host 
binding, viral fusion activities not yet reported), HBV Hepatitis B Virus, HCoV Human Corona Virus, HCV Hepatitis C Virus, HIV(T1) Human 
Immunodeficiency Virus (Type 1), HPIV Human Parainfluenza Virus, HSV 1 Herpes Simplex Virus 1, IC Icosahedral Capsid, LFV Lassa Fever 
Virus, MERS CoV-Middle East Respiratory Syndrome Corona Virus, NCDV NewCastle Disease Virus, OHV OrthoHantaVirus, IPC* Icosahe-
dral Protein Coat, RSV A Respiratory Syncytial Virus, SARS-Cov-2 Severe Acute Respiratory Syndrome Corona Virus2, SendaiV Sendai Virus, 
SFV Semliki Forest Virus, SinV Sindbis Virus, TBE V Tick-Borne Encephalitis Virus, TFV* Tiger Frog Virus (not a mammalian virus, however 
is studied in a human liver cancer cell line HepG2, VMPs are putative) , VSV Vesicular Stomatitis Virus, V Virus, VV Vaccinia Virus, WNV West 
Nile Virus, CMV Cytomegalovirus, VMP(Su) Viral Membrane Protein (Subunits)

Table 2  (continued)

Name Family Shape Size (nm) VMP(Su) Reference(s)

VV Poxviridae Brick shaped  ~ 360 × 270 × 250 P16, P8 Salmons et al. (1997), John-
son et al. (2006)

EbolaV Filoviridae  ~ Cylindrical, Pleomorphic L ≥ 900, D ~ 80 GP (GP1/GP2) Volchkov (1998), Feldmann 
et al. (2003)

HCoV Coronaviridae  ~ Spherical 60–140 S (S1/S2) Bosch et al. (2003)
MERS- CoV Coronaviridae  ~ Spherical 75–105 S(S1/S2) Wang et al. (2013), Alsaad 

et al. (2018)
SARS-CoV-2 Coronaviridae  ~ Spherical 60–140 S (S1/S2) Zhu et al. (2020), Hoffmann 

et al. (2020)
LFV Arenaviridae Round/Oval, Pleomorphic 100–130 GP (GP1/GP2) Günther and Lenz (2004)
Mimivirus Mimiviridae IC-Inner membrane 400–800 GlyFP, MCP* Xiao et al. (2005), Xiao et al. 

(2009), Kuznetsov et al. 
(2010)

ASFV Asfarviridae Icosahedral, Internal 
envelope

175–215 CD2v Dixon and Chapman (2008)

TFV* Iridoviridae Hexagonal/Round 100–200 ORF001L, ORF020R Wang et al. (2008)
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et al. 2021). Here, it is also important to highlight that, other 
than viral membrane fusion, many of the above themes are 
also common to ubiquitous protein-mediated membrane 
remodeling events in cellular and physiological systems, 
such as embryonic development in worms (Gattegno et al. 
2007).

Having discussed common themes on viral fusion mecha-
nisms above, it also pertinent to view fusogenic components 
of VMPs (e.g., HA2 in HA) as general proteins, instead of a 
restricted view as only fusion proteins. Recently, it emerged 
that naturally occurring folded/structured proteins have clear 
compositional constraints (Mittal et al. 2010, 2020; Mittal 
and Jayaram 2011a, b). It was also shown that amino acid 
compositions beyond those constraints are signs of intrin-
sic disorder in proteins, i.e., lack of specific conformations/
structures corresponding to functions (Mittal et al. 2021a, b, 
c). Thus, considering structural classifications in fusogenic 
components of VMPs (White et al. 2008), it was natural to 
test whether VMPs obey “stoichiometry-driven protein fold-
ing” (Agutter 2011). Figure 3 shows that VMPs are highly 

structured (black and yellow bars compared to striped bars 
in Fig. 3A), regardless of whether they are predominantly 
alpha-helical or beta-sheets. Also, the variability in VMP 
compositions, in spite of primary sequences being very 
different, is extremely low especially when compared to 
intrinsically disordered proteins (Fig. 3B). These results 
not only re-iterate the crucial role of relative occurrence of 
amino acids in naturally occurring structured proteins but 
also show that VMPs are highly structured with even tighter 
compositional constraints than general-structured proteins.

Extra‑ and IntraCellular Vesicles are Different 
from Viruses

In the context of our discussions on protein-free membrane 
vesicles to enveloped mammalian viruses, it becomes impor-
tant to inspect other naturally occurring vesicular systems 
in biology. Thus, considering that enveloped mammalian 

Fig. 3  Stoichiometric distributions of amino acids in viral fusion 
proteins (VMPs). These are compared with “structured” (open bars, 
n = 27,199), “sequences without structure” (gray bars, n = 532,553), 
“curated/reviewed intrinsically disordered proteins” (black-striped 
bars, n = 707), and “putative intrinsically disordered proteins” (gray-
striped bars, n = 94)→for data and details, see Mittal et  al. (2021c). 
The following sequences of fusogenic (components of) VMPs were 
collected from UniProtKB—HA2 (HA2-X31: P03437, HA2-Jap: 

P03451, HA2-PR8: P03452) and other viral fusion proteins (HIV1-
gp41: P03375, HIV1-gp41: P03378, HIV2-gp41: P15831, HIV2-
gp41: P20872, SFV-E1: Q8JMP5, Sin-E1:P03316, Sin-E1: P27285, 
TBE-E: P07720, TBE-E: P14336, TBE-E: Q01299, Den1-E: P27910, 
Den2-E: P29990). Yellow bars represent stoichiometric distributions 
of only HA2 (n = 3) and black bars represent stoichiometric distribu-
tions of all VMPs (n = 15)
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viruses are proteo-vesicles encapsulating cargo, we take a 
comparative look at extracellular and intracellular vesicles.

While there are online portals dedicated to extracellular 
vesicles, such as “Vesiclepedia”—www. micro vesic les. org 
(Kalra et al. 2012; Pathan et al. 2019) and “Exocarta”—
www. exoca rta. org (Mathivanan et al. 2012; Keerthikumar 
et al. 2016), Table 3 here provides a succinct, straightfor-
ward, and yet comprehensive tabulation of broad/major types 
of extracellular vesicles (EVs) with information only specific 
to the current context. It is clear that in spite of an appealing 
parallel between “excretory” mechanisms releasing EVs and 
enveloped viruses, there is one physical difference between 
the two—size heterogeneity within individual viruses 
(Table 2) is much lower than the heterogeneity observed 
within individual EVs. Next, a physico–chemico–biologi-
cal attribute unique to enveloped viruses is uniform spatial 

distributions of respective VMPs on viral envelopes/sur-
faces independent of their shapes as well as surface density. 
Moreover, the variety of VMPs for individual viruses are 
highly limited compared to possible types of different pro-
teins associated with EVs. Finally, while functional roles of 
EVs are predominantly inter-cellular communications and/
or transfer of materials between cells, viruses are known 
to primarily hijack intracellular machinery for their own 
replication. In view of the above, we find that extracellular 
vesicles are very different from viruses. Even if their cel-
lular sources may appear similar, mechanisms of formation 
and the final vesicular forms are quite distinct. We propose 
that it may be important to consider viruses as signatures 
of very primitive vesicular forms (VFs), first arising out of 
self-assembly of purely amphipathic constituents in aqueous 
environments. These VFs later associated with proteins and 

Table 3  Extracellular vesicles

Name Size (nm) Cellular source(s) Reference(s)

Ectosome (or microparticle/
microvesicle/shedding 
vesicle)

50–200 Assembled and released from plasma 
membrane. (Neutrophils, mac-
rophages, microglia, weaker expul-
sion of microparticles from other, 
possibly all, cell types)

Simpson et al. (2008), Cocucci and 
Meldolesi (2011), Van der Pol et al. 
(2012), Cocucci and Meldolesi (2015)

Microparticles 100–1000 Plasma membrane of most cell types Simpson et al. (2008)
Microvesicles 20–1000 Plasma membrane of most cell types Simpson et al. (2008), Raposo and 

Stoorvogel (2013)
Exosome 30–200 Exocytosis of multivesicular bodies 

(MVBs), rarely by plasma mem-
brane budding

Pap et al. (2009), Van der Pol et al. 
(2012), Pegtel and Gould (2019)

Exosome-like vesicles 80–200 MCF-7, MDA-MB 231 cells (breast 
cancer)

Kruger et al. (2014)

Dexosome  ~ 130 (50–400) Exosomes released from dendritic 
cells

Näslund et al. (2013)

Argosome Not reported Lipoprotein particles enriched with 
GPI-linked proteins (exogenously 
derived or from plasma membranes), 
basolateral membranes of “Wing-
less-producing cells” in Drosophila

Greco et al. (2001), Vincent and Magee 
(2002), Panáková et al. (2005)

Epididymosome 50–250 Epididymal fluid Sullivan (2015)
Tolerosome  ~ 40 Intestinal epithelial cells Karlsson et al. (2001)
Oncosome 100–400 and sometimes larger Tumor cell membranes Van der Pol et al. (2012),

Meehan et al. (2016), Jaiswal and 
Sedger (2019)

Large oncosome  > 1000–> 10,000 nm Large protrusions from/on cancer cell 
membranes

Di Vizio et al. (2009), Meehan et al. 
(2016), Jaiswal and Sedger (2019)

Prominosomes (P2, P4)  ~ 600 (P2), 50–80 (P4) Ventricular fluid in developing embry-
onic mouse brain

P4, also in human colon carcinoma 
cells (Caco-2) and body fluids 
(saliva, urine, seminal fluid)

Simpson et al. (2008)

Prostasomes 50–500 Prostate epithelial cells or seminal 
fluid

Simpson et al. (2008)

Outer membrane vesicles 20–250 Secretory vesicles of Gram-negative 
bacteria

Simpson et al. (2008)

http://www.microvesicles.org
http://www.exocarta.org
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nucleic acids (or vice versa) when these chemical species 
became available. Subsequently, the proteo-nucleic acid-VFs 
became a part of chemical hit and trials eventually leading 
to emergence of the central dogma. Here, it is important to 
emphasize that the above does not support any RNA-world 
hypothesis. Since DNA is a chemically more stable and less 
reactive molecule compared to RNA (Mittal 2012), DNA 
viruses simply could not evolve much compared to more 
reactive and thus prone-to-mutation RNA viruses. In fact, 
the dwindling variety of DNA viruses may compel view-
ing them as fossilized signatures supporting the origins of 
life from replication of VFs, developing into proteo-DNA-
VFs→proteo-DNA/RNA-VFs independent of the central 
dogma, subsequently transforming into living cells emerging 
from the central dogma.

Table 4 shows a compilation of intracellular vesicles 
(IVs). Almost all the points discussed in comparing EVs 
with enveloped viruses are applicable to comparisons of IVs 
with the same viruses—except that functional roles of IVs 
are predominantly intracellular and/or for internalization 
of material from outside to inside cells. Since enveloped 
viruses utilize intracellular trafficking pathways, transmem-
brane domains (TMDs) of viral VMPs show a remarkable 
“length” signature for intracellular organelles involved in 
their internalization. Thus, based on distinct membrane envi-
ronments for distinct organelles inside cells (Sharpe et al. 
2010; Mittal and Singh 2018), internalization pathways 
of enveloped viruses can be predicted based on analyzing 
TMDs of VMPs (Singh and Mittal 2016). Here it is impor-
tant to emphasize somewhat misleading aspects of “common 

Table 4  Intracellular vesicles

Name Size (nm) Cellular source(s) Reference(s)

Clathrin-coated vesicle  ~ 50, ~ 70, 100–120 Bud from plasma membrane and trans-
Golgi network

Roth et al. (1964), Kanaseki and Kadota 
(1969), Pearse (1976)

COPI-coated vesicle  ~ 75 (50–100) Golgi-derived coated vesicle Orci et al. (1986), Malhotra et al. (1989), 
Adolf et al. (2019)

COPI-coated vesicle 60–100 Bud from Endoplasmic Reticulum Barlowe et al. (1994), Rowe et al. (1996)
Caveolar endocytic vesicle 65–90, ~ 100 Plasmalemmal Peters et al. (1985), Rothberg et al. (1992)
Macropinosome 200–10,000 Plasma membrane, actin skeleton Swanson (2008)
Phagosome  > 500 Plasma membrane, actin skeleton 

(phagocytic cells)
Swanson (2008)

Endosome  ~ 400 (Early)
 ~ 760 (Late)

In-budding of the plasma membrane Ganley et al. (2004), Jovic et al. (2010), 
Huotari and Helenius (2011)

Lysosome 100–1200 Multi-vesicular from Endoplasm matu-
ration in most eukaryotic cells

Lübke et al. (2009), Xu and Ren (2015), 
Casares et al. (2019)

Vacuole Large, variable Cytoplasm of plants, protists, yeasts, 
and some animal cells

Matile (1978), Jaquinod et al. (2007), 
Karunakaran and Fratti (2013), Shi-
mada et al. (2018)

Peroxisome 100–1000 Eukaryotic cytoplasm (multiple pos-
sibilities—de novo, from ER or other 
peroxisomes)

Tuller et al. (1999), Terlecky and Fransen 
(2000), Smith and Aitchison (2013)

Apoptotic vesicle 50–5000 ER and plasma membrane in most cells Mallat et al. (1999), Marchiani et al. 
(2007), Van der Pol et al. (2012), 
Hauser et al. (2017), Serrano-Heras 
et al. (2020)

Secretory vesicle 90–1000 Budding off from Golgi network Surma et al. (2011)
Dense core vesicle/granule  ~ 70 trans-Golgi network (endocrine and 

neuronal cells)
Kim et al. (2006), Persoon et al. (2018)

Large dense core vesicle (synaptic)  ~ 90 trans-Golgi network (axon terminal-
neuronal cells)

Walch-Solimena et al. (1993), Brun-
ner et al. (2009), Gondré-Lewis et al. 
(2012), Kuznetsov and Kuznetsov 
(2017)

Small synaptic vesicle  ~ 50 trans-Golgi network (axon terminal-
neuronal cells)

Simpson et al. (2008)

Secretory lysosome  ~ 700 with smaller 
(40–70) internal 
vesicles

Diverse structures (dense cores, 
multilaminar, unique structures) 
from Endoplasm maturation (in some 
melanocytes, cells from hematopoietic 
lineage, renal tubular cells)

Blott and Griffiths (2002), Griffiths 
(2002), Holt et al. (2006), Schröder 
et al. (2010), Casares et al. (2019)
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features” of some IVs with viruses. Firstly, apparently both 
are vesicular forms with some sort of protein coats/assem-
blies associated with them. Secondly, already discussed 
previously, is the presence of common structural motifs in 
protein assemblies responsible for membrane fusion in both. 
These two need not be interpreted as similarities between 
IVs and enveloped viruses. The mechanisms of proteins’ 
association with IVs are very different than those in envel-
oped viruses, e.g., IV protein coats have proteins that have 
been shown as curvature sensors; due to functional implica-
tions on cellular dynamics, protein associations with IVs 
are through weak interactions. In contrast, VMPs are pre-
dominantly integral membrane proteins. Additionally, the 
structural motifs present in viruses arise from a very few 
types of proteins per virus (in many cases, it is a single type 
of protein) compared to IVs where multiple types of proteins 
come together via weak interactions to form these motifs 
which have non-uniform spatial distributions on vesicular 
surfaces.

Summarizing, close inspection of the data in Tables 2, 3, 
and 4 indicates that neither EVs nor IVs appear to have sim-
ilar proteo-vesicle-cargo formation properties with envel-
oped viruses. It is also important to consider that cellular 
vesicles are compositionally “fragile,” not because of their 
membranes but because of reversible nature of weak interac-
tions of proteins associated with them. In absence of data on 
half-lives of cellular vesicles in vivo and in vitro, a direct 
comparison of compositional “stability” with relatively more 
robust viral particles is not possible. Nevertheless, it is clear 
that any evolutionary linkages between viruses and cellular 
vesicles are premature at best and may even be biophysically 
unsound.

Discussion

The elegance and beauty of DNA structure offering a rep-
lication mechanism via the central dogma are undeniable. 
However, it is extremely difficult to visualize an accidental 
appearance of components of the central dogma in “dilute” 
solutions to initiate closely coordinated reactions for initiat-
ing life. Therefore, it is almost obvious/natural to envision 
appearance of replicable compartments that could encap-
sulate and constrain the components of central dogma to 
operate. Thus, origins of life must start with exploration of 
protein-free and nucleic acid-free replication mechanisms. 
These are seen in biological membranes. Recently, impor-
tance of lipid constituents of cellular “compartments” was 
explicitly demonstrated in origins of life and evolution of 
“complex” cells (Danchin 2014; Bansal and Mittal 2015). 
Comprehensive analyses of ~ 5000 lipid constituents of 
plasma membranes in the three domains of life provided 
direct, nucleic acids free, evidence for symbiotic origins of 

eukaryotic cells (Bansal and Mittal 2015). Also emerged 
was the reason for Archaea not being pathogens—mem-
branes formed by sn-glycerol-1-phosphate do not fuse 
with membranes formed by glycerol-3-phosphate as sub-
sequently noted by Antoine Danchin (personal communi-
cation). Clearly there is more to membrane remodeling by 
itself than protein-mediated membrane remodeling. In fact, 
it is important to consider the following:

(1) Membrane assemblies involve the same weak interac-
tions as protein folding—these are the hydrophobic 
“interactions” (see legend to Fig. 1), hydrogen bonding, 
ionic interactions and Van der Waals forces. Of course, 
proteins also have two additional strong interactions 
(peptide bonds and disulfide linkages/bonds) that are 
absent in membranes—however, this absence allows 
morphological flexibilities.

(2) Influenza HA provided experimental evidence for “met-
astable” “native” protein structures to reconcile with 
the widely accepted thermodynamic views on protein 
folding beautifully illustrated experimentally by Anfin-
sen (1972). However, the fact that till date all experi-
ments with biological membranes and compartments 
use detergents as a measure of “100%” disruptions 
show that membranes systems (both natural and model) 
are predominantly in a metastable state. Theoretically, 
post-disruption removal of detergent is not possible due 
to formation of newer equilibrium structures that would 
include detergent molecules. In this context, the follow-
ing observations from literature are quite informative—

a. Bentz et al. (1983b) state It is important to men-
tion that the equilibrium product for PS vesicles in 
a concentration of Ca2+ sufficient to induce fusion 
is a massive anhydrous structure called a cochleate 
……. whose length is of the order of µm. Clearly, all 
of the vesicle contents will be leaked to the medium 
when the cochleates are eventually formed. How-
ever, the aggregation and fusion of two PS vesicles 
are nowhere near this equilibrium state, which is 
why the PS vesicle system (and other lipid mixtures 
such as PS/PC (phosphatidylcholine) …… can be 
used to study the fusion of two bilayers.

b. Lentz et al. (1987) state …. kinetic analysis of our 
data demonstrates, first, that small vesicle prepa-
rations should be used within a few hours of size 
fractionation. Second, the substantial increase in 
fusion rate with temperature (see Figure 6) indi-
cates a large activation energy for the rate-limiting 
step of the process. From our data, we estimate this 
to be 30–40 kcal/mol. The large magnitude of this 
activation energy suggests that close juxtaposition 
of vesicle bilayers …… may be the rate-determining 
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step for spontaneous fusion of SUV. Third ….. from 
a practical point of view, this means that when stor-
age is necessary, SUV should be stored just above 
their phase transition. Finally, we note that only the 
smallest, most highly curved vesicles fused to form 
intermediate-sized vesicles. The intermediate-sized 
vesicles appear to be stable above their phase tran-
sition, although our data do not rule out the possi-
bility that these, too, fuse, but at a much slower rate 
than do the highly curved species.

(3) Cells and biological systems in general do not operate 
at optimum temperatures (or pH) for all protein constit-
uents. There are thermodynamic windows for operation 
of proteins in living systems, which are not optimized 
toward any single protein or function (Ghosh and Dill 
2010). The same is applicable to biological membranes 
(in terms of phase transitions and properties of indi-
vidual constituents).

(4) Consideration of only thermodynamic windows for 
operations in living systems is also highly misleading—
kinetic windows for operation of proteins, whether from 
the perspectives of chemical operations of the central 
dogma or from the perspectives of diffusion, are equally 
important (Dill et al. 2011). The same is applicable for 
“functional” membrane assemblies that, while being 
thermodynamically unstable (in time scales of cellular 
operations), have kinetic windows for stabilization by 
“third-party” components.

The above highlights enough reasons to consider kinetic 
explorations of membrane assemblies and their constitu-
ents in biological membrane remodeling, rather than rely-
ing primarily on thermodynamic considerations. Thus, we 
end with Fig. 4 that couples possible kinetic transitions 
in membranes with thermodynamics. Based on existing 
biological membranes, it is clear that assemblies of amphi-
paths are “stabilized” by proteins (and other non-lipidic 
components) to form dynamic, yet (meta)stable, structures 
away from equilibrium configurations in aqueous systems. 
In fact, metastability of these structures is essential for 
operational dynamics of living systems—a very recent 
example of this comes from enzymatic hydrolysis of 
ectodomains of membrane proteins on avian erythrocytes 
revealing a novel non-montonic osmotic behavior of bio-
logical membranes that stayed undiscovered in spite of 
nearly 100 years of literature (Singh et al. 2019). To con-
clude, we propose that repeated de novo formation of met-
astable membrane structures (i.e., mimicking replication), 
with “third-party” constituents (due to their availability) 
were not only crucial for origins of life but also continue to 
offer morphological replication and/or functional mecha-
nisms in modern life forms, independent of the central 

dogma. In fact, very recent experimental work exploring 
membrane assemblies and structures lends strong support 
to the above proposal (Steinkühler et al. 2020, 2021).
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