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Availability of highly parallelized immunoassays has renewed interest in the discovery of
serology biomarkers for infectious diseases. Protein and peptide microarrays now provide
a rapid, high-throughput platform for immunological testing and validation of potential
antigens and B-cell epitopes. However, there is still a need for tools to prioritize and select
relevant probes when designing these arrays. In this work we describe a computational
method called APRANK (Antigenic Protein and Peptide Ranker) which integrates multiple
molecular features to prioritize potentially antigenic proteins and peptides in a given
pathogen proteome. These features include subcellular localization, presence of repetitive
motifs, natively disordered regions, secondary structure, transmembrane spans and
predicted interaction with the immune system. We trained and tested this method with
a number of bacteria and protozoa causing human diseases: Borrelia burgdorferi (Lyme
disease), Brucella melitensis (Brucellosis), Coxiella burnetii (Q fever), Escherichia coli
(Gastroenterit is), Francisella tularensis (Tularemia), Leishmania brazil iensis
(Leishmaniasis), Leptospira interrogans (Leptospirosis), Mycobacterium leprae (Leprae),
Mycobacterium tuberculosis (Tuberculosis), Plasmodium falciparum (Malaria),
Porphyromonas gingivalis (Periodontal disease), Staphylococcus aureus (Bacteremia),
Streptococcus pyogenes (Group A Streptococcal infections), Toxoplasma gondii
(Toxoplasmosis) and Trypanosoma cruzi (Chagas Disease). We have evaluated this
integrative method using non-parametric ROC-curves and made an unbiased validation
using Onchocerca volvulus as an independent data set. We found that APRANK is
successful in predicting antigenicity for all pathogen species tested, facilitating the
production of antigen-enriched protein subsets. We make APRANK available to
facilitate the identification of novel diagnostic antigens in infectious diseases.
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INTRODUCTION

Infectious diseases are one of the first causes of death worldwide,
disproportionately affecting poor and young people in
developing countries. Several epidemiological and medical
strategies exist to deal with these diseases, most of which rely
on robust and accurate diagnostic tests. These tests are used to
demonstrate infection (presence of the pathogen), to follow up
treatments and to monitor the evolution or cure of the disease or
the success of field interventions (1).

One of the preferred methods to diagnose infections relies on
the detection of pathogen-specific antibodies in the fluids of
infected patients (most often serum obtained from blood) (2, 3).
For this reason, there is a big interest in developing reliable
methods able to improve the fast and sensitive identification of
potential specific antigens.

With the advent of peptide microarray platforms it is now
possible to perform high-throughput serological screening of
short peptides, which allows for faster discovery of linear
antigenic determinants with good potential for diagnostic
applications (4). Taking advantage of complete genome
sequences from pathogens, it is theoretically possible to scan
every encoded protein with short peptides against sera from
infected hosts. However, while this is straightforwardly achieved
for viral pathogens and small bacteria, it gets more difficult when
dealing with larger bacteria or eukaryotic parasites, since they
can reach thousands of proteins with millions of peptides,
exceeding the average capacity of standard protein or peptide
microarrays (5). Besides, it is now becoming common to fit in the
arrays additional sequence variants obtained from the pathogen
population (from diverse strains and clinical isolates). One
example are serological strain typing strategies (6), which
would stress the capacity of these platforms.

Ultrahigh-density peptide microarrays had been used
successfully to map linear epitopes, having an upper theoretical
limit of ~ 2-3 million unique peptides per array (7). While these
ultrahigh-density peptide microarrays do enable a lot of
possibilities, they do not yet have the capacity to analyze whole
proteomes of larger pathogens without some preprocessing. It is
Frontiers in Immunology | www.frontiersin.org 2
also worth noting that they are not widely available as lower
density arrays and they require substantial processing and
downstream work to deal with large proteomes (8–10).

There are several ways to deal with the problem of not having
enough space when accommodating large proteomes in a peptide
array, each with their own advantages and disadvantages. The
most common are: decreasing the overlap between peptides,
dividing the proteome among different microarray slides, and
using computational methods to prioritize antigens. In this paper
we will focus on the latter. We and others have previously shown
that a number of protein features can be used to validate and
prioritize candidate antigens and epitopes for human pathogens
(8, 11–13). Similar approaches have also been developed into a
number of reverse vaccinology programs for bacteria [reviewed
recently in Dalsass et al. (14)].

In a previous work, we developed a method that integrates
information from a number of calculated molecular and
structural features to compute an antigenicity score for
proteins and peptides in Trypanosoma cruzi (8, 11). In this
paper, we use machine learning techniques to extend and
generalize this concept so that it can be applied to other
pathogens. We call this method APRANK (Antigenic Protein
and Peptide Ranker) and show how it can be used as a strategy to
predict and prioritize diagnostic antigens for several
human pathogens.
MATERIALS AND METHODS

All methods are described in detail herein, but are also
documented as R and Perl code in APRANK’s source code,
available at GitHub (see Availability).

Bioinformatic Analysis
FASTA files containing proteins of the species used to train
APRANK (see Table 1) were downloaded from publicly available
database resources (from complete proteomes) and can be found
in the GitHub repository (see Availability). To comply with
requirements of downstream predictors, unusual amino acid
TABLE 1 | List of pathogen species used in this paper.

Pathogen Species Disease Group Taxonomy (Phylum)

Borrelia burgdorferi Lyme disease

Gram Negative Bacteria

Spirochaetia
Brucella melitensis Brucellosis Alpha-proteobacteria
Coxiella burnetii Q fever Gamma-proteobacteria
Escherichia coli Gastroenteritis Gamma-proteobacteria
Francisella tularensis Tularemia Gamma-proteobacteria
Leptospira interrogans Leptospirosis Spirochaetia
Porphyromonas gingivalis Periodontal disease Bacteroidetes

Mycobacterium leprae Leprosy

Gram Positive Bacteria

Actinobacteria
Mycobacterium tuberculosis Tuberculosis Actinobacteria
Staphylococcus aureus Bacteremia Firmicutes
Streptococcus pyogenes GAS infections Firmicutes

Leishmania braziliensis Leishmaniasis

Eukaryotic Protozoa

Euglenozoa
Plasmodium falciparum Malaria Apicomplexa
Toxoplasma gondii Toxoplasmosis Apicomplexa
Trypanosoma cruzi Chagas Disease Euglenozoa
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characters were replaced by the character ‘X’ and a few proteins
with more than 9,999 amino acids were truncated to that size. To
obtain information at peptide level, proteins were split into
peptides of 15 residues with an overlap of 14 residues between
them (meaning an offset of 1 residue between peptides).

The validated FASTA files were analyzed with BepiPred (15),
EMBOSS pepstats, Iupred (16), NetMHCIIpan (17), NetOglyc
(18), NetSurfp (19), Paircoil2 (20), PredGPI (21), SignalP (22),
TMHMM (23), Xstream (24) and two custom perl scripts that
analyzed similarity of short peptides against the human genome
(NCBI BioProject PRJNA178030). The reasoning of choosing
each predictor, what they predict and which version was used
can be found in Table 2. The full console call for each predictor
can be seen in Supplementary Table S2. NetMHCIIpan was run
multiple times for different human alleles (DRB1*0101,
DRB3*0101, DRB4*0101 and DRB5*0101). The only predictor
that needed an extra preprocessing step was PredGPI, which
required removing sequences shorter than 41 amino acids and
those with an ‘X’ in their sequence. For all purposes, these filtered
sequences were assumed to not have a GPI anchor signal. The
versions of Linux, R, Perl, packages and modules used to create
the computational method are listed in Supplementary
Table S1.

Compiling a Dataset of Curated Antigens
To obtain antigenic proteins and peptides, we extracted
information from the immune epitope database (IEDB), as well
Frontiers in Immunology | www.frontiersin.org 3
as information from several papers, most of which relied on data
from protein or peptide microarrays combined with sera of
infected patients to find new antigens (11, 25–40).

Because different protein identifiers are used across papers,
we used either the Uniprot ID mapping tool, the blastp suite of
BLAST or a manual mapping to find the corresponding ID or
IDs that a given antigen had in our proteomes. The exhaustive
list of all antigenic proteins and peptides used, their source and
the mapping method used can be found in the Supplementary
Data accompanying this article. A version of these data with only
the antigenicity information can be found in the GitHub
repository (see Availability).

For the antigenic peptides, though, mapping the original
protein ID to our pathogen proteomes was not enough; we
also had to assign the antigenicity to the corresponding peptides
within each antigenic protein. However, while our peptides were
offixed length, the curated antigenic sequences varied in size. For
this reason, we developed our own mapping method that we
called ‘kmer expansion’, which works by marking as antigenic
any peptide that shared a kmer of at least 8 amino acids with a
curated antigenic sequence for that same protein. The amount of
total and antigenic peptides, before and after the ‘kmer
expansion’, are listed in Table 3.

In the case of Onchocerca volvulus, the method we used to
derive antigenic proteins and peptides was based on
experimental proteome-wide data on antibody-binding to short
peptides (41). We followed the same rules used by these authors
TABLE 2 | Predictors used to analyze different features of proteins and peptides.

Focus Feature Predictor Basis

Stimulation of an immune
response

B-cell epitopes BepiPred 1.0 Antigenicity by HMM
Binding to MHC Class II
molecules

NetMHCIIpan 2.0 ANN trained with peptide and MHC Class II sequence information

Peculiarities in the protein
sequence

Glycosylation sites NetOglyc 3.1d ANN trained with mucin type GalNAc O-glycosylation sites in mammalian proteins
GPI-anchored proteins PredGPI 1.4.3 Discrimination of the anchoring signal by SVM and prediction of the most probable

omega-site by HMM
Signal peptide cleavage
sites

SignalP 4.0 Prediction of cleavage sites and a signal peptide/non-signal peptide prediction based
on a combination of several ANN

Tandem repeats Xstream 1.71 SE algorithm to explicitly locate exact and degenerate tandem repeats TRs of all
periods in protein sequences

Three dimensional structure

Disorder Iupred 1.0 Amino acids favorable interactions potential
Parallel coiled coil fold Paircoil2 Uses pairwise residue probabilities with the Pair coil algorithm and an updated coiled

coil database
Secondary Structure NetSurfp 1.0 ANN trained with sequence profiles and predicted secondary structure
Surface access NetSurfp 1.0 ANN trained to predict the relative surface exposure of the individual amino acid

residues
Transmembrane helices in
proteins

TMHMM 2.0c Membrane protein topology prediction method based on a HMM

Molecular properties

Isoelectric point Pepstats (EMBOSS
6.6.0.0)

Amino acids pK values

Molecular Weight Pepstats (EMBOSS
6.6.0.0)

Amino acids weights

Similarities within itself and
with the host

Sequence similarity
(pathogen/host)

CrossReactivity Shared kmers between pathogen and host proteins

Sequence similarity
(pathogen proteins)

SelfSimilarity Shared kmers between pathogen proteins
CrossReactivity and SelfSimilarity are custom Perl scripts. ANN, Artificial Neural Network; HMM, Hidden Markov Model; SE, Seed Extension; SVM, Support Vector Machine.
July 2021 | Volume 12 | Article 702552
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to find the peptides they called ‘immunoreactive’. Because these
peptides had lengths from 8 to 15 amino acids, we assigned as
antigenic any neighboring peptides that shared at least 8 amino
acids with them (this is stricter that using our ‘kmer expansion’
strategy because it limits the antigenicity to that section of
the protein).

Clustering by Sequence Similarity
It is common practice in the literature to report antigenicity for a
single or a few reference proteins or accession numbers. This
information is then passed on to databases such as IEDB (25, 26).
Nevertheless, when dealing with complete proteomes, there are
usually other paralogs with high sequence similarity to those
labeled as antigenic. Since they have similar sequences, these
proteins would then have similar properties which would likely
result in similar outputs when running the predictors. However,
because only one of those proteins is labeled as antigenic, this
would hinder the learning capabilities of any models trained or
tested with these data.

To improve the learning process of APRANK, and to account
for unlabeled proteins, we calculated sequence similarity for all
proteins in the 15 analyzed proteomes using blastp from the NCBI
BLAST suite (42) (console call in Supplementary Table S2). We
then wanted to filter the BLAST output keeping only the good
matches, which meant selecting a similarity threshold. After
analyzing different matches, we arrived at a sensible
compromise: trying to be as strict as possible without losing
much data. For this we kept matches with a percentage of
identical amino acids (pident) of at least 0.75, an expected value
(evalue) less than or equal to 1 x 10-12 and a match length of at
least half of the length of the shortest protein in the match.

Using these matches, we created a distance matrix where
distance = 1 – pident and applied a single-linkage hierarchical
Frontiers in Immunology | www.frontiersin.org 4
clustering method. We then cut this tree using a cutoff of 0.25 (1 -
pidentThreshold), resulting in a set of clusters of similar proteins.

For the species-specific models, proteins in a given cluster
were kept together in the training process, meaning they would
all be either in the training set or in the test set.

For the generic models, any protein in the training set which
belonged to a cluster with at least one other antigenic protein was
also tagged as antigenic, even across species (obviously excluding
the species being tested). As for the test set in the generic models,
this would also occur, but only inside that same species. The
amount of total and antigenic proteins, before and after using
BLAST to find similar proteins inside each species, can be seen
in Table 3.

Data Normalization
Each predictor used by APRANK varied on how they returned
their values. Not only they had different value ranges, but while
some of them returned their values per protein, others did so per
peptide, kmer, or amino acid. For this reason, we needed to parse
and normalize all outputs before feeding their data into
our models.

Values returned by each predictor were normalized to fit a
numeric range between 0 and 1. Different methods were used to
parse and normalize the data for each combination of predictor
and model, ranging from linear or sigmoid normalizations to a
simple binary indicator of presence or absence of a given feature
(such as signal peptide). The methods used to normalize the
output for each predictor were the result of analyzing the
distribution and spread of these outputs across all of our
species for each predictor individually, coupled with biological
knowledge of what each predictor was analyzing. Some
predictors that returned information exclusively at protein
level were not used in the peptide models. The detailed steps
July 2021 | Volume 12 | Article 702552
TABLE 3 | Amount of antigenic proteins and peptides for each species.

Species Group Proteins Peptides

Total Antigenic Total Antigenic

Original After BLAST Original After kmer expansion

B. burgdorferi Gram - 1,390 137 152 386,683 117 863
B. melitensis Gram - 3,178 13 13 – – –

C. burnetii Gram - 1,853 102 104 – – –

E. coli Gram - 4,778 7 7 1,428,744 9 158
F. tularensis Gram - 1,556 27 27 – – –

L. interrogans Gram - 3,683 10 10 1,113,309 19 342
P. gingivalis Gram - 1,881 10 11 626,536 165 1181
M. leprae Gram + 1,605 7 8 515,942 76 633
M. tuberculosis Gram + 3,940 81 89 1,268,272 416 4,369
S. aureus Gram + 2,607 16 16 758,970 55 575
S. pyogenes Gram + 1,690 13 13 491,619 263 985
L. braziliensis Eukaryote 8,084 8 12 4,964,396 14 182
P. falciparum Eukaryote 5,337 106 131 4,009,580 562 9,120
T. gondii Eukaryote 8,322 15 16 6,535,220 94 457
T. cruzi Eukaryote 21,170 242 2,480 10,408,841 4,025 7,317
This table shows the amount of antigenic proteins and sequences extracted from bibliography and the final amount after processing. For proteins, BLAST was used to also tag as antigenic
other proteins of the same species that were similar to the antigenic ones. For peptides, a custom mapping method named ‘kmer expansion’ was used to tag peptides as antigenic based
on the antigenic sequences in bibliography (see Methods). We did not have information at peptide level for three of the species.
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on how to parse and normalize the output of each predictor for
the protein and the peptide models are described in
Supplementary Table S3 and the formulas used for these
operations can be found in Supplementary Article S1.
Furthermore, this is also documented in the code (software)
available at Github (see Availability).

Fitting the Species-Specific Models
Species-specific models were created to test the method and
compare between balanced and unbalanced training sets. In this
case, separate models were created for each species, using only
train/test data from that organism alone. A schematic flowchart
showing the logic of this procedure is shown in Figure 1.

To fit each protein species-specific model, clusters for that
species were divided in training and test sets in a 1:1 ratio due to
the low number of recorded antigens for some species. For this
same reason, the training set was balanced with ROSE (43),
generating an artificial training set with a similar number of
antigenic and non-antigenic artificial proteins. This process, as
well as all other described below, was repeated 50 times by re-
sampling the clusters in the training and test sets.
Frontiers in Immunology | www.frontiersin.org 5
A binomial logistic regression model was fitted for both the
balanced and the unbalanced training sets using the generalized
linear models in R (function glm). We chose this model for two
reasons: because it allowed us to see a direct relationship between
the models and our predictors via the coefficients of the model,
and because it was not as affected as other more complex models
by the existence of false negatives (which we knew existed
because they were the novel antigens we wanted to find). Once
the balanced and the unbalanced protein models were trained,
we used them to predict the scores for the test set. The
performance for each model, measured by the area under the
ROC curve (AUC), was then calculated using the R package
pROC (44). Additionally, two pseudo random set of scores were
created by shuffling the scores achieved by both models. These
random protein models were used to test if the performance of
our models differed significantly from a random prediction.

For the peptide species-specific models, we divided the
peptides into training and test sets by simply following the
division of the proteins clusters, meaning that if a protein was
in the training set for the protein model, its peptides would be
in the training set for the peptide model for that iteration.
FIGURE 1 | Schematic flowchart used to obtain APRANK’s species-specific models. With the aim of testing and tuning our method, training and prioritization was
performed for both proteins and peptides using data from a single proteome of interest. This process was repeated for all of our 15 species.
July 2021 | Volume 12 | Article 702552
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The models were fitted and random scores calculated in a similar
manner to the protein models. However, when we attempted to
calculate the performance of the peptide models, our test set was
too large to calculate performance based on AUC values in a
reasonable time. We decided then to sample a subset of 50,000
peptides from the test set in a pseudo-random manner, making
sure that the positive peptides were found in the subset and that
the fraction of positive vs indeterminate/negative antigens was
similar to the one in the test set (but never below 1% unless we
ran out of antigens). All AUC values for the different peptide
models were calculated using the same subset, and this process
was repeated 5 times in each iteration, changing the subset
each time.

Once all iterations were finished, we compared the AUCs
obtained by the balanced and unbalanced versions of the protein
and peptide species-specific models using a Student’s t-test. Another
set of t-tests were used to analyze the difference between each of
those models and their relative random model. If the model had a
significantly higher AUC than the corresponding random model,
we considered the model achieved a successful prediction (p < 0.05).
Frontiers in Immunology | www.frontiersin.org 6
Creating the Generic Models
The generic (pan-species) models are the actual models used by
APRANK. The objective of these models is to generalize
predictions of antigenic proteins or peptides for new species
(not used for training APRANK). In a broad sense, they have to
learn what makes a protein or a peptide antigenic. We achieved
this by training the models with a large set of antigenic proteins
and peptides from 15 different species, including gram-negative
bacteria, gram-positive bacteria and eukaryotic protozoans.

To create the protein generic models, we used ROSE (43) to
make a balanced training set of 3,000 proteins for each species
and then merged all those balanced training sets together. With
these data, a linear model was created following the same steps as
for the species-specific models. Next, these models were used to
predict the scores for the species being analyzed and the
performance of the prediction was calculated the same way as
for the species-specific protein models. A schematic visualization
of this procedure is shown in Figure 2.

We created the peptide generic models in a similar manner, with
balanced training sets from each of the species that contained
FIGURE 2 | Schematic flowchart used to obtain APRANK’s generic models. With the aim of creating a set of models that could make predictions for a wide range
of species, training and prioritization was performed for both proteins and peptides using combined data from all of our 15 species. When testing the generic
models, leave-one-out models were used, where 14 species were used to train the models and the 15th species to test them. This process was repeated for all of
our 15 species.
July 2021 | Volume 12 | Article 702552
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100,000 peptides each. In addition to the regular score calculated by
using the model to predict the antigenicity of the test data, we also
calculated a combined score, which is simply the mean of the
peptide score and the corresponding protein score. The
performance of the peptide generic models was calculated the
same way as for the species-specific peptide models.

When testing these generic models, we created temporary
leave-one-out generic models, where we used 14 of the species to
generate the protein and peptide models, and then tested the
models in the 15th species. We then generated the final protein
and peptide generic models using all 15 species and tested them
by predicting antigenicity in Onchocerca volvulus, a novel species
for APRANK, with experimental proteome-wide data (41).
Comparative Performance
To discard the possibility that our model was simply detecting
sequence similarity, we created a ‘BLAST model’, where we
assigned to each protein a score based solely on how similar
they were to a known antigenic protein from another organism.
The score used was –log10(evalue) and then performance was
calculated for each species.

We also wanted to make sure our model was combining
information from several predictors. To rule out that performance
was mainly driven by one predictor, we compared our prediction
capabilities against the individual predictor with best AUC, which
was BepiPred 1.0. To do this, the BepiPred score for each protein
and peptide was obtained from the individual amino acid scores
following the same steps we used for APRANK as detailed in
Supplementary Table S3, but without normalizing it. The AUCs
for the BepiPred peptide scores were calculated the same way as for
the peptide species-specific models.
Availability
The code for running ormodifying APRANK, as well as the FASTA
files of the different organisms and the detailed lists of antigens used
in training, is available at the GitHub repository located at (https://
github.com/trypanosomatics/aprank) (45), released under a BSD 2-
Clause ‘Simplified License’, which is a permissive free software
license. Because we do not have the rights to distribute software for
some predictors, the repository also holds documentation on how
to find, install and configure these dependencies (users are
responsible for obtaining the corresponding licenses or
permissions for some required predictors).

Because of their size, the trained generic models for proteins
and peptides were deposited in Dryad under DOI:10.5061/
dryad.zcrjdfnb1 (https://doi.org/10.5061/dryad.zcrjdfnb1).
RESULTS

Our aim in this work was to develop a computational method
and associated pipeline capable of prioritizing candidate
antigenic proteins and antigenic determinants (epitopes) from
complete pathogen proteomes for downstream experimental
Frontiers in Immunology | www.frontiersin.org 7
evaluation. We have previously shown for Trypanosoma cruzi
(Chagas Disease) that different criteria can be integrated and
exploited in a computational strategy to further guide the process
of diagnostic peptide discovery (11). Here we extend this work to
other human pathogens and improve the way in which features
are weighted, hence providing a tool for the prioritization of
candidate linear B-cell epitopes for a wide range of pathogens.

Species and Features
We selected human pathogens from a phylogenetically diverse
set of taxa with experimentally validated antigen and/or epitope
data to train and test our method. This included gram negative
bacteria, gram positive bacteria and eukaryotic protozoans. We
did not include viruses in this version of APRANK because they
have small proteomes that are already amenable to experimental
experimentation (e.g. their full-proteomes fit on standard low-
density protein or peptide microarrays). The species selected to
train APRANK and the diseases they cause are shown in Table 1.

We obtained the proteomes of these species (see Methods)
and split each protein into peptides of 15 residues. Once this was
done, we used information from the immune epitope database
(IEDB) along with manually extracted information from several
papers to tag each protein and peptide as antigenic or non-
antigenic. The ‘non-antigenic’ tag in this paper should be
understood in the sense of proteins with no prior information
on their antigenicity. The amount of total and antigenic proteins
and peptides can be seen in Table 3.

To develop a tool that can help identify candidate antigenic
proteins and peptides, we used several predictors that focused on
different properties of the proteins (Table 2). On a broad sense,
these predictors assess: the antigenicity and/or immunogenicity
of proteins (15, 17); the structural and post-translational features
that can be predicted from the protein sequence, some of which
may suggest the protein enters the secretory route or is anchored
at the membrane (18, 21, 22); the presence of internal tandem
repeats in proteins, which have been described to modulate
immunogenicity of proteins (24) together with other structural
features such as the presence of intrinsically unstructured or
exposed regions in proteins which may affect their presentation
in the context of an immune response (20, 23, 46, 47).

We have also implemented in APRANK a number of custom
Perl and R scripts that measure sequence similarity between each
pathogen protein and the human host (CrossReactivity), or itself
(SelfSimilarity). The idea behind these measurements was to
obtain additional information on highly conserved sequences
that may result in e.g. potential lack of immune response
(tolerance) if the pathogen sequence is highly similar to a
human protein; or cross-reactivity of antigens and epitopes in
other proteins from the same pathogen (self-similarity). These
predictors provide information on desirable and undesirable
properties that then need to be weighted accordingly to achieve
good performance at the task of antigen and epitope prediction.

We then calculated which predictors were better in discerning
antigenic proteins by themselves. For this we analyzed the
distribution of the predictors’ parsed outputs looking for cases
where the mean for the antigens were significantly different than
the mean for the whole proteome (see Supplementary Table S4).
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BepiPred, NetMHCIIpan, NetSurfp and SignalP showed the best
results, separating the means of antigens and non-antigens in over 9
organisms. Other predictors, such as Molecular Weight, were also
able to achieve this, but weren’t consistent among species in who
had the largest mean. This meant that they could prove useful when
making species-specific models, but not when creating generic
models, which was our true goal. Looking at the table, there was
an argument to be made for removing some predictors from the
model, but we decided to keep them for now and let themodel likely
assign lower coefficients to them (as can be seen in the generic leave-
one-out models in Supplementary Figure S3). We talk more about
these predictors in the Discussion.

Testing APRANK and ROSE on Species-
Specific Models
Species-specific models were created to test the method and to
compare between unbalanced training sets and training sets
balanced using ROSE (see Methods). As the name implies,
these models worked with only one species at a time, using a
fraction of its proteins to predict antigenicity for the rest. After
running the predictors for all proteins in the selected genome, we
parsed and processed the different outputs and applied a
normalization process to have them in a common scale.

We needed to divide our data into training and test sets.
Often, training sets represent ~ 80% of the data; however, in our
case some species had a low number of validated antigens (see
Table 3), which meant that choosing a 80/20 training/test set
split would result in test sets having only a few antigenic proteins.
This kind of imbalance tends to compromise the training
Frontiers in Immunology | www.frontiersin.org 8
process, making the model to focus on the prevalent class
(non-antigenic) and ignore the rare class (antigenic) (48). For
this reason, when training a model using data from a single
species, we chose to split the training and test set 50/50, re-sampling
proteins and peptides multiple times (see Methods). To improve
the training process, we also used ROSE to balance our training
sets, which works by generating artificial balanced samples from
the existing classes, according to a smoothed bootstrap approach
(43). Furthermore, we used the similarity-based clustering of
sequences to avoid placing highly similar sequences into both
training and test sets.

We used these balanced training sets to fit a binomial logistic
regression model, resulting in one model for proteins and one for
peptides. These models, which we denominated species-specific
models, were then used to predict the antigenicity of their
respective test sets. The performance of APRANK was assessed
by measuring the area under the ROC curve (AUC), using
known antigens and epitopes in the protein and peptide test
sets. This whole process was repeated 50 times, re-sampling
which proteins were in the training set and which in the test set.
A final APRANK AUC score for each species was calculated as
the mean of all AUC scores for these iterations (see Figure 3). To
assess the effect of balancing the data on our models using ROSE,
we also assessed the performance of APRANK repeating the
procedure described above using the unbalanced training sets
instead, resulting in a set of AUC scores corresponding to
species-specific models trained with unbalanced data.

These calculations were done for each of the 15 species, although
for 3 of them there was no antigenicity information at the peptide
FIGURE 3 | Performance of APRANK training using balanced or unbalanced data. Performance of APRANK’s species-specific models for B. burgdorferi and
P. gingivalis. ROC curves for each iteration of training and testing are shown in light gray, and the average curves are shown in green (dashed lines).
July 2021 | Volume 12 | Article 702552
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level, and only protein models were calculated. The results are
presented inTable 4. Our testing showed that APRANKwas able to
predict antigenicity for proteins and peptides in most cases, with
good performance. The only species that did not have a successful
prediction were E. coli for the proteinmodel andM. tuberculosis and
S. aureus for the peptide model. In these cases, the final AUC
corresponding to the species-specific model was not significantly
different than a random prediction. As for the balancing of the data
using ROSE, it seemed to have mostly positive or neutral effects in
the predicting capabilities of our models, which meant we could
safely use it in training our pan-species models.

Development of APRANK as a Pan-
Species Ranker of Antigens and Epitopes
In the previous section we used protein and peptide data from a
given pathogen species to train models that successfully
predicted antigenicity for that same organism; however, our
end goal was to have models that were able to predict protein
and peptide antigenicity for any pathogen. To achieve this, we
created models trained with all species, which we called protein
generic models and peptide generic models.

For these models, we used ROSE (43) to generate similar sized
partitions of balanced data for each of the species, and then we
merged these data and fitted two binomial logistic regression
models, one for proteins and one for peptides. When using the
models to predict the peptide antigenicity scores, we also
analyzed the predicting capabilities of what we called the
combined score, which was a combination of the protein and
peptide scores for a given peptide.

To validate these models we performed a leave-one-out cross-
validation method (LOOCV), hence creating 15 different protein
generic models, each time leaving out one species (which was the
one being used as test set). For the peptide generic models we
Frontiers in Immunology | www.frontiersin.org 9
followed a similar route, but we ended up with 12 models due to
the lack of antigenicity information at peptide level for 3 of the
15 species.

The performance results for these models are presented in
Table 5. The generic protein models were successful in
predicting antigenicity for all species, and similar results were
obtained also at the peptide level, achieving successful
predictions even for E. coli, M. tuberculosis and S. aureus,
which were the three species where the species-specific models
performed poorly before. This observation suggests that
performance is related to the amount and diversity of recorded
antigens. As for the performance of these generic models, the
observed AUC scores obtained similar values to the ones
obtained in the species-specific models trained with balanced
data, indicating that while these generic models did not have
information about the species being tested, the data obtained
from all the other 14 species was enough to learn the generic
rules that made a protein antigenic. The scores produced by
APRANK for each protein and the best peptides for each of these
15 species can be found in the Supplementary Data, deposited in
Dryad under DOI:10.5061/dryad.zcrjdfnb1.

We also reached similar conclusions when comparing the
coefficients obtained in the different protein models. In the case
of individual (species-specific) models, coefficients were less
robust across iterations when there were few positive cases,
and more robust with larger validated training examples, as
expected (see Supplementary Figures S1 and S2). For the pan-
species models, we found the coefficients to be very robust across
all 15 models, indicating that the different leave-one-out generic
models reached a similar conclusion on what makes a protein
‘antigenic’ (see Supplementary Figure S3). This reinforces the
idea that better performance is the result of more extensive
training with diverse positive and negative examples.
TABLE 4 | Prediction results for the specific models.

Species Proteins Peptides

BTR Trained with unbalanced data Trained with balanced data BTR Trained with unbalanced data Trained with balanced data

Mean AUC Mean AUC Mean AUC Mean AUC

B. burgdorferi Yes 0.809 ± 0.014 0.799 ± 0.017 Yes 0.767 ± 0.021 0.773 ± 0.020
B. melitensis Yes 0.710 ± 0.037 0.700 ± 0.033 – – –

C. burnetii Yes 0.611 ± 0.011 0.620 ± 0.010 – – –

E. coli No 0.511 ± 0.034 0.515 ± 0.039 Yes 0.584 ± 0.056 0.633 ± 0.047
F. tularensis Yes 0.783 ± 0.018 0.807 ± 0.014* – – –

L. interrogans Yes 0.827 ± 0.033 0.867 ± 0.023 Yes 0.559 ± 0.015 0.565 ± 0.011
P. gingivalis Yes 0.785 ± 0.031 0.879 ± 0.015*** Yes 0.690 ± 0.019 0.698 ± 0.020
M. leprae Yes 0.633 ± 0.018 0.652 ± 0.018 Yes 0.557 ± 0.029 0.585 ± 0.023
M. tuberculosis Yes 0.635 ± 0.010 0.647 ± 0.011 No 0.508 ± 0.010 0.502 ± 0.010
S. aureus Yes 0.765 ± 0.032 0.772 ± 0.023 No 0.438 ± 0.054 0.420 ± 0.057
S. pyogenes Yes 0.884 ± 0.039 0.984 ± 0.003*** Yes 0.832 ± 0.021 0.844 ± 0.019
L. braziliensis Yes 0.719 ± 0.021** 0.673 ± 0.020 Yes 0.778 ± 0.029 0.867 ± 0.025***
P. falciparum Yes 0.821 ± 0.009 0.826 ± 0.007 Yes 0.758 ± 0.016 0.779 ± 0.012*
T. gondii Yes 0.656 ± 0.032 0.744 ± 0.032*** Yes 0.646 ± 0.035** 0.584 ± 0.020
T. cruzi Yes 0.803 ± 0.029 0.850 ± 0.022* Yes 0.838 ± 0.019 0.854 ± 0.016
July 2021
The prediction was considered to be successful if it was significantly Better Than a Random set of scores (BTR). Each specific model was calculated 50 times using different, but
overlapping, subsets of data as training and test sets. In bold we show the model with the significantly higher AUC when comparing training with unbalanced or balanced data (Student’s
t-test, *< 0.05, **< 0.01, ***< 0.001).
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Using APRANK to Obtain Antigen-
Enriched Sets
Our generic models allowed us to rank proteins and peptides in a
given species based on a model trained from other pathogens.
Now, we wanted to use these scores to select a subset of proteins
or peptides with an increased chance of being antigenic when
compared to the whole proteome.

For this, we focused on T. cruzi, as this was the species with
the largest number of recorded antigens within our collection. To
obtain fair antigenicity scores for this protein we used the
corresponding leave-one-out models created when testing the
Frontiers in Immunology | www.frontiersin.org 10
generic models. We analyzed the distribution of the normalized
scores returned by these models, distinguishing between
antigenic and non-antigenic proteins and peptides (see
Figure 4). As was expected, the peak of the scores for the
antigens is found to the right of the one for the non-antigens,
indicating that the average score is higher for the antigenic
proteins and peptides. Also, the amount of overlapping can be
related to the corresponding AUC, where the higher the AUC,
the less the overlapping.

Once we had our score distributions, we used them to select
an antigen-enriched subset of proteins and peptides. This could
TABLE 5 | Prediction results for the leave-one-out generic models.

Species Proteins Peptides

BTR LOO model BTR LOO model LOO model + protein scores Combined score relative AUC gain

B. burgdorferi Yes 0.786 Yes 0.768 0.950 23.60%
B. melitensis Yes 0.774 – – – –

C. burnetii Yes 0.620 – – – –

E. coli Yes 0.754 Yes 0.742 0.780 5.12%
F. tularensis Yes 0.698 – – – –

L. interrogans Yes 0.947 Yes 0.679 0.948 39.57%
P. gingivalis Yes 0.854 Yes 0.665 0.871 30.91%
M. leprae Yes 0.758 Yes 0.692 0.731 5.68%
M. tuberculosis Yes 0.702 Yes 0.586 0.711 21.17%
S. aureus Yes 0.737 Yes 0.752 0.790 5.03%
S. pyogenes Yes 0.983 Yes 0.838 0.970 15.81%
L. braziliensis Yes 0.709 Yes 0.946 0.878 -7.20%
P. falciparum Yes 0.807 Yes 0.748 0.835 11.66%
T. gondii Yes 0.837 Yes 0.583 0.720 23.51%
T. cruzi Yes 0.867 Yes 0.843 0.857 1.58%
Ju
The prediction was considered successful if it was significantly Better Than a Random set of scores (BTR). For peptides, we show both the performance of the model alone, and the
performance obtained by combining the protein and peptide scores. In bold we show any difference greater than 5% between the peptide score and the combined score for a given
species. LOO Model, Leave-One-Out Model.
FIGURE 4 | Density analysis for the antigenicity scores of T. cruzi. Plots were obtained by analyzing the proteome of T. cruzi with the leave-one-out generic models,
and then distinguishing between antigens and non-antigens. The figure shows the enrichment score obtained by keeping only the proteins and peptides with a score
greater than 0.6, as well as the amount of antigens and non-antigens that would be inside or outside that subset.
ly 2021 | Volume 12 | Article 702552

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ricci et al. Antigenic Protein and Peptide Ranker
be done in one of two ways: either by setting a score threshold or
by simply selecting a fixed number of proteins and peptides
within the top scores. After analyzing the distribution of score
values, we decided to use the first option and selected those
proteins and peptides with a normalized score of at least 0.6. We
next calculated what we called enrichment score (ES), which was
the proportion of antigens in the selected subset relative to the
proportion of antigens in the whole proteome (for example,
ES = 2 meant you were twice as likely to find an antigen in the
subset than in the whole proteome, or in a random subset). In
Figure 4 we show the enrichment scores for the different
normalized scores and the number of proteins and peptides
that fall inside or outside those subsets. While the subsets were
usually a small fraction of the whole proteome (close to 10% in
most cases), this represents a 4 – 6 fold increase in the chances of
finding antigens in those subsets.

As an example, suppose a microarray with a capacity of
200,000 unique peptides. Based on the current antigenic data
we possess, a random sampling of the T. cruzi proteome would
lead to the inclusion of ~ 140 antigenic peptides in that
microarray. However, using APRANK to select the top 200,000
peptides with the highest normalized combined score, we would
end up including almost 1,600 antigenic peptides in the array
(an enrichment score of 11.35). This demonstrates the utility of
tools like APRANK for selection of antigenic peptides for
screening platforms.

Assessing the Validity of the
Computational Method
Now that we had a working pan-species model, we validated the
performance achieved by APRANK. For this, we first assessed
that the performance was the result of combining information
from different predictors, and not from just one or a few of them.

To do this, we selected the predictors that managed to
consistently discern antigenic proteins (see Supplementary
Table S4) and we calculated the area under the ROC curve
Frontiers in Immunology | www.frontiersin.org 11
(AUC) for both known proteins and known peptides in each case
(not shown). We found that the predictor with best solo
predicting capabilities was BepiPred 1.0. We then compared
BepiPred’s predictions against APRANK’s for both the protein
and peptide generic models for each species. This is presented
in Table 6.

We focused on those cases where the AUC changed at least
5% between BepiPred 1.0 and APRANK’s generic models.
APRANK showed increased predicting capabilities for 11 out
of the 15 analyzed proteomes at the level of complete proteins
and/or peptides, while showing a decrease in performance only
in M. leprae at protein level. These results provide validation
support to the approach built into APRANK by combining
information from many predictors.

As an additional test, we also assessed the performance of
APRANK after removing BepiPred 1.0 predictions from our
model. This can be seen in Supplementary Table S5. In this
simulation we observed that even without BepiPred 1.0, our
model reached similar predicting capabilities in most cases,
hence suggesting that other predictors and features included in
APRANK were able to replace BepiPred when training the model
(this is further discussed in the Conclusions).

To ensure that our model was doing more than simply
detecting sequence similarity, we also compared our
performance against a ‘BLAST model’, meaning a model that
was based solely on how similar a given protein was to a known
antigenic protein. The comparison between the performance of
this model and APRANK can be seen in Supplementary Table
S6. As expected, APRANK achieved a larger AUC for most for
the species; however we observed that for M. leprae and
L. braziliensis the ‘BLAST model’ actually resulted in a better
prediction. This may be explained because these were species
with a small number of validated antigens (test cases) and a with
high similarity to other of our selected species. To test this, we
repeated this analysis for these two species, but now we removed
from the BLAST model the species that were most similar to the
TABLE 6 | Comparison between APRANK and the predictor with highest solo AUC (BepiPred 1.0).

Species Proteins Peptides

BepiPred score AUC APRANK score AUC APRANK relative
AUC gain

BepiPred score AUC APRANK score AUC APRANK relative
AUC gain

B. burgdorferi 0.729 0.786 7.94% 0.796 0.768 -3.46%
B. melitensis 0.710 0.774 8.93% – – –

C. burnetii 0.558 0.620 11.13% – – –

E. coli 0.587 0.754 28.39% 0.662 0.742 12.21%
F. tularensis 0.570 0.698 22.40% – – –

L. interrogans 0.839 0.947 12.87% 0.676 0.679 0.42%
P. gingivalis 0.852 0.854 0.25% 0.674 0.665 -1.36%
M. leprae 0.868 0.758 -12.67% 0.689 0.692 0.51%
M. tuberculosis 0.666 0.702 5.29% 0.561 0.586 4.58%
S. aureus 0.723 0.737 1.86% 0.767 0.752 -1.93%
S. pyogenes 0.970 0.983 1.33% 0.800 0.838 4.73%
L. braziliensis 0.549 0.709 29.00% 0.905 0.946 4.48%
P. falciparum 0.793 0.807 1.84% 0.642 0.748 16.42%
T. gondii 0.579 0.837 44.59% 0.584 0.583 -0.21%
T. cruzi 0.814 0.867 6.54% 0.819 0.843 3.03%
July 2021 | Volume 1
The relative AUC gain shows the increase or decrease of the AUC obtained by our method relative to the one obtained by BepiPred. Differences greater than 5% are shown in bold.
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one being analyzed (see bottom rows in Table S6). The
performance under these altered conditions indeed resulted in
significantly lower AUCs, matching or falling behind APRANK.

Applying Our Method on a Novel Species
To truly validate APRANK, we wanted to test the method on
a new species that was not included in our initial training
and that had an extensive amount of information on the
antigenicity of its proteins and peptides. For this, we searched
for publications containing proteome-wide linear epitope
screenings using high-density peptide microarrays and selected
Lagatie et al. (41), a recent dataset produced by scanning
the complete Onchocerca volvulus proteome with more than
800,000 short peptides (mostly 15mers). Onchocerca volvulus is a
nematode and it is the causative agent of Onchocerciasis in
humans (also called river blindness), a disease that is on the list of
Neglected Tropical Diseases (NTDs) of the World Health
Organization (49).

We obtained a list of antigens from O. volvulus following the
same rules applied by the authors to find the peptides they called
‘immunoreactive’ (see Methods in Lagatie et al.), resulting in a set
of almost 1,100 antigenic peptides. We tagged a protein as
antigenic if it had at least one of these peptides; however, we
also kept information on how many ‘immunoreactive’ peptides
each protein had for later analysis. Once this was done, we also
tagged as antigenic any neighboring peptide that shared at least 8
amino acids with one of these ‘immunoreactive’ peptides.

We next trained APRANK with all our 15 species and then
used these models to predict the antigenicity scores for both the
proteins and the peptides of O. volvulus. An AUC score was
calculated for each prediction, comparing the score given by
APRANK against the antigenic tag for each protein and peptide.
We also calculated the enrichment scores for these scenarios
using a score threshold of 0.6 in a similar way that we did for
T. cruzi. The scores obtained by APRANK for each protein and
the best peptides ofO. volvulus can be found in the Supplementary
Data, deposited in Dryad under DOI:10.5061/dryad.zcrjdfnb1.

Our method was successful in predicting the antigenicity of
proteins and peptides for O. volvulus, as shown in Table 7. We
observed that if we were stricter when tagging a protein as
Frontiers in Immunology | www.frontiersin.org 12
antigenic, meaning requiring more ‘immunoreactive’ peptides, we
obtained better performance. When considering as antigenic any
protein with 1 ‘immunoreactive’ peptide we had an enrichment
score of 2.28, whereas when we increased this requirement to 3
‘immunoreactive’ peptides the enrichment score was 5.29 (see
Table 7 and Figure 5). Besides validating the performance of
APRANK on a new pathogen, this suggests that either our method
is better in predicting proteins with many antigenic regions, or that
a single reactive peptide from a peptide array screening may
provide only weak support for calling of antigens.

For peptides, APRANK obtained an enrichment score of
3.33 – 3.90, also showing an additive effect when combined
with the protein score, suggesting that these are effective in
predicting antigenicity for O. volvulus. Similar to before, we tried
being stricter and only considering antigenic peptides in proteins
with at least 2 or 3 ‘immunoreactive’ peptides; however this did
not seem to affect the predictive performance as much as for
whole proteins.

Applying Our Method on a Novel Dataset:
Exploring Seroprevalence
As a final step, we also tested performance of APRANK on an
additional dataset from Plasmodium falciparum that was not
used as a source of validated antigens in our previous training. In
Obiero et al., the authors analyzed the proteome of P. falciparum
using a protein microarray which displayed ~ 91% of the
proteome (50). But more importantly, they analyzed the
individual antibody responses of 38 patients in controlled
human malaria infections. Hence, they provided a rich set of
information on seroprevalence for each analyzed protein.

As part of this validation we analyzed if the APRANK scores
predicting antigenicity were in any way correlated with the
observed seroprevalence. This seroprevalence data encompassed
4,768 unique genes, and was matched against APRANK protein
scores for P. falciparum. To avoid the possibility of over-fitting,
the APRANK scores were those obtained from the leave-one-out
generic model trained in 14 species, but leaving out P. falciparum.
This resulted in 4,343 proteins with information of both
seroprevalence [from Obiero et al. (50)] and antigenicity score
(from our work).
TABLE 7 | Performance of APRANK on Onchocerca volvulus.

Total Score #MIP Antigenic AUC Antigens with score 0.6 Enrichment score for 0.6

Proteins 12,994 Protein score 1 886 0.677 150 2.28
2 177 0.713 38 2.89
3 28 0.828 11 5.29

Peptides 4,872,082 Peptide score 1 1,097 ! 14,122 0.800 6,108 3.33
2 397 ! 4,498 0.798 1,995 3.42
3 104 ! 1,182 0.836 598 3.90

Combined score 1 1,097 ! 14,122 0.750 3,376 3.10
2 397 ! 4,498 0.774 1,342 3.88
3 104 ! 1,182 0.871 512 5.63
July 2021 |
Proteins and peptides were tagged as antigenic based on the number of Minimum Immunoreactive Peptides (#MIP). For proteins, we considered as antigenic those with at least #MIP
immunoreactive peptides. For peptides, we considered as antigenic any immunoreactive peptide found inside proteins with at least #MIP immunoreactive peptides. We show the number
of antigenic peptides before and after spreading the antigenicity from the original immunoreactive peptides to their neighboring peptides (before ! after). The rule to define an
‘immunoreactive peptide’ was extracted from Lagatie et al., 2017 (see Methods). The enrichment score represents the proportion of antigens in the selected subset relative to the
proportion of antigens in the whole proteome.
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The results of this analysis are summarized in Figure 6. Unlike
previous cases where the proteins in the test set were put in binary
classes (antigenic vs non-antigenic), here we divided the data in 5
groups, using seroprevalence cutoffs at the 5%, 10%, 20% and 40%
levels. The distribution of APRANK scores for these groups
Frontiers in Immunology | www.frontiersin.org 13
showed that proteins with higher seroprevalence also had
higher APRANK scores, and hence shift to the right of the plot.
This was evident in the separation of the non-antigenic bulk of
the proteome (< 5% seroprevalence) from those proteins that are
in the 10% - 20% seroprevalence range, and also and importantly
in the highly seroprevalente antigens (seroprevalence >= 40%),
where the density of the peak shifts further towards higher scores.
This was as well supported by the AUC prediction of these two
groups, which was 0.660 for the 10% - 20% seroprevalence range
and 0.740 for the >= 40% range. While further studies of this kind
are necessary to explore the link between antigenicity and
seroprevalence, these results further validate APRANK at the
task of prioritizing antigenic proteins from complete proteomes.
DISCUSSION

We present APRANK, a novel method to prioritize and predict
the best antigen candidates in a complete pathogen proteome.
APRANK relies on a number of protein features that can be
calculated for any protein sequence which are then integrated in
a pan-species model. Our benchmarks show that by integrating
multiple predictors, pooling antigen data from multiple species
across a wide phylogenetic selection, and balancing training
datasets, APRANK matches or outperforms a state-of-the-art
predictor such as BepiPred 1.0 in most scenarios.

We have tested this integrative method using non-parametric
ROC-curves and made an unbiased validation using two
independent data sets (O. volvulus and P. falciparum)
containing recent proteome-wide antigenicity data. In
summary, we found APRANK to be successful in predicting
antigenicity for all pathogen species tested, hence providing a
FIGURE 5 | Density analysis for the antigenicity scores of Onchocerca volvulus. Plots were obtained by analyzing the proteome of O. volvulus with the final generic
models, and then distinguishing between antigens and non-antigens. The figure shows the enrichment score obtained by keeping only the proteins and peptides
with a score greater than 0.6, as well as the amount of antigens and non-antigens that would be inside or outside that subset. The plots correspond to the case
where a protein was tagged as antigenic if it had at least 3 ‘immunoreactive’ peptides (see Results).
FIGURE 6 | Validation of APRANK against antigens with known
seroprevalence. Detailed information on the seroprevalence of Plasmodium
falciparum proteins in cases of Human Malaria was obtained from (50) (n = 38).
Proteins were clustered in different seroprevalence groups and matched against
APRANK antigenicity scores (see Results).
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new and improved method to obtain antigen-enriched protein
and peptide subsets for a number of downstream applications.

Conclusions: Looking Forward
While we are satisfied by APRANK’s performance, there are still
ways to further improve it. The main issue we had when training
our models is the current lack or sparsity of validated epitope and
antigen information. Particularly, well validated non-antigenic sets
are currently hard to find in the literature, forcing us to count as
non-antigenic all proteins and peptides that do not currently have
experimental evidence of antigenicity or were not tagged as
antigenic in databases (which we know is hardly true). Obtaining
validated data about non-antigenic proteins and peptides will
improve the training of the models for future versions of APRANK.

We also observed that the performance of APRANK was not
considerably affected by removing some individual features. This
might indicate that, as we observed previously (11), each
individual predictor contributes only slightly to the overall
performance. Another alternative explanation is that there might
be redundancy between some of the predictors. For example the
features being used for training of BepiPred 1.0 HMMs
[propensity scales for secondary structure preference and
hydrophilicity of amino acid residues (15)] may overlap others
used internally by some of the predictors in APRANK. Future
versions of APRANKwill review these overlaps, analyzing the pros
and cons of adding novel predictors or removing existing ones.

Regarding the computing performance of APRANK, the
majority of the time is dedicated to run the predictors used
internally, most of which run in a reasonable time in a
commodity server. However, there are a few bottlenecks (most
notably predictions by NetSurfP). This should be improved in a
future version in order to offer APRANK e.g. as a web-service.
Future work will also explore the possibility to extend APRANK
to also use data from other experimental (non-computable)
sources, such as evidence of expression derived from
proteomic or transcriptomic experiments.

Finally, APRANK is currently focused on finding linear
epitopes, and likely missing most of the conformational ones.
This is evidently a limitation, but also reflects the current
imbalance on experimental validation of linear vs conformational
epitopes. There is much more information on linear epitopes and
hence the field is ripe to develop applications like APRANK. This
also affected the selection of predictors, many of which are also
biased to predict/analyze linear features, and the selection of
validated antigen and peptide data, which were obtained mostly
from peptide microarray data. Introduction of new predictors may
increase the amount of conformational information used to rank
epitopes, but finding and reporting conformational epitopes would
entail large changes to how APRANK currently works. While we
believe that the best path forward for APRANK is to focus future
Frontiers in Immunology | www.frontiersin.org 14
work in increasing the accuracy of the prediction for linear
epitopes, we do not rule out the possibility of adding the
detection of conformational epitopes to this method.

Equations
See Supplementary Materials.
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46. Dosztányi Z, Csizmók V, Tompa P, Simon I. The Pairwise Energy Content
Estimated From Amino Acid Composition Discriminates Between Folded and
Intrinsically Unstructured Proteins. J Mol Biol (2005) 347:827–39.
doi: 10.1016/j.jmb.2005.01.071

47. Petersen B, Petersen T, Andersen P, Nielsen M, Lundegaard C. A Generic
Method for Assignment of Reliability Scores Applied to Solvent Accessibility
Predictions. BMC Struct Biol (2009) 9:51. doi: 10.1186/1472-6807-9-51

48. Menardi G, Torelli N. Training and Assessing Classification Rules With
Imbalanced Data. Data Min Knowl Discov (2014) 28:92–122. doi: 10.1007/
s10618-012-0295-5

49. Holmes P. Neglected Tropical Diseases in the Post-2015 Health Agenda.
Lancet (2014) 383:1803. doi: 10.1016/S0140-6736(14)60875-8
Frontiers in Immunology | www.frontiersin.org 16
50. Obiero JM, Campo JJ, Scholzen A, Randall A, Bijker EM, Roestenberg M, et al.
Antibody Biomarkers Associated With Sterile Protection Induced by
Controlled Human Malaria Infection Under Chloroquine Prophylaxis.
mSphere (2019) 4:e00027–19. doi: 10.1128/mSphereDirect.00027-19

Disclaimer: The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of Health.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Ricci, Brunner, Ramoa, Carmona, Nielsen and Agüero. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
July 2021 | Volume 12 | Article 702552

https://doi.org/10.32614/RJ-2014-008
https://doi.org/10.1186/1471-2105-12-77
https://github.com/trypanosomatics/aprank
https://github.com/trypanosomatics/aprank
https://doi.org/10.1016/j.jmb.2005.01.071
https://doi.org/10.1186/1472-6807-9-51
https://doi.org/10.1007/s10618-012-0295-5
https://doi.org/10.1007/s10618-012-0295-5
https://doi.org/10.1016/S0140-6736(14)60875-8
https://doi.org/10.1128/mSphereDirect.00027-19
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	APRANK: Computational Prioritization of Antigenic Proteins and Peptides From Complete Pathogen Proteomes
	Introduction
	Materials and Methods
	Bioinformatic Analysis
	Compiling a Dataset of Curated Antigens
	Clustering by Sequence Similarity
	Data Normalization
	Fitting the Species-Specific Models
	Creating the Generic Models
	Comparative Performance
	Availability

	Results
	Species and Features
	Testing APRANK and ROSE on Species-Specific Models
	Development of APRANK as a Pan-Species Ranker of Antigens and Epitopes
	Using APRANK to Obtain Antigen-Enriched Sets
	Assessing the Validity of the Computational Method
	Applying Our Method on a Novel Species
	Applying Our Method on a Novel Dataset: Exploring Seroprevalence

	Discussion
	Conclusions: Looking Forward
	Equations

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


