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Clustered microbial communities are omnipresent in the food industry, e.g., as colonies of

microbial pathogens in/on food media or as biofilms on food processing surfaces. These

clustered communities are often characterized by metabolic differentiation among their

constituting cells as a result of heterogeneous environmental conditions in the cellular

surroundings. This paper focuses on the role of metabolic differentiation due to oxygen

gradients in the development of Escherichia coli cell communities, whereby low local

oxygen concentrations lead to cellular secretion of weak acid products. For this reason,

a metabolic model has been developed for the facultative anaerobe E. coli covering the

range of aerobic, microaerobic, and anaerobic environmental conditions. This metabolic

model is expressed as a multiparametric programming problem, in which the influence

of low extracellular pH values and the presence of undissociated acid cell products in

the environment has been taken into account. Furthermore, the developed metabolic

model is incorporated in MICRODIMS, an in-house developed individual-based modeling

framework to simulate microbial colony and biofilm dynamics. Two case studies have

been elaborated using the MICRODIMS simulator: (i) biofilm growth on a substratum

surface and (ii) submerged colony growth in a semi-solid mixed food product. In the

first case study, the acidification of the biofilm environment and the emergence of typical

biofilm morphologies have been observed, such as the mushroom-shaped structure of

mature biofilms and the formation of cellular chains at the exterior surface of the biofilm.

The simulations show that these morphological phenomena are respectively dependent

on the initial affinity of pioneer cells for the substratum surface and the cell detachment

process at the outer surface of the biofilm. In the second case study, a no-growth zone

emerges in the colony center due to a local decline of the environmental pH. As a result,

cellular growth in the submerged colony is limited to the colony periphery, implying a

linear increase of the colony radius over time. MICRODIMS has been successfully used

to reproduce complex dynamics of clustered microbial communities.
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INTRODUCTION

In their natural or industrial settings, many bacterial species
form clustered communities, such as biofilms or colonies,
rather than living in a free-swimming planktonic state. Living
as a community often confers specific advantages, such as
antibiotic resistance and immune evasion due to horizontal gene
transfer, resistance against flow shear forces and persistence
in dynamic and stressing environments due to metabolic
differentiation (Costerton, 1995; Costerton et al., 1999). This
metabolic differentiation is the result of diffusion limitations and
concomitant gradients in the nutrient, oxygen and metabolic
waste product concentrations. These concentration gradients are
induced by nutrient/oxygen consumption and the secretion of
metabolic waste products such as acetic, formic, and lactic acid by
the relatively densely packed cells (Stewart and Franklin, 2008).

Microbial colony and biofilm development is a significant
issue in food industry. Biofilm formation on food equipment
surfaces constitutes a major contamination source of the food
products. Surface colony growth occurs when food surfaces are
exposed to these microbial contamination sources of spoiling or
pathogenic organisms. In mixed or coagulated food products,
such as minced meat or cheese, these microbial contaminants
can penetrate the food interior during the production process,
resulting in submerged colony growth (Wimpenny et al.,
1995). Cellular growth in clustered communities may also be
used intentionally to obtain specific beneficial effects, such as
biodegradation or synthesis by the use of catalytic biofilms
(Benedetti et al., 2016).

This article focuses on the simulation of Escherichia
coli biofilm and colony growth dynamics. E. coli is a
particularly dangerous food pathogen for young, elderly and
immunocompromised people causing gastrointestinal disorders,
renal failure or even death (Rowe, 2009). An increasing trend
of E. coli infections has been observed in the EU from 2009
to 2013, possibly due to an increased awareness after the large
outbreak of EHEC O104:H4 in 2011 (EFSA and ECDC, 2015).
In addition, as a facultative anaerobe, E. coli is able to survive
both in the presence and absence of oxygen, increasing the risk of
food contamination. Therefore, accurate quantitative microbial
risk assessment is indispensable to guarantee microbial food
safety in the whole food production and distribution chain. For
this purpose, mathematical models are developed in predictive
microbiology to describe and predict microbial dynamics in food
products as a function of environmental conditions resembling
food processing and storage (Buchanan, 1993).

Traditionally, predictive models are (semi-)empirically based
on data of microbial dynamics in well-mixed liquids and
only consider the average microbial population dynamics at a
macroscopic scale. However, as a result of the heterogeneous
environmental conditions in mature biofilms and colonies, and
due to the concomitant metabolic differentiation among the
constituting cells, the individual microbial cell is the most
intuitive modeling level. In individual-based models (IbM), the
individuals/agents of a population are described as discrete,
unique, and autonomous entities (Grimm and Railsback, 2005;
Railsback and Grimm, 2012). This enables the modeler to include

individual variability, directed or local interactions of agents
with the surrounding medium or other agents, and adaptive
physiological behavior. Population dynamics are not modeled
explicitly, but emerge from the behavior of the individuals
and their interactions with the environment and each other.
As suggested above, in predictive microbiological IbMs, the
microbial cell is taken as the individual modeling unit (Ginovart
et al., 2002; Standaert et al., 2004; Dens et al., 2005; Prats et al.,
2006; Verhulst et al., 2011; Ferrier et al., 2013; Tack et al., 2014,
2015).

Despite the specific advantages of IbMs, this kind of models
is notorious for its complex structure (Grimm, 1999; Grimm
et al., 1999). While traditional predictive models only consist
of a limited set of equations, IbMs contain a multitude of
mathematical and logical rules grouped in submodels, each
representing a major and more or less independent process
of the real-life system. This complexity can make IbMs
computationally intensive and slow to run, hard to comprehend
and communicate, data hungry, prone to overfitting, difficult
to calibrate, and laborious to test. In the microbial systems
considered in this work, the most complex process is the
metabolism of the E. coli cells, which is determined by amyriad of
possible intracellular reaction pathways. Therefore, it is necessary
to develop a non-complex, yet accurate metabolic model, valid
under the environmental conditions in our case studies.

Information on the individual cell metabolism could be
included in IbMs by metabolic flux balance analysis (FBA)
with genome-scale models (Palsson, 2006). To represent the
specific microbial growth rate or the secretion rates of major
cell products as a function of nutrient and oxygen consumption,
phenotypic phase planes (PhPPs) can be constructed by
performing FBAs at varying specific cellular nutrient and
oxygen uptake rates. However, this would result in long run
times due to the thousands/millions of cells in IbMs and the
myriad of intracellular pathways in FBA. In addition, FBAs
determine metabolic flux distributions by optimizing a certain
cellular objective (e.g., maximization of biomass or metabolite
production) which is often unknown, especially when the cell
is exposed to stressing environmental conditions (Feist and
Palsson, 2010). Therefore, the PhPPs are approximated in
this article with a low-complexity linear model that contains
the intracellular information from the FBAs without explicitly
incorporating it. However, the PhPPs to which the linear model is
calibrated are only valid when cells aim tomaximize their growth.
To account for deviations from growth-optimal conditions in the
culture environment, growth inhibition and metabolic shifts due
to low pH values and the presence of weak acid cell products in
the environment are incorporated in the linear model.

Finally, the linear metabolic model is incorporated in
MICRODIMS, an in-house developed IbM (Verhulst et al., 2011;
Tack et al., 2015). In this way, MICRODIMS is applicable as a
virtual laboratory to explore the behavior of E. coli cells on/in
food products under various combinations of heterogeneous
environmental conditions. Two case studies are elaborated in
detail: (i) two-dimensional biofilm growth on abiotic food
equipment surfaces, and (ii) three-dimensional submerged
colony growth occurring in mixed or coagulated semi-solid food
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products. In both case studies, oxygen limitations emerge in
mature microbial structures due to diffusion limitations, leading
to local pH drops as a result of the cellular secretion and
accumulation of weak acid substances. The resulting metabolic
differentiation among the cells influences the global population
dynamics: low pH values and cell lysis at the substratum
surface lead to biofilm detachment, while submerged colonies
are characterized by the emergence of a central no-growth zone
influencing the colony radius growth.

MATERIALS AND METHODS

In the first part of this section, the basic concepts of developing
a non-complex metabolic model for E. coli are explained. These
concepts have already been partly described in Tack et al. (2014).
Secondly, the structure of the IbM in which the metabolic model
is incorporated is described according to the ODD (Overview,
Design concepts, and Details) protocol of Grimm et al. (2006,
2010).

Development of a Non-complex Metabolic
Model for E. coli
The non-complex metabolic model that is incorporated in the
IbM is based on systems biology concepts. These concepts and
the derivation of the developedmetabolic model will be explained
in the following subsections. Furthermore, the dependency of
the metabolic model outputs (i.e., the specific cellular growth
rate and the secretion rates of the main cell products) on the
environmental pH and concentrations of weak acid cell products
is explained.

Flux Balance Analysis
In mathematical terms, the intracellular metabolic pathways
and the exchange reactions with the extracellular environment
are contained within the exchange stoichiometric matrix Sexch
(Palsson, 2006):

dx

dt
= Sexch

(

v

q

)

, (1)

with x the concentrations of the involved metabolites, and v and
q the metabolic fluxes through respectively the intracellular and
exchange reactions.

Flux balance analysis (FBA) determines a steady-state solution
of Equation (1) by optimizing a specific cellular objective
function J, leading to the following optimization problem
(Palsson, 2006):

min
v,q

[

J = w ·

(

v

q

)]

, (2)

subject to

Sexch

(

v

q

)

= 0, (3)

vi,min ≤ vi ≤ vi,max, (4)

qi,min ≤ qi ≤ qi,max. (5)

In Equation (2), the weightsw are defined by the intended cellular
objective. The constraints on the kinetic rates of the intracellular
reactions (vi,min and vi,max) and the physicochemical constraints
on the external fluxes due to environmental conditions (qi,min

and qi,max) are taken into account in Equations (4, 5)
respectively.

Phenotypic Phase Plane Analysis
Flux balance analysis is an accurate tool to determine the specific
cellular growth rate and secretion rates of the main weak acid
cell products for a known specific glucose and oxygen uptake
rate. To examine the metabolic regimes of E. coli under different
glucose and oxygen availability conditions, a phenotype phase
plane (PhPP) analysis can be carried out by executing multiple
FBAs for a range of specific glucose and oxygen uptake rates
(Edwards et al., 2001), as illustrated in Figure 1. For these FBAs,
the genome-scale model iAF1260 of Feist et al. (2007) has been
used, and it has been assumed that the cell aims to maximize its
biomass. The metabolic operation of the cell is retrieved from
the PhPP by maximizing the specific cellular growth rate as a
function of the specific glucose and oxygen uptake rate:

max
qG ,qO

[J = µ(qG, qO)] (6)

subject to

0 ≤ qG ≤ qG,max ·
CG

KG + CG
, (7)

0 ≤ qO ≤ qO,max ·
CO

KO + CO
. (8)

The upper constraints for the glucose and oxygen uptake rate
are determined according to the Monod kinetic law (Monod,

1942). In these constraints, qG,max

[

mol
gDW·h

]

and qO,max

[

mol
gDW·h

]

are kinetically the maximal specific uptake rates for glucose
and oxygen (where DW is the abbreviation of dry weight,
mol the indication of mole, and h the abbreviation of hour),
CG [mol/L] and CO [mol/L] the extracellular glucose and
oxygen concentrations (with L the abbreviation of liter), while
KG [mol/L] and KO [mol/L] are the Monod half-saturation
constants for respectively glucose and oxygen. The optimization
problem in Equation (6) is straightforward to solve as the PhPP
in Figure 1 is a monotonically increasing function of both the
glucose and oxygen uptake rate, implying that the specific glucose
and oxygen uptake rates are equal to the upper boundaries in
Equations (7, 8). Values for the above-mentioned parameters can
be found in Table 1.

A Linear Metabolic Model for E. coli under Reference

Environmental Conditions
As the PhPP contains much information about intracellular
metabolic fluxes from its constituting FBAs, it is not appropriate
to incorporate it in its original form into an IbM. Multiple
evaluations of the whole intracellular reaction network would
result in an excessive increase of the required IbM simulation run
time. For this reason, the planes in the PhPP at a specific oxygen
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FIGURE 1 | Phenotypic phase plane analysis: specific cellular growth rate as a function of specific glucose and oxygen uptake rates with maximization of biomass

growth as cellular objective, presented as (A) 3D plot and (B) contour plot. The phenotypic phase plane consists of four phases, each representing a different

metabolic regime. In Sector 1 glucose is completely converted to CO2 through the tricarboxylic (TCA) cycle. The other sectors are characterized by the secretion of

weak acid cell products in the cellular environment: acetic acid in Sector 2; acetic and formic acid in Sector 3; acetic acid, formic acid and ethanol in Sector 4. On the

boundary between Sector 1 and 2, glucose is converted to biomass at a maximal observed yield. For this reason, this boundary is indicated as the line of optimality

(LO).

uptake rate are described by means of the linear growth law of
Pirt (Schulze and Lipe, 1964; Pirt, 1965):

µ = (qG −mG) · YX/G, (9)

with qG

[

mol
gDW·h

]

the specific glucose uptake rate, mG

[

mol
gDW·h

]

the maintenance coefficient, and YX/G [gDW/mol] the biomass
yield coefficient on glucose. The secretion rates of the main

acid metabolites (acetic, formic, and lactic acid) are expressed
similarly:

qi = Yi/G · qG + q0i , (10)

where qi

[

mol
gDW·h

]

is the specific secretion rate of metabolite i,

q0i is the specific secretion rate at a zero glucose uptake rate and
Yi/G [mol/mol] the production yield of metabolite i on glucose.
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TABLE 1 | Parameter values.

Parameter Value Reference

qG,max 9.02·10−3 mol/(gDW·h) Portnoy et al., 2010

qO,max 16.49·10−3 mol/(gDW·h) Portnoy et al., 2010

KG 2.994·10−6 mol/L Ihssen et al., 2007

KO 0.121·10−6 mol/L Stolper et al., 2010

The Influence of pH and Weak Acids on the E. coli

Metabolism
In the optimization problem in Equations (6–8), it is assumed
that the cell aims to maximize its growth. This assumption is only
valid for a non-stressing reference environment, i.e., a neutral M9
minimal medium enriched with glucose at 37◦C. However, the
cellular secretion of weak acid metabolites under oxygen-limited
conditions in microbial biofilms and colonies constitutes an
inhibiting factor for cellular growth and survival. The inhibiting
effect of weak acid cell products on cellular growth is 2 fold:
(i) dissociation of acid metabolites in the food environment leads
to a decrease of the extracellular pH, and (ii) reintrusion of the
lipophilic undissociated cell products into the cell results in an
intracellular pH drop.

Under the stressing conditions of low extracellular pH values
and the presence of undissociated acid cell products, the cellular
objective changes to maximize survival chances. As a matter of
fact, the cellular objective needs to be modified as

max
qG ,qO

J(qG, qO, pH, [Ui]), (11)

restating the optimization problem in Equations (6–8) as
a multiparametric programming problem. However, the
exact mathematical formulation of the cellular objective is
unfortunately not known. For this reason, a more pragmatic
approach is required.

Synergistic effects of low extracellular acidity and
undissociated acid cell products in the environment can be taken
into account in the maintenance coefficient in Equation (9):

mG = mG,ref + A ·
[H+]− 10−7

[H+]min − 10−7
+ B ·

∑

i

[Ui]

[Ui]min
. (12)

In this expression, the maintenance coefficient consists of three
terms: (i) the reference maintenance coefficient mG,ref that can
be derived from the reference PhPP in Figure 1, (ii) additional
maintenance requirements due to an increase of the extracellular
proton concentration [H+], and (iii) a supplementary effect
of weak acid cell products in their undissociated form [Ui].
Microbial growth stops when the proton concentration reaches
a critical value [H+]min. Analogous minimum inhibitory
concentrations [Ui]min exist for the undissociated acid cell
products. The mathematical constants A and B are calculated
by replacing this expression for the maintenance coefficient in
Equation (9).

The increase of the maintenance coefficient due to low
extracellular pH values and the presence of undissociated acid cell

products does not only affect the microbial biomass growth, but
also the secretion of metabolic products in Equation (10):

qi = Yi/G · qG +
mG

mG,ref
· q0i , (13)

ODD Description of the Developed IbM
The developed metabolic model is incorporated in the
MICRODIMS IbM (Verhulst et al., 2011; Tack et al., 2015).
This in-house developed IbM is adapted and extended to
simulate the dynamics of microbial biofilms and submerged
colonies. In this section, a general overview of the MICRODIMS
simulator is described according the to first part of the standard
ODD protocol of Grimm et al. (2006, 2010). Details about the
specific MICRODIMS versions for the two considered case
studies are included in the next section.

Model Purpose
The purpose of the new MICRODIMS versions is the simulation
of chemical gradients and the resulting metabolic differentiation
in E. coli biofilms and submerged colonies. The influence of this
metabolic differentiation on the development of mature biofilms
and colonies is investigated as well.

Entities, State Variables, and Scales
Microbial systems consist of two kinds of agents: the microbial
cells and their surrounding environment.

The microbial cells contain the same state variables as in the
previous MICRODIMS versions (Tack et al., 2015): cell mass
and radius, spatial coordinates, maximum specific glucose and
oxygen uptake rates and a list variable with information about
the ongoing DNA replication cycles. In addition, an inclination
vector is introduced to take the rod shape and orientation of
E. coli into account.

The liquid environment is modeled as a two-dimensional
space for the biofilm simulations, while the submerged colonies
are simulated in a three-dimensional food environment. In both
cases, the environment is discretized as a spatial grid. Each of the
grid units is associated with a glucose, oxygen, acetic acid and
formic acid concentration. To simulate chemical gradients at a
microscopic level, the size of a grid unit needs to be in the same
order of magnitude as a microbial cell, viz., 6 µm. The whole
space has a dimension of 300 µm.

Process Overview and Scheduling
MICRODIMS consists of several interlinked subprocesses, as
illustrated in Figure 2. These subprocesses exhibit different time
dynamics (Picioreanu et al., 1999) and are executed at different
time steps. In MICRODIMS, three time steps are used: (i)
1t1 = 0.00005 min, a very short time step for the fast diffusion
processes and the update of local pH values, (ii) 1t2 = 0.01 min,
an intermediate time interval for the metabolic processes of
nutrient and oxygen uptake, biomass growth and metabolite
secretion, and (iii) 1t3 = 0.1 min, the long time step for slow
processes such as cell reproduction, cell lysis, and cell movement.
This cell movement consists of a shoving mechanism to avoid
spatial overlap between the cells, and a detachment process for
loosely bound biofilm cells. After the initiation of the simulation,
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FIGURE 2 | Process schedule of the MICRODIMS model.

all the subprocesses are executed consecutively as presented in
the simulation scheme in Figure 2.

Software
The MICRODIMS IbM has been implemented in the MASON
multiagent simulation toolkit in Java (Luke et al., 2003, 2004,
2005). The strict separation between the execution of the
model and graphical output increases the simulation speed in
comparison to other IbM simulation toolkits, such as Repast
Simphony.

RESULTS

Case Study I: Biofilm Growth
Over the last years, several models have been developed for the
description of single species biofilm structures using information
of genome-scale metabolic models (Biggs and Papin, 2013;
Chen et al., 2016; Bauer et al., 2017). However, these models
basically rely on one determining factor to explain the simulated
biofilm morphologies at a mesoscopic level, namely the diffusion
of nutrients/oxygen into and the diffusion of metabolic waste
products out of the biofilm. In addition, the modeling unit
in these cellular automaton models is the local microbial
concentration in a small square of the environment. This spatial

resolution that is used to model the microbial cells, is too coarse
to simulate morphological phenomena at a finer microscopic
scale, such as the formation of cellular chains at the outer
biofilm surface. To take these microscopic events into account,
each cell needs to be modeled as a separate discrete entity in a
realistic individual-based model, where the modeling unit is the
microbial cell itself and direct microscopic interactions between
the microbial cells (such as intercellular adhesion) can be taken
into account. The emergence of these microscopic morphological
phenomena in E. coli biofilms is described in this case study.

Model Details
Besides the incorporation of the developed metabolic model,
other submodels in the basic MICRODIMS module of Verhulst
et al. (2011) needed to be slightly adapted or included to simulate
the characteristic dynamics of biofilms on food processing
surfaces. In this subsection, these adaptations, and extensions are
described in more detail.

Initialization and boundary conditions
The initial environment is neutral and does not contain any
initial weak acid cell products. Initially, the oxygen concentration
is taken to be the saturated oxygen concentration in water
(6.73 mg/L) in order to clearly demonstrate the transition from
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aerobic to anaerobic environmental conditions in the biofilm.
Furthermore, the environment has a glucose concentration of 0.1
g/L in order to ensure that the simulation starts with a metabolic
regime in region 1 of the PhPP (see Figure 1). In reality, the initial
glucose concentration is typically higher (1 g/L) implying that the
simulation would start in metabolic regime 2, 3, or 4 with a very
high production of weak acid cell products already in the initial
stages of the simulation. Consequently, the simulation would
not demonstrate the full transition from aerobic to anaerobic
conditions. In the environment, biofilm growth starts from
three cells randomly situated at the substratum surface. This
substratum is situated at the lower environmental boundary. It
is modeled by means of a Neumann boundary condition, i.e., any
chemical gradients or fluxes are absent at this insulating surface.
In contrast, the opposite upper boundary of the environment
is in contact with the bulk medium and is characterized by
a Dirichlet boundary condition with constant concentrations.
In this way, the bulk medium is represented as an infinite
reservoir of nutrients and oxygen, and an infinite sink for
metabolic waste products. The remaining two side boundaries
are wrapped toward each other, creating periodic boundary
conditions.

Diffusion
Diffusion is modeled according to the second law of Fick:

∂Ci

∂t
= Di ·

(

∂2Ci

∂x2
+

∂2Ci

∂y2

)

, (14)

with Ci [mol/L] the concentration of substance i in the liquid
phase, Di [µm2/min] the diffusion coefficient of substance i,
x [µm] and y [µm] the spatial dimensions, and t [min] the
temporal dimension. This equation has no analytical solution in
combination with the initial and boundary conditions defined
in the previous paragraph. For this reason, it is discretized
according to an explicit Forward-Time Central-Space (FTCS)
numerical scheme (Roache, 1972). To incorporate the restrictive
effect of EPS and surrounding microbial cells on the diffusion
processes, the diffusivityDi is deliberately decreased by a factor of
50 in the biofilm to provide a good match between the simulated
biofilm morphologies and experimentally observed biofilm
structures, as there are unfortunately no direct experimental data
available for this decrease in diffusivity.

pH update
Local pH values are calculated from the acid cell product
concentrations and their dissociation constants. This procedure
has been explained in Tack et al. (2014).

Glucose and oxygen uptake
Glucose and oxygen uptake are modeled according to the
Monod kinetic model (Monod, 1942). A normally distributed
stochastic element with a coefficient of variation of 0.10 has
been superposed on this kinetic model, to incorporate biological
variability and growth asynchrony (Schaechter et al., 1962; Koch,
1993).

Cell reproduction
The DNA replication and cell division processes are simulated
according to an adapted version of the model of Donachie (1968),
that has been developed in Tack et al. (2014, 2015). Daughter cells
are placed along the orientation of their mother cell, upon which
a uniformly-distributed random deviation angle of maximally
π/8 radians is superposed.

Cell movement
Spatial overlap between neighboring cells is avoided by means
of a cell shoving mechanism (Kreft et al., 1998). Detachment
of cells from the biofilm’s outer surface occurs when these cells
are not properly aligned with their neighbors. Cell adhesion
factors on the cell surface, such as Antigen 43 (Ag43) are mainly
concentrated around the cell poles, implying that only the cell
poles take part in intercellular adhesion interactions (Vejborg
and Klemm, 2009). If a cell has less than four neighbors and is
not attached to the substratum surface, it is assumed that this cell
is situated at the biofilm exterior. To stay attached to the biofilm,
the orientation vectors of this cell and one of its neighbors need to
be aligned within a maximal detachment angle θmax of π/6 with
the line between the centers of these two cells.

Simulation Results

Biofilm development
The development of the biofilm structure in the IbM simulation
is presented in Figure 3. Initially, cellular chains form from
the initial cells at the substratum surface, which has been
experimentally observed (Vejborg and Klemm, 2009). After this
initial stage, the biofilm environment gets oxygen-depleted and
acidified at the substratum surface, mainly due to acetic acid
production and to a lesser extent due to the formic acid secretion.
Lactic acid production was not observed in the simulations
as the oxygen concentration never dropped to a completely
anaerobic level, which is a necessary condition for lactic acid
secretion by themicrobial cells. This acidification inhibits cellular
growth and survival at the substratum, leading to a mature
biofilm structure with mushroom-shaped pillars separated by
water-filled channels. These channels are more acidified than
the bulk medium, inhibiting cell growth. The mushroom-
shaped architecture of mature biofilms has also been observed
experimentally (Reisner et al., 2003).

Finally, due to the acidic cellular stress, cells stop growing
at the substratum, indicated by the red cell color in Figure 3C.
Ultimately, these growth-compromised cells die, resulting in
biofilm detachment. Experimental studies of E. coli biofilm
growth have demonstrated the failure of biofilm formation and
the detachment of already existing biofilms under anaerobic
conditions (Colón-Gonzáez et al., 2004). The absence of biofilm
formation under anaerobic conditions has been explained by a
reduced production of type 1 pili, inhibiting cell-substratum and
cell-cell adhesion interactions. However, this explanation is not
suitable for the detachment of already existing biofilms in which
type 1 pili are abundantly available. This IbM simulation shows
that acidification of the biofilm environment at the substratum
surface can play a significant role in the biofilm detachment
process as well.
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FIGURE 3 | Evolution of the biofilm development: (A) cellular chain formation from the initial cells at the substratum surface at t = 10 h, (B) initial biofilm architecture at

t = 25 h, (C) mature biofilm structure at t = 70 h. The viability of the cells is indicated by their color: green is used for actively growing cells, while red cells have

stopped growing.

Cell detachment
As the cell-cell adhesion factors on the cell surface are mainly
concentrated around the cell poles, cells at the biofilm outer
surface need to be well-aligned with their neighbors to avoid
detachment from the biofilm due to flow shear forces. This
results in the formation of cellular chains at the biofilm exterior
surface (Vejborg and Klemm, 2009). To investigate the influence
of the cell detachment process on the biofilm development and
morphology, the maximal detachment angle θmax is varied over
a range of values. The results of this analysis are summarized in
Figure 4. At higher values of θmax, i.e., less restrictive detachment
conditions, a thicker biofilm structure with more densely packed
cells emerges, causing more severe acidification and cell death at
the substratum surface. Less cellular chains protrude from the
exterior biofilm surface. For lower values of θmax, the opposite
trend is observed as more cells detach from the biofilm and
disperse into the bulk medium: the biofilm structure is thin and
more open with many cellular chains. The biofilm structure at
a maximal detachment angle of approximately π/6 corresponds
best with experimental observations of E. coli biofilms (see e.g.,
Danese et al., 2000; Reisner et al., 2003; Vejborg and Klemm,
2009).

Initial cell affinity for the substratum surface
For the initial attachment of planktonic cells to the substratum,
these cells need to overcome electrostatic repulsive forces from
the substratum, that is often conditioned by the adsorption
of various solutes to avoid biofilm growth. High affinities of
dispersed cells in the bulk medium for the substratum lead to
high densities of initial cells at the substratum surface. Increasing
the number of initial cells at the substratum in the simulation
leads tomore continuous and flat biofilm structures, as illustrated
in Figure 5. Both mushroom-shaped pillar structures for low
initial cell numbers and more continuous structures at higher
cell-surface affinities have been experimentally observed (see
respectively, Reisner et al., 2003; Vejborg and Klemm, 2009). As
a consequence, the substratum surface conditioning treatment
plays a determining role in the formation of specific biofilm
structures.

Case Study II: Submerged Colony Growth
Most individual-based models for colony behavior are developed
to describe phenomena that are experimentally observed for
colonies on the surface of semi-solid food media. It is however
much more difficult to experimentally observe dynamics of
submerged colonies that are growing in mixed food products
(Boons et al., 2001). For this reason, this case study focuses on
submerged colony growth behavior and its connection to surface
colony dynamics.

Model Details
For the simulation of a submerged colony in semi-solid food
products, the food system is modeled in principle as a three-
dimensional environment to account for complex geometry as
well, with the initial cell in the center. Note that the simulation
of the growth of one submerged colony can be reduced to a two-
dimensional problem in case of non-complex geometry. In such
case, the two horizontal dimensions are equivalent, so only one
horizontal dimension and the vertical dimension are needed if
appropriate scaling of the spatial density of colonies from 3D to
2D is applied.

The simulation of the diffusion processes in the environment
cannot be reduced to a two-dimensional problem, as substances
diffuse from or to the colony in the three spatial dimensions.
However, updating the local concentrations in a complete
3D environment would be too computationally expensive.
Therefore, only a central layer of the environment has been
simulated, indicated in blue in Figure 6. Nevertheless, diffusion
interactions in the perpendicular direction on this layer have been
taken into account. For these interactions, the concentrations
of environmental substances in the layers above and below
the central layer, indicated in yellow in Figure 6, need to be
determined. Under the assumption that the isoconcentration
planes of chemical substances around the submerged colony
can be locally approximated by concentric spheres around the
environmental origin, the concentrations in the environmental
units in the yellow layers are deducible from goniometric
principles and interpolation between concentrations in the
central layer. More specifically, the concentration of substance
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FIGURE 4 | Biofilm structures at t = 70 h for different values of the maximal detachment angle θmax .

FIGURE 5 | Biofilm structures at t = 70 h emerging from (A) 3 initial cells, or (B) 10 initial cells.

i in the yellow layers is expressed by means of the following
expressions:

Ci(j, k, l− 1) = Ci(j, k, l+ 1) =

(1− sign(1y) · 1y) ·

((1− sign(1x) · 1x) · Ci(j, k, l)+

sign(1x) · 1x · Ci(j+ sign(1x), k, l))+

sign(1y) · 1y ·

((1− sign(1x) · 1x) · Ci(j, k+ sign(1y), l)+

sign(1x) · 1x · Ci(j+ sign(1x), k+ sign(1y), l)), (15)

where Ci(j, k, l) is the concentration of substance i in
the environmental unit with the coordinates (j, k, l),
and

1x = 1 ·
j

√

j2 + k2
, (16)

1y = 1 ·
k

√

j2 + k2
(17)

1 =

√

j2 + k2 + 1−
√

j2 + k2, (18)
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FIGURE 6 | The simulated submerged colony environment (For reasons of

clarity, the discretization pattern is represented in a more coarse way than in

the real simulation).

Initialization and boundary conditions
The simulation starts with one initial cell which is located in the
origin of the environment. The environmental boundaries are
characterized by constant chemical concentrations.

Diffusion
In the central environmental layer, diffusion processes are
modeled according to the second law of Fick in three dimensions,
discretized by means of the FTCS numerical scheme. For
numerical stability reasons, a smaller time step 1t1 =

0.00002 min is required in this explicit scheme for three-
dimensional diffusion. For glucose and chemical compounds of
the same molecular size as glucose, the diffusion coefficients
in a 5% (w/v) agarose gel environment are approximately 75%
of their normal diffusivities in water (Hooijmans et al., 1990;
Andersson and Öste, 1994; Azevedo and Oliveira, 1995). The
oxygen diffusivity is hardly effected by the agarose concentration
(Guaccio et al., 2008).

Cell movement
As the cells cannot detach from the colony due to motility
limitations, the spatial organization of the colony cells is only
determined by cell shoving to avoid spatial overlap between
neighboring cells.

Simulation Results
Figure 7 illustrates the growth of a submerged colony, starting
from one initial cell in the origin of the environment. The
colony remains more or less circular over its whole evolution,
confirming the assumption that has been used to obtain the
expressions in Equations (15–18). In the colony center, diffusion
limitations lead to the accumulation of weak acid cell products,

mainly acetic acid. The resulting pH drop causes cell lysis,
indicated by the emergence of a no-growth zone and the
disappearance of cells in the colony center. Due to the emergence
of these no-growth conditions in the colony center, the initially
superlinear growth of the colony radius slows down, resulting in a
linear colony radius increase, as presented in Figure 8. This linear
radius increase has been observed for quasi-two-dimensional
surface colonies as well (Kamath and Bungay, 1988; Wimpenny
et al., 1995; Mitchell and Wimpenny, 1997), indicating that
easily-observable qualitative trends in two-dimensional surface
colony dynamics can be representative for the behavior of
three-dimensional submerged colonies that require much more
advanced monitoring techniques.

DISCUSSION

An in-house developed simulator for individual based modeling
of microbial dynamics has been extended with a metabolic model
for E. coli expressing specific cellular growth rate and metabolic
secretion rates as a function of the local extracellular pH
and the concentration of undissociated cell products, covering
all metabolic regimes from anaerobic respiration to anaerobic
fermentation.

From the simulations, it is observed that E. coli biofilm
dynamics are mainly determined by metabolic differentiation
due to concentration gradients of weak acid cell products, cell
detachment leading to persistent cell chains, and the affinity
of planktonic cells for the substratum surface. Experimental
studies also suggest a role for quorum sensing by the production
or addition of autoinducer 2 (AI-2) signaling molecules, or
through the production of N-acyl-L-homoserine lactones (AHL)
by other species (DeLisa et al., 2001; Sperandio et al., 2001;
González Barrios et al., 2006; Beloin et al., 2008). The effect
of quorum sensing mechanisms on biofilm and microbial
colony behavior has been investigated in other IbM simulations
(see e.g., Tang et al., 2007; Nadell et al., 2008; Melke et al.,
2010; Jang et al., 2012). In addition, cross-feeding interactions
between the E. coli cells, such as the consumption of the
produced acetate by cells at the substratum surface (Oh
et al., 2002), has not been taken into account as this acetate
uptake only occurs under low environmental concentrations of
glucose. In the performed simulations, there is no local glucose
depletion at the substratum surface. Furthermore, cells under
stressing conditions may exhibit additional complex behavior
and resilience by going into a dormant state (Agafonov et al.,
2001). This transition to dormancy has not been taken into
account in the simulations. The scope of this case study is in
fact limited to the simulation of mature biofilm morphologies
and the emergence of these morphologies is solely dependent
on cellular events at the outer biofilm surface where the
cells are not hibernated. Finally, it should be noted that the
formation of cellular chains is a typical phenomenon in E. coli
biofilms, which has not been observed for other species such
as Pseudomonas aeruginosa. It is therefore not recommended to
extrapolate the applied cell adhesion model to other species than
E. coli.
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FIGURE 7 | Evolution of the submerged colony development: (A) initial phase without severe growth-inhibiting conditions, (B) emergence of a central no-growth

zone, (C,D) cell lysis in the colony center.

FIGURE 8 | Evolution of the colony radius.

The submerged colony simulations demonstrate that the
initially homogeneous concentration of oxygen at saturation level
decreases sharply over time in the colony center, while the oxygen
concentration at the boundaries remains constant. However, it

should be noted that these constant boundary conditions are a
strong simplification of the conditions in real food systems, as
the overall oxygen availability in food products strongly depends
on the distance from the food surface (Noriega et al., 2008).
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The model may probably also be used for other food pathogens
which are similar to E. coli, such as the gram-negative rod-shaped
Salmonella Typhimurium. However, not enough microscopic
data are available about this food pathogen to validate this
assertion.

CONCLUSIONS

Mature microbial communities of clustered cells, such as biofilms
or colonies, are of paramount industrial andmedical importance.
Such microbial communities are characterized by metabolic
differentiation among the constituting microorganisms due
to diffusion limitations and chemical gradients in their
environment. Due to the metabolic differences between the
cells according to their position in the community, it is most
appropriate to simulate these biosystems by means of an IbM
with the microbial cell as basic modeling unit.

In this article, an in-house developed IbM platform for
microbial dynamics, MICRODIMS, has been extended with a
new metabolic model for the simulation of two-dimensional
biofilm dynamics on abiotic food processing surfaces and three-
dimensional submerged colony behavior in semi-solid food
products. This metabolic model covers all metabolic regimes
from aerobic respiration to anaerobic fermentation and expresses
the specific cellular growth rate and metabolic secretion rates as
a function of the local extracellular pH and the concentration of
undissociated cell products. This model allows to studymetabolic
differentiation due to oxygen gradients in the development
of E. coli cell communities, whereby low local oxygen
concentrations lead to cellular secretion of weak acid products.

This metabolic model is expressed as a multiparametric
programming problem, in which the influence of low
extracellular pH values and the presence of undissociated
acid cell products in the environment has been taken into
account.

Two case studies have been elaborated in this article, using
the MICRODIMS simulator: (i) biofilm growth on a substratum
surface and (ii) submerged colony growth in a semi-solid mixed
food product.

In the biofilm case study, accumulation of weak acid cell
products and a concomitant pH drop occur at the substratum

surface. This leads to cell lysis and biofilm detachment from
the substratum. Apart from the metabolic cellular differentiation,
biofilm dynamics are mainly determined by the cell detachment
process at the biofilm outer surface, inducing the formation
of protruding cell chains. The acidification of the biofilm
environment and the emergence of typical mushroom-shaped
morphologies of mature biofilms and the formation of cellular
chains at the exterior surface of the biofilm are observed. In
addition, high affinity of planktonic cells in the bulk medium for
the substratum surface results in a high density of initial cells at
the substratum and a more continuous and flat biofilm structure.
The simulations show that these morphological phenomena are
respectively dependent on the initial affinity of pioneer cells for
the substratum surface and the cell detachment process at the
outer surface of the biofilm.

The submerged colony case study demonstrates the
development of a central no-growth zone with a sharp decline
of the local pH, comparable to the pH drop at the substratum
surface in the biofilm simulations. Cellular growth is limited to
a thin band of cells at the colony periphery, resulting in a linear
increase of the colony radius over time.
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based modelling and ecological theory: synthesis of a workshop. Ecol. Model.

115, 129–148. doi: 10.1016/S0304-3800(98)00186-0
Guaccio, A., Borselli, C., abd Oliviero, O., and Netti, P. A. (2008). Oxygen

consumption of chondrocytes in agarose and collagen gels: a comparative
analysis. Biomaterials 29, 1484–1493. doi: 10.1016/j.biomaterials.2007.12.020

Hooijmans, C. M., Geraats, S. G. M., van Neil, E. W. J., Robertson,
L. A., and Heijnen, J. (1990). Determination of growth and coupled
nitrification/denitrification by immobilized thiosphaera pantotropha using
measurements and modeling of oxygen profiles. Biotechnol. Bioeng. 36, 931–
939. doi: 10.1002/bit.260360908

Ihssen, J., Grasselli, E., Bassin, C., François, P., Piffaretti, J.-C., Köster,
W., et al. (2007). Comparative genomic hybridization and physiological
characterization of environmental isolates indicate that significant (eco-
)physiological properties are highly conserved in the species Escherichia coli.
Microbiology 153, 2052–2066. doi: 10.1099/mic.0.2006/002006-0

Jang, S. S., Oishi, K. T., Egbert, R. G., and Klavins, E. (2012). Specification and
simulation of synthetic multicelled behaviors. ACS Synth. Biol. 1, 365–374.
doi: 10.1021/sb300034m

Kamath, R. S., and Bungay, H. R. (1988). Growth of yeast colonies on solid media.
J. Gen. Microbiol. 134, 3061–3069. doi: 10.1099/00221287-134-11-3061

Koch, A. L. (1993). Biomass growth rate during the prokaryote cell cycle. Crit. Rev.
Microbiol. 19, 17–42. doi: 10.3109/10408419309113521

Kreft, J.-U., G., B., and Wimpenny, J. W. T. (1998). BacSim, a simulator for
individual-basedmodelling of bacterial colony growth.Microbiology 144, 3275–
3287. doi: 10.1099/00221287-144-12-3275

Luke, S., Balan, G., Panait, L., Cioffi-Revilla, C., and Paus, S. (2003). “MASON:
A Java multi-agent simulation library,” in Proceedings of the Agent 2003

Conference on Challenges in Social Simulation, ed M. Clemmons (Chicago,IL:
Argonne National Laboratory), 49–64.

Luke, S., Cioffi-Revilla, C., Panait, L., and Sullivan, K. (2004). “MASON:
A new multi-agent simulation toolkit,” in Proceedings of Eight Annual

Users/Researchers Meeting (SwarmFest 2004) (Ann Arbor, MI: Center for the
Study of Complex Systems, University of Michigan).

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., and Balan, G. (2005).
MASON: A multiagent simulation environment. Simulation 82, 517–527.
doi: 10.1177/0037549705058073

Melke, P., Sahlin, P., Levchenko, A., and Jönsson, H. (2010). A cell-based model
for quorum sensing in heterogeneous bacterial colonies. PLoS Comput. Biol.

6:e1000819. doi: 10.1371/journal.pcbi.1000819
Mitchell, A. J., andWimpenny, J.W. T. (1997). The effects of agar concentration on

the growth and morphology of submerged colonies of motile and non-motile
bacteria. J. Appl. Microbiol. 83, 76–84. doi: 10.1046/j.1365-2672.1997.00192.x

Monod, J. (1942). Recherches sur la Croissance des Cultures bactériennes. Paris:
Hermann.

Nadell, C. D., Xavier, J. B., Levin, S. A., and Foster, K. R. (2008). The
evolution of quorum sensing in bacterial biofilms. PLoS Biol. 6:e14.
doi: 10.1371/journal.pbio.0060014

Noriega, E., Laca, A., and Díaz, M. (2008). Modelling of diffusion-limited growth
for food safety in simulated cheeses. Food Bioprod. Process. 86, 122–129.
doi: 10.1016/j.fbp.2008.03.005

Oh, M., Rohlin, L., Kao, K., and Liao, J. (2002). Global expression profiling
of acetate-grown Escherichia coli. J. Biol. Chem. 277, 13175–13183.
doi: 10.1074/jbc.M110809200

Palsson, B. Ø. (2006). Systems Biology: Properties of Reconstructed Networks. New
York, NY: Cambridge University Press.

Picioreanu, C., van Loosdrecht, M. C. M., and Heijnen, J. J. (1999). Discrete-
differential modelling of biofilm structure.Water Sci. Technol. 39, 115–122.

Pirt, S. J. (1965). The maintenance energy of bacteria in growing cultures. Proc. R.
Soc. B Biol. Sci. 163, 224–231. doi: 10.1098/rspb.1965.0069

Portnoy, V. A., Scott, D. A., Lewis, N. E., Tarasova, Y., Osterman, A. L.,
and Palsson, B. Ø. (2010). Deletion of genes encoding cytochrome
oxidases and quinol monooxygenase blocks the aerobic-anaerobic shift in
Escherichia coli K-12 MG1655. Appl. Environ. Microbiol. 76, 6529–6540.
doi: 10.1128/AEM.01178-10

Prats, C., López, D., Giró, A., Ferrer, J., and Valls, J. (2006). Individual-based
modelling of bacterial cultures to study the microscopic causes of the lag phase.
J. Theor. Biol. 241, 939–953. doi: 10.1016/j.jtbi.2006.01.029

Railsback, S. F., and Grimm, V. (2012). Agent-Based and Individual-Based

Modeling. Princeton, NJ: Princeton University Press.
Reisner, A., Haagensen, J. A. J., Schembri, M. A., Zechner, E. L., and Molin, S.

(2003). Development and maturation of Escherichia coli k-12 biofilms. Mol.

Microbiol. 48, 933–946. doi: 10.1046/j.1365-2958.2003.03490.x

Frontiers in Microbiology | www.frontiersin.org 13 December 2017 | Volume 8 | Article 2509

https://doi.org/10.1016/S0924-2244(05)80004-4
https://doi.org/10.1186/s12918-016-0259-2
https://doi.org/10.1016/j.resmic.2004.03.004
https://doi.org/10.1007/BF01569816
https://doi.org/10.1126/science.284.5418.1318
https://doi.org/10.1128/JB.182.12.3593-3596.2000
https://doi.org/10.1128/JB.183.18.5239-5247.2001
https://doi.org/10.1016/j.ijfoodmicro.2004.11.017
https://doi.org/10.1038/2191077a0
https://doi.org/10.1038/84379
https://doi.org/10.2903/j.efsa.2015.3991
https://doi.org/10.1038/msb4100155
https://doi.org/10.1016/j.mib.2010.03.003
https://doi.org/10.1128/AEM.01311-13
https://doi.org/10.1006/jtbi.2001.2466
https://doi.org/10.1128/JB.188.1.305-316.2006
https://doi.org/10.1016/S0304-3800(98)00188-4
https://doi.org/10.1016/j.ecolmodel.2006.04.023
https://doi.org/10.1016/j.ecolmodel.2010.08.019
https://doi.org/10.1016/S0304-3800(98)00186-0
https://doi.org/10.1016/j.biomaterials.2007.12.020
https://doi.org/10.1002/bit.260360908
https://doi.org/10.1099/mic.0.2006/002006-0
https://doi.org/10.1021/sb300034m
https://doi.org/10.1099/00221287-134-11-3061
https://doi.org/10.3109/10408419309113521
https://doi.org/10.1099/00221287-144-12-3275
https://doi.org/10.1177/0037549705058073
https://doi.org/10.1371/journal.pcbi.1000819
https://doi.org/10.1046/j.1365-2672.1997.00192.x
https://doi.org/10.1371/journal.pbio.0060014
https://doi.org/10.1016/j.fbp.2008.03.005
https://doi.org/10.1074/jbc.M110809200
https://doi.org/10.1098/rspb.1965.0069
https://doi.org/10.1128/AEM.01178-10
https://doi.org/10.1016/j.jtbi.2006.01.029
https://doi.org/10.1046/j.1365-2958.2003.03490.x
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Tack et al. Biofilm and Submerged Colony IbM

Roache, P. J. (1972). Computational Fluid Dynamics. Albuquerque, NM: Hermosa
Publishers.

Rowe, P. (2009). Escherichia coli o157:h7, other verotoxin-producing E coli and
the hemolytic uremic syndrome in childhood. Can. J. Infect. Dis. 6, 105–110.
doi: 10.1155/1995/803560

Schaechter, M., Williamson, J. P., Hood, J. R., and Koch, A. L. (1962). Growth,
cell and nuclear divisions in some bacteria. J. Gen. Microbiol. 29, 421–434.
doi: 10.1099/00221287-29-3-421

Schulze, K. L., and Lipe, R. S. (1964). Relationship between substrate concentration,
growth rate, and respiration rate of Escherichia coli in continuous culture. Arch.
Mikrobiol. 48, 1–20. doi: 10.1007/BF00406595

Sperandio, V., Torres, A. G., Giron, J. A., and Kaper, J. B. (2001). Quorum
sensing is a global regulatory mechanism in enterohemorrhagic Escherichia

coli O157:H7. J. Bacteriol. 183, 5187–5197. doi: 10.1128/JB.183.17.5187-51
97.2001

Standaert, A. R., Poschet, F., Geeraerd, A. H., Uylbak, F. V., Kreft, J.-U., and
Van Impe, J. F. (2004). “A novel class of predictive microbial growth models:
Implementation in an individual-based framework,” in 9th IFAC Symposium

on Computer Applications in Biotechnology (CAB 2004), Vol. 9, eds M.-N. Pons
and J. F.M. Van Impe, (Nancy: International Federation of Automatic Control),
183–188.

Stewart, P. S., and Franklin, M. J. (2008). Physiological heterogeneity in biofilms.
Nat. Rev. Microbiol. 6, 199–210. doi: 10.1038/nrmicro1838

Stolper, D., Revsbech, N., and Canfield, D. (2010). Aerobic growth at nanomolar
oxygen concentrations. Proc. Natl. Acad. Sci. U.S.A. 107, 18755–18760.
doi: 10.1073/pnas.1013435107

Tack, I., Logist, F., Noriega Fernández, E., and Van Impe, J. (2014). “An
individual-based model for anaerobic dynamics of Escherichia coli colonies,”
in FOODSIM’2014, ed A. Roudot (Brest: EUROSIS), 18–25.

Tack, I. L. M. M., Logist, F., Noriega Fernández, E., and Van Impe, J. F. (2015).
An inidividual-based modeling approach to simulate the effects of cellular

nutrient competition on Escherichia coli K-12 MG1655 colony behavior and
interactions in aerobic structured food systems. Food Microbiol. 4(Pt B), 179–
188. doi: 10.1016/j.fm.2014.05.003

Tang, W. J., Wu, Q. H., and Saunders, J. R. (2007). “Individual-based
modeling of bacterial foraging with quorum sensing in a time-varying
environment,” in Evolutionary Computation, Machine Learning and Data

Mining in Bioinformatics: 5th European Conference, EvoBIO 2007, Vol. 4447,
Lecture Notes in Computer Science (LNCS), eds E. Marchiori, J. H. Moore and
J. C. Rajapakse (Valencia; Berlin; Heidelberg: Springer-Verlag), 280–290.

Vejborg, R. M., and Klemm, P. (2009). Cellular chain formation in Escherichia coli

biofilms.Microbiology 155, 1407–1417. doi: 10.1099/mic.0.026419-0
Verhulst, A., Cappuyns, A. M., Van Derlinden, E., Bernaerts, K., and Van Impe,

J. F. (2011). Analysis of the lag phase to exponential growth transition
by incorporating inoculum characteristics. Food Microbiol. 28, 656–666.
doi: 10.1016/j.fm.2010.07.014

Wimpenny, J. W. T., Leistner, L., Thomas, L. V., Mitchell, A. J., Katsaras, K., and
Peetz, P. (1995). Submerged bacterial colonies within food and model systems:
their growth, distribution and interactions. Int. J. Food Micorbiol. 28, 299–315.
doi: 10.1016/0168-1605(95)00065-8

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Tack, Nimmegeers, Akkermans, Hashem and Van Impe. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Microbiology | www.frontiersin.org 14 December 2017 | Volume 8 | Article 2509

https://doi.org/10.1155/1995/803560
https://doi.org/10.1099/00221287-29-3-421
https://doi.org/10.1007/BF00406595
https://doi.org/10.1128/JB.183.17.5187-5197.2001
https://doi.org/10.1038/nrmicro1838
https://doi.org/10.1073/pnas.1013435107
https://doi.org/10.1016/j.fm.2014.05.003
https://doi.org/10.1099/mic.0.026419-0
https://doi.org/10.1016/j.fm.2010.07.014
https://doi.org/10.1016/0168-1605(95)00065-8
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles

	Simulation of Escherichia coli Dynamics in Biofilms and Submerged Colonies with an Individual-Based Model Including Metabolic Network Information
	Introduction
	Materials and Methods
	Development of a Non-complex Metabolic Model for E. coli
	Flux Balance Analysis
	Phenotypic Phase Plane Analysis
	A Linear Metabolic Model for E. coli under Reference Environmental Conditions
	The Influence of pH and Weak Acids on the E. coli Metabolism

	ODD Description of the Developed IbM
	Model Purpose
	Entities, State Variables, and Scales
	Process Overview and Scheduling
	Software


	Results
	Case Study I: Biofilm Growth
	Model Details
	Initialization and boundary conditions
	Diffusion
	pH update
	Glucose and oxygen uptake
	Cell reproduction
	Cell movement

	Simulation Results
	Biofilm development
	Cell detachment
	Initial cell affinity for the substratum surface


	Case Study II: Submerged Colony Growth
	Model Details
	Initialization and boundary conditions
	Diffusion
	Cell movement

	Simulation Results


	Discussion
	Conclusions
	Author Contributions
	Funding
	References


