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Abstract: After the serendipitous discovery of cisplatin, a platinum-based drug with chemotherapeu-
tic effects, an incredible amount of research in the area of coordination chemistry has been produced.
Other transition metal compounds were studied, and several new relevant metallodrugs have been
synthetized in the past few years. This review is focused on coordination compounds with first-row
transition metals, namely, copper, cobalt, nickel or manganese, or with zinc, which have potential or
effective pharmacological properties. It is known that metal complexes, once bound to organic drugs,
can enhance the drugs’ biological activities, such as anticancer, antimicrobial or anti-inflammatory
ones. NSAIDs are a class of compounds with anti-inflammatory properties used to treat pain or fever.
NSAIDs’ properties can be strongly improved when included in complexes using their compositional
N and O donor atoms, which facilitate their coordination to metal ions. This review focuses on the
research on this topic and on the promising or effective results that complexes of first-row transition
metals and NSAIDs can exhibit.

Keywords: NSAID-based coordination compounds; first-row transition metals; anti-tumor activity;
antimicrobial properties; antioxidant activity; interaction with biomolecules; DNA; RNA; proteins

1. Introduction

In the era of emerging drug resistance, mainly by bacteria, designing potent and
successful novel therapeutic agents has become a major concern in the area of bioinorganic
chemistry [1,2]. After the serendipitous discovery of the anticancer effects of cisplatin,
a platinum-based drug (cis−[Pt(NH3)2Cl2]) which proved to have a strong chemothera-
peutic effect, a tremendous amount of research on coordination chemistry-based drugs
has been produced. Cisplatin can bind to the purine bases of DNA and is able to cause
DNA damage that, in turn, can cause cancer cell apoptosis [3]. However, some adverse
side effects, such as toxicity, allergy, gastrointestinal disorders and kidney problems, plus
the lack of selectivity and acquired resistance to this compound [4–6], led investigators to
explore more selective and less toxic substituents. During this endeavor, in the past few
years a large number of new metal complexes have been synthetized. Specifically, some
first-row transition metals have been preferred, namely, copper, cobalt, manganese, nickel
and zinc, not only because they are easily available and cheaper, compared to platinum,
but also for their less toxic nature and biocompatibility in living systems [7–9]. Additionally,
transition metals can play a very important role in metallodrugs’ design due to their cations’
unique coordination environments, charge variation possibilities, Lewis acidic character or
redox properties [8,10,11].
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Regarding the above-mentioned first-row transition metals, some of their biologi-
cal/bioinorganic implications deserve to be highlighted. Copper, as Cu(II), is a d9 metal
cation structurally and catalytically involved in several biological processes by serving
as a cofactor of many metalloproteins [12–14] and by promoting numerous enzymatic
processes, such as cellular respiration or the biosynthesis of neurotransmitters [7,12,15,16].
In living organisms, copper exists predominantly in the Cu(II) oxidized form—that is, in the
cupric form [12]. However, due to its redox ability, copper can also exist in a more reduced
form, i.e., Cu(I). Therefore, it can either behave as an antioxidant or a pro-antioxidant
species, and can either neutralize or induce the production of reactive oxygen species
(ROS) [13,16,17]. Cobalt is another transition metal that is normally found as Co(II) (d7) or
Co(III) (d6) forms, even though eventually it can exhibit a wide range of oxidation states
from −1 to +4. Co(III) is mainly found in cobalamin (vitamin B12) [18]. Nevertheless,
in order to have cobalt ions be biochemically active—i.e., involved in metabolic functions,
such as fatty acid and amino acid metabolism [4,17,19] and regulating DNA, albeit in-
directly [4,9,20,21]—cobalt needs to adopt Co(II) or Co(III) oxidation states. Manganese
is also an essential element, and when as Mn(II), d5, it is associated with various phys-
iological processes, such as development, reproduction and immune functions, energy
metabolism and antioxidant defense [22]. Furthermore, it is involved in the synthesis and
activation of several enzymes (e.g., transferases, hydrolases and isomerases) by acting as
a cofactor [17,23]. In particular, in the central nervous system, the manganese ions act as
cofactors for glutamine synthetase (GS) [24], and consequently an extreme exposure to
this element is often linked to neurologic pathologies [2,24,25]. Manganese can exist in
seven oxidation states (0, II–VII), but the biologically most important is Mn(II), which is
inherently stable. In contrast, Mn(III) is unstable under acidic conditions, Mn(V) is unstable
under all conditions and Mn(VII) is a strong oxidant species [26–29]. Nickel, with a d8

electronic configuration, Ni(II), is an essential element, although it still has, to a certain
degree, few unclear biological functions [30]. It was originally found in the active center of
urease [30–32], a non-mammalian enzyme that catalyzes the hydrolysis of urea, but with
time, other nickel-dependent and nickel-containing enzymes were discovered [33]. Ni(II)
ions are mainly found associated with nucleic acids in humans, since they coordinate
with DNA’s nitrogen-containing bases [34]. It is also involved in proteins structurally and
functionality [30]. Finally, zinc, another essential element, although not a transition metal
by IUPAC definition [35], shows similar chemical properties to its periodic table neighbors,
transition metals. As Zn(II), it possesses a 3d10 electronic configuration with all 3d orbitals
fully filled. Therefore, even though Zn(II) complexes do not possess ligand field energy
stabilization, they show wide coordination flexibility, especially with O donor atoms of
amino acids or proteins [17]. Consequently, these characteristics (coordination numbers and
structural variety) are critical in what concerns their catalytic roles in metalloenzymes, pro-
viding different interaction possibilities with substrates [36]. Zinc possesses a minor plasma
pool and has rapid turnover. It is involved in several steps of cellular metabolism and is
involved in respiration, immune functions, DNA synthesis and cell division [32,37,38].

2. History and Applications of Metallodrugs

The discovery of cisplatin in the 1960s triggered, firstly, the synthesis of new platinum
compounds bearing biological activity, and then the preparation of complexes with other
metals [39,40]. More recently, researchers have pursued complexes containing active
drugs as ligands, since it has been proved that this approach could be a suitable strategy
for developing new and more efficacious pharmacological compounds, together with
less toxic effects when compared to the parent drugs [41–45]. Although some metal
complexes received attention due to the anticancer activity of cisplatin and its derivatives,
in many cases they possess other different and promising biological activities. Consequently,
metallodrugs have been found to have innumerous applications, including anti-microbial,
anti-inflammatory, anti-viral, anti-arthritic or anti-diabetic, and activities in relation to
cardiovascular or gastrointestinal disorders as well [1,46–49].
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The first metallodrugs used in therapy were arsenic-based antimicrobial and an-
tiparasitic agents. In particular, melarsoprol, an arsenic-based drug, is still used against
trypanosomiasis [1], but other metal-based drugs with similar properties have emerged
and are now commercially available [1,50]. One example is ferrochloroquine, an anti-
malarial agent, which is now undergoing phase II clinical trials. It is, more precisely,
an organometallic compound (see Figure 1) [1,51].
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Taking into account their possible biological activities, new coordination compounds
with first row transition metals have been relentlessly investigated. Nowadays, particular
attention is directed towards complexes with copper, cobalt, nickel, manganese or zinc,
all of them possessing prominent biological effects [46,47,49,52,53].

One of the current focuses regarding these biometal complexes is their potential use
as anti-inflammatory agents [7]. The synthesis of transition metal complexes with non-
steroidal anti-inflammatory drugs (NSAIDs), used as ligands, started in 1978 with the
preparation of an acetylsalicylic acid (aspirin) copper(II) coordination compound [53].
This study was an important breakthrough, since this complex showed a stronger anti-
inflammatory response, and less ulcerogenicity and irritation to the digestive tract, than
aspirin itself [54]. Since then, other biometal−NSAID complexes have been synthetized
and studied in relation to their pharmacological effects. It is in this niche of research that
this review is focused.

NSAIDs are a diverse class of compounds with anti-inflammatory properties used
to treat pain or fever by inhibiting the two cyclooxygenase (COX) isoenzymes (known as
COX-1 and COX-2) and also lipoxygenase (LOX) [17,19,55–57]. According to their chemical
structures and selectivity, NSAIDs can be separated into different classes. Most of them
are nonselective and so inhibit both COX-1 and COX-2. This is the case for (i) acetylated
salicylates, (ii) non-acetylated salicylates, (iii) propionic acids, (iv) acetic acids, (v) enolic
acids, (vi) anthranilic acids and (vii) naphthylalanine, in which the active agents are acetyl-
salicylic acid, diflunisial, naproxen or ibuprofen, diclofenac or indomethacin, meloxicam or
piroxicam, tolfenamic acid or mefenamic acid and nabumetone, respectively [58]. However,
there is a class of NSAIDs, called “coxibs,” whose members known for being selective for
COX-2 inhibitors (e.g., celecoxib), and therefore, they have different side effect profiles in
the treatment of inflammation [58].

2.1. Biometal−NSAID Complexes: A Few Coordination Topics

Divalent metal ions Cu(II), Co(II), Mn(II), Ni(II) and Zn(II), as mentioned above,
can have essential redox and catalytic activities through structural modifications to the
molecules (i.e., NSAIDs) they bind. NSAIDs, using N and O donor atoms, are able to
easily coordinate to these metal ion centers, and the resulting coordination compounds
can show enhanced biological activity compared to their parent NSAIDs [4,7,20,59–61].
Combining NSAIDs for treatment is a suitable strategy to modulate the potential effects of
some available drugs. In particular, it might be an attractive approach in chemotherapeutics
to circumvent multidrug resistance and inflammation-induced metastatic cancers [62,63].
Additionally, the synthesis of new drugs with synergistic biologically active ligands (i.e.,
the synthesis of metal−NSAID complexes) is an alternative option for modulating the
therapeutic efficiency of the referred NSAIDs [63].
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Cu(II) complexes with a variety of coordination numbers are common (4, 5 or 6), unlike
Cu(I) complexes, which are mainly four coordinated [64]. Nevertheless, the preferred
coordination environment of Cu(II) is square planar because of the Jahn–Teller distorting
effect of the Cu(II) d9 electronic configuration [65]. Then, the main difference between Cu(II)
and Cu(I) quadropoly coordinated compounds is the square-planar geometry of the former
compounds against the tetrahedral of the latter. This particular aspect can be extremely
important in the electron-transfer efficiency of some metallo-enzymes’ active sites. In most
cases, they require distorted tetrahedral geometries, so that almost no energy is spent in
structural rearrangements upon electron transfer. Paradigmatic examples are blue, or type
1, copper metalloproteins, which are responsible for carrying out electron transfer in a wide
range of biological systems with variable enzymatic architectures [66,67].

Although cobalt complexes can contain cobalt with various oxidation states, as pre-
viously stated, Co(III) and Co(II) complexes are the most predominant ones in biological
systems [68,69]. Co(III) coordination compounds usually have a low-spin d6 configuration,
forming almost exclusively ix coordinate complexes with regular octahedral or distorted oc-
tahedral geometries [68]. Co(II) ions, often in high-spin d7 electronic configuration, can gen-
erally form four or six coordinate complexes with tetrahedral (distorted) and octahedral
geometries [68], respectively, although ive coordinate complexes can also be found [69].
Normally, Co(II) ions easily interact with chelating N and O donor ligands [17,70,71].

Manganese(II) ions prefer to exist in ix coordinate complexes. However, these Mn(II)
complexes are often unstable and easily interact with other molecules/ligands which can
modify their coordination spheres, with consequences to their interaction modes with
specific enzymes [72–74].

Complexes of nickel(II), in turn, typically adopt a variety of octahedral, square pla-
nar or tetrahedral geometries. However, rarer, ive coordinated compounds may also be
formed [75,76].

As mentioned before, despite the lack of ligand field energy stabilization, zinc(II)
complexes show coordination flexibility. Various structures of Zn(II) complexes have been
observed, although coordination, mainly in tetrahedral geometries, is the most commonly
found [77], as it represent the optimal and least strained structure among polyhedral zinc
compounds [78].

The NSAIDs, mainly because of their characteristic carboxylic acid functional groups,
which are in their anionic (deprotonated) forms at physiological pH, can be used as ligands,
as they easily coordinate to metal ions, in a great versatility of coordination modes. Indeed,
these drugs are able to coordinate as mono and bidentate modes, or even as bridges
originating polynuclear metal complexes [57,79,80]. In Tables 1–5, some examples of these
type of coordination modes are given. This review also summarizes the biological activities
of some Cu(II), Co(II), Mn(II), Ni(II) and Zn(II) metal coordination compounds with some
NSAIDs, which are organized into different groups. However, to the best of our knowledge,
copper(II), cobalt(II), nickel(II), manganese(II) and zinc(II) metal complexes with the NSAID
naphthylalanine, a non-natural analogue of phenylalanine involved in the inflammatory
process [81], are not structurally characterized yet.

2.1.1. Copper(II) Complexes of NSAIDs

Copper(II)−NSAID are the most numerous among the metal−NSAID complexes [82].
The structurally characterized and enumerated Cu(II)−NSAID complexes are mostly
mononuclear, with carboxylate groups in bidentate chelating mode—e.g., [Cu(difl)2(py)2] [83],
[Cu(nap)(tpy)Cl] [84] or [Cu(dicl)2(temed)] [85], although a monodentate chelating mode
can be observed for [Cu(asa)(aroy)(H2O)2] [86], [Cu(Hmel)2(dmf)] [87], [Cu(tolf)2(py)2(Me-
OH)2] [88] and [Cu(cxb)2Cl2] [89] (see Table 1). With the exception of [Cu(Hmel)2(dmf)] [87]
and [Cu(cxb)2Cl2] [89] complexes that are five and four coordinate with distorted square
planar and square-pyramidal geometries, respectively, the structurally characterized exam-
ples listed in Table 1 are 6-coordinate, exhibiting distorted octahedral geometry.
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2.1.2. Cobalt(II) Complexes of NSAIDs

All the reported cobalt(II)−NSAID coordination compounds (Table 2) are mononuclear,
with the NSAID carboxylate group being coordinated to the metal ion in a monodentate
binding mode as in [Co(asa)(Haroy)(H2O)Cl] [86], [Co(difl)2(MeOH)4] [90], [Co(nap)2(py)2
(H2O)2] [91], [Co(dicl)2(py)2(H2O)2] [19] and [Cu(cxb)2Cl2] [89] complexes, with the excep-
tion of [Co(Hmel)2(EtOH)2] [92] and [Co(tolf)2(bipyam)] [93] ones, where the carboxylate
groups of meloxicam and tolfenamate ligands, respectively, are coordinated in a chelating
bidentate mode. The majority of compounds are six coordinate with a distorted octahe-
dral configuration.

2.1.3. Nickel(II) Complexes of NSAIDs

In all the listed mononuclear complexes of Ni(II) ion (Table 3), the carboxylate coordi-
nation group is always in a monodentate binding mode, excepting in the [Ni(nap)2(phen)
(H2O)] [94] complex. In this last case, the two deprotonated naproxen ligands are coordi-
nated to nickel in two different binding modes: one naproxen ligand is bound to nickel in
a bidentate chelating mode, and the other one is coordinated in a monodentate fashion.
Again, with the exception of the [Ni(cxb)2Cl2] [89] complex, the reported examples were
found to be six coordinate with a distorted octahedral geometry.

2.1.4. Manganese(II) Complexes of NSAIDs

Not a lot of examples with manganese and the specific selected NSAIDs are de-
scribed in the literature yet. However, for the enumerated cases (see Table 4), it is possible
to see a diversity in coordination. The complexes are mononuclear, dinuclear or trinu-
clear. The structurally characterized mononuclear Mn(II)−NSAID complexes have the
NSAIDs’ carboxylate groups bound to the metal ion in a monodentate mode, as in the
[Mn(nap)2(py)2(H2O)2] [95] complex, or in a bidentate one, as in [Mn(tolf)2(phen)(H2O)] [96].
The nonlinear trinuclear Mn(II) complex is structurally diverse. The six diclofenac ligands
are deprotonated and coordinated to the manganese atoms in three different modes: three
of the six diclofenac ligands are in a bidentate binding mode and form µ1,3-bridges between
two Mn atoms; two diclofenac ligands are in a tridentate binding mode and form µ1,1-
bridges between two Mn atoms; and the sixth diclofenac ligand is monodentately bound
to a terminal Mn atom through an oxygen atom. Additionally, the three Mn atoms are six
coordinate and exhibit distorted octahedral geometries.

2.1.5. Zinc(II) Complexes of NSAIDs

Similarly to Mn(II)−NSAID complexes, Zn(II)−NSAID complexes present a high
diversity of nuclearity: we report in Table 5, mononuclear ([Zn(difl)2(bipy)] [62], [Zn(nap)2
(N3)2]Na2 [80] and [Zn(Hmel)2(EtOH)2] [92]); binuclear (Zn2(dicl)4(nic)2 [97]); and trinu-
clear ([Zn3(tolf)6(CH3OH)2] [98]) cases. In the mononuclear complexes, the carboxylate
groups are in either monodentate or chelating bidentate modes. For the binuclear case,
one diclofenac molecule is monodently coordinated, while the other is bidently coordinated.
Finally, for the centrosymmetric trinuclear complex, the six tolfenamato ligands behave
as deprotonated ligands in the bidentate mode, forming six bidentate carboxylate bridges.
The central Zn atom is six coordinate with a distorted octahedral geometry. The basal plane
of the octahedron is formed by four coordinated carboxylate oxygen atoms of four different
tolfenamato bridging ligands, while at the axial positions there are the carboxylate oxygen
atoms of the remaining two tolfenamato bridging ligands.
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Table 1. Examples of copper(II) complexes with different NSAIDs.

Chemical Formula
NSAID Chemical Structure Biological Activity Ref.

NSAID Ligand NSAID
Coordinating Group

[Cu(asa)(aroy)(H2O)2] (a) Aspirin Acetylated salicylate
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Table 2. Examples of cobalt(II) complexes with different NSAIDs.

Chemical Formula
NSAID Chemical Structure Biological Activity Ref.

NSAID Ligand NSAID
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Table 4. Examples of manganese(II) complexes with different NSAIDs.

Chemical Formula
NSAID Chemical Structure Biological Activity Ref.

NSAID
Ligand

NSAID
Coordinating Group

[{Mn(asa)(nic)}2(H2O)Cl]Cl•2H2O (a) Aspirin Acetylated salicylate
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and phen = 1,10-phenanthroline; (d) Hmel = protonated meloxicam and gly = glycine; (e) tolf = tolfenamate and
phen = 1,10-phenanthroline.

As can be seen in Tables 1–5, whatever the metal ion in Cu(II), Co(II), Mn(II), Ni(II) and
Zn(II) complexes, the ligand-drugs aspirin, diflunisal, naproxen, diclofenac and tolfe-
namic acid, are, in their deprotonated forms, coordinated by N and O donor atoms.
All form six coordinated structures (regular or distorted octahedral geometries), except
for the Cu(II)−meloxicam [87] complex, which has a square pyramidal geometry, as ex-
pected. With the ligand celecoxib, four coordinated structures have been proposed for
complexes of copper, cobalt and nickel, as well [89]. However, despite a few excep-
tions, divalent metal−NSAID coordination compounds show a common tendency for
octahedral geometries.
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Table 5. Examples of zinc(II) complexes with different NSAIDs.

Chemical Formula
NSAID Chemical Structure Biological Activity Ref.

NSAID
Ligand

NSAID
Coordinating Group

[Zn(asa)2] (a) Aspirin Acetylated salicylate
No crystal structure has been
published to the best of our

knowledge.

After oral administration
to rats it caused a

decrease in blood glucose
levels, and type-2

diabetes-induced damage
in rat cardiac tissue was

alleviated.
This complex also
showed a better

post-ischemic myocardial
dysfunction- preventing
effect than free aspirin.

[105–107]

[Zn(difl)2(bipy)] (b) Diflunisal Non-acetylated
salicylate
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In general, all NSAID−metal complexes previously presented show increased biologi-
cal activity compared to the parent drug, including antitumor, antimicrobial, antioxidant,
and interactive activities. This enhancement of the biological activity of the metal complexes
can be explained on the basis of Overton’s concept [108] and chelation theory [109,110].
According to the former concept, the cell membrane is selective and thus favors the cross-
ing of lipid-soluble components. Upon chelation, in accordance with chelation theory,
the polarity of the metal ion is reduced due to the overlapping with the ligand orbitals
and partial sharing of the positive charge with donor groups. Chelation may also increase
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π−electron delocalization on the chelate ring, and therefore enhance the lipophilicity of the
coordination compound, resulting in a better penetration into the cellular lipid membrane
and consequent better biological activity [111].

3. Biological Effects of the Metal Complexes
3.1. Anti-Tumor Activity

Epidemiological studies found that there is a strong correlation between inflammation
and cancer since there are phenotypical similarities between tumoral and inflammatory
cells [112]. Cancer cells can induce tissue and DNA injuries through the secretion of inflam-
matory signals (cytokines, chemokines, etc.), which promote mutated cells to grow [112].
These cells, in turn, are able to produce more cytokines and recruit new inflammatory cells,
creating an inflammatory environment that contributes to angiogenesis, migration and
metastasis [112,113]. As metal−NSAID complexes have shown an enhanced affinity for
DNA binding, they should be considered for tumor therapy [114]. Some metal−NSAID
coordination compounds have shown to be selective for different cell lines, and so these
types of “mixed compounds,” i.e., NSAIDs and metal ions, appear to be a very inter-
esting step towards the selective killing of tumor cells [57,114]. According to literature,
among the available NSAIDs−metal ion complexes, Cu(II)−NSAID complexes have the
best anticancer effects, probably due to their well-known ability to reduce inflammatory
processes [115,116]. Nevertheless, Deb and co-workers synthetized and characterized a
Zn(II)–naproxen complex and a Zn(II)–mefenamate complex, which proved to have cyto-
toxic cell killing properties against a breast cancer cell line (MDA-MB-231) [117]. Of note,
other metal-based compounds (besides the ones covered by this review) with anti-tumor
potential, such as platinum−indomethacin and platinum−tolmetin complexes, have been
proved to inhibit the growth of the L929 cancer cell line [118].

In 2012, Sayen and co-workers reported the first diclofenac-based coordination com-
pound synthesized from a wholly aqueous medium. This compound exhibited cytotoxicity
against human colon adenocarcinoma cell lines, and the Cu(II) salt and diclofenac have
shown no cytotoxic activity per si [119]. More recently, a new Cu(II)−aspirin coordination
compound was reported and revealed to be have multiple cellular targets (nucleus, mito-
chondrion and cyclooxygenase-2) [120]. This complex effectively induces mitochondrial
dysfunction and promotes early apoptosis in ovarian cancer cells and also inhibits the
expression of cyclooxygenase-2.

3.2. Antimicrobial Activity

Although NSAIDs are commonly used to treat pain, fever and inflammation, few re-
ports suggest that NSAIDs also possess antimicrobial properties [121]. In particular, these
drugs can be active against bacteria, viruses and fungi [122]. Their antimicrobial activity
may be directly caused by membrane effects, metabolic alterations, DNA intercalation
or adhesion suppression. However, indirectly, they can also serve as helper compounds,
i.e., by having a synergistic effect, when co administered with other drugs, by inhibiting
replication of the plasmids and eliminating them from cells, or stimulating cytokine pro-
duction from the T-cells, or even potentiating the killing of the phagocytized microbes
inside the macrophage [123]. Ibuprofen is one of the most widely used NSAIDs. Its an-
tibacterial and antifungal activities were firstly described by Hersh and co-workers [124]
and by Sanyal and co-workers [125], respectively. However, these antimicrobial effects are
normally achieved with a high dose (higher than the therapeutic one) [125], which has
been a large reason for the synthesis of new coordination compounds bearing this drug in
their composition. For example, Abu Ali and co-workers synthetized a Zn(II)−ibuprofen
metal complex that showed antibacterial activity against Gram-positive (M. luteus, S. aureus
and B. subtilis) and Gram-negative bacteria (E. coli, K. pneumonia and P. mirabilis) [126].
Many other coordination compounds with NSAIDs and different metal ions also show
antimicrobial activity. As examples, Table 2 lists a cobalt−naproxen metal complex that
exhibited moderate activity against five Gram-positive bacteria, eight Gram-negative



Int. J. Mol. Sci. 2022, 23, 2855 12 of 22

bacteria and three fungi. Additionally, Lawal and co-workers reported an example of a
Co(II)-aspirin complex that showed a marked inhibitory effect against B. subtilis [127].
Moreover, a Ni(II)−meloxicam [100] complex was found to have stronger antimicrobial
activity than free meloxicam (Table 3), and a Mn(II)–meloxicam complex also proved to
have better antibacterial activity against E. coli, Coliform, S. aureus, S. typhi, Citrobacter and
Listeria compared to the free NSAID (Table 4) ([104]. Additionally, Ashouri and co-workers
synthetized novel Co(II) and Mn(II)−diclofenac coordination compounds that showed
enhanced inhibitory activity in comparison with free diclofenac and metal salts [128].
It is noteworthy that several NSAIDs have antiviral activity, namely, aspirin, ibuprofen,
naproxen, acetaminophen and lornoxicam, being able to potently inhibit the entry of Zika
virus into the cells [129]. However, to the best of our knowledge, no studies evaluating the
potential of NSAID-based metal complexes as antiviral agents have been done yet.

3.3. Antioxidant Activity

Reactive oxygen (ROS) and reactive nitrogen species (RNS) are normally formed
during physiological and metabolic processes (e.g., mitochondrial respiration or inflam-
mation) [130]. However, excessive production of these reactive species plays a critical
role in the generation of oxidative stress. It is important to ensure a balance between the
pro-oxidant and the antioxidant levels, in order to keep the biological equilibrium of the
redox states in the cell [131–133]. Otherwise, the ROS/RNS may cause cellular, lipidic or
DNA damage [130,134] that may result in many pathological conditions [135]. It is also
known that lipid hydroperoxides and the oxygenated products of lipid degradation can
contribute to cell proliferation, to signal transduction cascades and to differentiation and
apoptosis [136]. Some NSAIDs have shown to be potent scavengers of ROS/RNS [134,137].

From the analysis of the Tables 1–5 (see above), we can see that most of the Cu(II)/
Co(II)/Ni(II)/Mn(II)/Zn(II)−NSAID complexes have high antioxidant activity. Cu(II)/
Ni(II)−tolfenamic acid complexes [88,101] proved to have strong scavenging activity com-
pared to free tolfenamic acid, and the same behavior was observed for Co(II)/Ni(II)−difl-
unisal [31,90] and Co(II)/Ni(II)−naproxen [91,94] complexes. Tarushi and co-workers syn-
thetized Zn(II)−diflunisal and Zn(II)−mefenamic acid complexes that proved to have an
enhanced scavenging activity, compared with free drug, towards hydroxyl radicals [62,138].
Dimiza and co-workers also characterized Mn(II)−naproxen and Mn(II)−mefenamic acid
complexes, which showed selective scavenging activity against hydroxyl and superox-
ide radicals [95]. Finally, some Zn(II)−tolfenamic acid complexes with low to moderate
DPPH radical scavenging activity, but with a high scavenging activity against hydroxyl
and superoxide radicals, have been also prepared [139].

4. Interactions with Biomolecules
4.1. Nucleic Acids

Most NSAIDs are found to have chemoprevention effects on different cell lines [140].
Their anticancer effects are proposed to be mainly exerted at the protein level and not
at genomic level because NSAIDs have an anionic charge at physiological pH (which
does not allow interaction with the polyanionic DNA backbone) [140]. In this context,
the coordination of NSAIDs with biologically active metal ions, forming charge neutral
complexes that may bind DNA, is a promising approach in order to improve the therapeutic
action of NSAIDs or even to reduce their toxicity (such as the hepatotoxicity observed with
aspirin) [141,142]. DNA binding can also be effective in antibiotic or antiviral therapeutic
agents [92,143]. Shahabadi and co-workers showed that a Pt(II) complex containing ribavirin
(an antiviral drug) interacts with DNA, probably via an intercalative mode, and that this
complex has a higher affinity to DNA then ribavirin per si [144].

DNA is the primary macromolecule that is targeted by anticancer drugs. Small
molecules can induce or suppress cellular interactions related to DNA, thereby changing
its structure with inherent consequences for biological mechanisms, such as transcription,
replication and repairing processes, which can consequently promote cell death [145,146].
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In general, these interaction modes can be divided into two main types: covalent and
non-covalent interactions [147]. A covalent bond can be formed when the complex has
labile metal−ligand bonds. For example, in the case of cisplatin, the two chloride ligands
are replaced by water molecules inside the cell. However, these water molecules are loosely
bound to Pt, and a N atom of a nucleobase can displace them and allow the formation
of a platinum−DNA covalent bond [94,148]. In a different approach, and in contrast
with the DNA covalent interaction described above, metal complexes can interact with
DNA in a reversible and non-covalent manner. This type of interaction offers several
possibilities to contribute to the bonding, such as hydrogen bonding, π–π stacking and
hydrophobic interactions [149]. This non-covalent bonding includes intercalation and
groove binding [149,150]. Intercalation is anti-cooperative at adjacent sites, meaning that
intercalators can only bind with alternative DNA base pairs. When an intercalator bonds to
one DNA base pair, its two neighboring sites may continue unoccupied [151,152]. Groove
binding corresponds to the association of the whole or a part of the complex with one of
the grooves or with both of them (major and minor groove). This association is carried
out by a combination of different parameters, such as electrostatic forces, van der Waals
contacts, hydrophobic interactions and hydrogen bonding [153]. Once there are no free
energy costs for this kind of binding, groove binders have bigger association constants than
mere intercalators [149].

It is noteworthy that these alterations may result in improvements in the metal com-
plexes’ biological activities, i.e., in the metallodrugs efficacy [125,154]. In particular, the in-
teractions of metal−NSAID complexes with DNA, especially with calf-thymus DNA (CT-
DNA), are considered of great importance when investigating the potential anticancer
and/or anti-inflammatory effects of these coordination compounds, and for that reason,
are the subject of many interaction studies [155].

Interactions of Cu(II)/Co(II)/Ni(II)/Mn(II)/Zn(II)−NSAID Complexes with DNA

By means of UV spectroscopy, it is possible to conclude that the bonding strength
of the reported complexes (Tables 1–5, see above) to CT-DNA is strong, and in general,
these metal−NSAID complexes bond more tightly to DNA than their parent drugs. For in-
stance, the [Cu(nap)(tpy)Cl] [84], [Co(nap)2(py)2(H2O)2] [91], [Ni(nap)2(phen)(H2O)] [94] and
[Mn(nap)2(py)2(H2O)2] [95] complexes have higher binding constants (Kb = 2.24 (±0.25) × 105,
3.15 (±0.57) × 104, 1.54 (±0.12) × 105 and 2.29 (±0.13) × 105 M−1, respectively) than
the free NSAID naproxen (Kb = 2.67 (±0.22) × 104). In addition, [Cu(nap)(tpy)Cl] [84],
[Co(tolf)2(bipyam)] [93], [Ni(dicl)(Hdicl)(Hpko)2](dicl)CH3OH•0.6H2O [99], [Mn(nap)2-
(py)2(H2O)2] [95] and [Zn(Hmel)2(EtOH)2] [92] exhibit the highest Kb values among the
listed Cu(II), Co(II), Ni(II), Mn(II) and Zn(II) complexes, respectively (see Table 6 below).

Table 6. DNA biding constants (Kb) of Cu(II)/Co(II)/Ni(II)/Mn(II)/Zn(II)−NSAID complexes.

NSAIDs Kb
(M−1) Cu(II) Kb

(M−1) Co(II) Kb
(M−1) Ni(II) Kb

(M−1)
Mn(II)/
Zn(II)

Kb
(M−1)

Diflunisal
(difl)

3.08 (±0.15)
× 103 Cu(II)-difl 7.36 (±0.11)

× 104 Co(II)-difl 2.26 (±0.12)
× 105 Ni(II)-difl 2.00 (±0.17)

× 105 - -

Naproxen
(nap)

2.67 (±0.22)
× 104 Cu(II)-nap 2.24 (±0.25)

× 105 Co(II)-nap 3.15 (±0.57)
× 104 Ni(II)-nap 1.54 (±0.12)

× 105 Mn(II)-nap 2.29 (±0.13)
× 105

Diclofenac
(dicl)

3.16 (±0.14)
× 104 - - Co(II)-dicl 6.41 (±2.04)

× 105 Ni(II)-dicl 3.63 (±0.12)
× 105 - -

Meloxicam
(melox) 5.5 × 103 - - Co(II)-

melox 1.15 × 104 - - Zn(II)-
melox 5.34 × 104

Tolfenamic
acid (tolf)

5.00 (±0.10)
× 104 - - Co(II)-tolf 6.78 (±0.50)

× 105 Ni(II)-tolf 2.35 (±0.12)
× 105 - -

Through cyclic voltametric titration studies and viscosity measurements, it is possible
to deduce how the complexes bind to DNA. Looking to the given examples in Tables 1–5,
intercalation is the most common bonding mode to DNA. Three exceptions can be seen for
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[Cu(nap)(tpy)Cl] [84], [Zn2(dicl)4(nic)2] [97] and [Co(Hmel)2(EtOH)2] [92]. In the first two
cases, the results demonstrated that the interactions between the complexes and DNA are
due to groove binding events, and in the last case the spectroscopic and electrochemical
results for Co(II)–meloxicam indicated that the complex can interact with DNA through an
electrostatic mode.

Binding studies with the other nucleic acid, RNA, have been less frequent. Recently,
this gap has been filled, due to the advantage that RNA offers much more extensive
structural diversity than DNA [156]. Therefore, one may expect higher specificity of the
compound’s interactions with RNA, through RNA-binding sites [157]. A recent study
demonstrated that in the cisplatin treatment of Saccharomyces cerevisiae, the platinum com-
plex accumulates 4 to 20-fold more times in cellular RNA than in genomic DNA [158].
With NSAIDs, Huzaifa and co-workers synthetized novel Cu(II) and Zn(II) coordination
compounds, and mefenamic acid was used in their synthesis (although this ligand behaves
as a counterion) [157]. These complexes demonstrated their preferential binding to t-RNA,
when compared to CT-DNA, supporting the hypothesis that RNA interaction studies may
be a new path to explore in the search for the synthesis of new and more efficacious metal-
lodrugs. Regarding the possible antiviral activity of NSAIDs, the study of RNA binding
affinity would entail greater importance, since most viruses are RNA viruses. In fact, there
are indications that naproxen may bind to RNA groove of the influenza A virus [159],
resulting in a novel antiviral drug. However, to the best of our knowledge, no studies to
evaluating the interactions between metal−NSAID complexes and RNA viruses have been
performed yet.

4.2. Proteins

For decades, metallodrugs research has been focused on DNA binding which, as de-
scribed above, relies on the damage that metal complexes could inflict on DNA structure.
However, it is now known that metallodrugs can exert their effects on other molecules,
and proteins have appeared as some of their alternative targets [160]. Of all the molecules
present in living organisms, proteins are the most abundant, and they are involved on
almost every process. Kinase proteins may be good examples/targets, as their deregulation
usually occurs in tumors, which can be crucial for the survival and progression of cancer
cells [161]. There are already a few metal complexes that have been designed for the
purpose of interacting with the ATP binding sites of kinase proteins and to act as their
inhibitors [162,163]. It has been reported that some NSAIDs inhibit telomerase activity,
an enzyme that plays a crucial role on a variety of cancers [164,165]. However, to the best
of our knowledge, there are no reports of similar assays with metal−NSAID complexes.
The same line of reasoning is applied for studies with G-quadruplex structures, which
can be very interesting targets for metal complexes as well, since interactions between
these structures and metal complexes may block telomerase activity, and consequently
inhibit cancer cells to maintain telomere lengths [166,167]. However, no studies have
been reported with metal−NSAID complexes, although a manganese coordination com-
pound, a Mn(III)−porphyrin complex, has shown exceptional 10,000-fold selectivity for
the telomeric region of duplex DNA [168].

Nevertheless, proteins in cancer cells are not the only target proteins. Host proteins
can also act as “self” drug delivery systems. In this field, human serum albumin (HSA)
is one of the most interesting systems [169]. HSA is the most abundant protein in blood
plasma (60% of the total protein content), and because of its chemical characteristics, it can
reversibly bind to drugs. This behavior, already known to occur with some NSAIDs,
such as aspirin and ibuprofen, can enhance drugs’ biodistribution and/or bioavailabil-
ity [160,170]. This issue, that is, drug–protein interactions, has been enlarged to include
metallodrug−protein interactions.
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Interactions of Cu(II)/Co(II)/Ni(II)/Mn(II)/Zn(II)−NSAID Complexes with
Serum Albumins

HSA and its structural homologue bovine serum albumin (BSA) have been the
serum albumins used to study interactions with complexes, through quenching stud-
ies. From the Scatchard equation and graphs, the binding constants K have been cal-
culated to determine the binding affinities of complexes to serum albumins. Various
Cu(II)/Co(II)/Ni(II)/Mn(II)/Zn(II)−NSAID complexes have significant affinity for HSA
(and BSA) proteins (see Tables 1–5 above). Among those examples, Cu(II)/Co(II)/Ni(II)/
Zn(II)−diflunisal [31,62,83,90], Co(II)/Ni(II)/Mn(II)−naproxen [91,94,95], Cu(II)/Ni(II)/
Mn(II)−diclofenac [85,99,103] and Cu(II)/Co(II)/Ni(II)/Zn(II)−tolfenamic acid [88,93,98,101]
complexes can be highlighted due to high K values (see Table 7 below), revealing significant
affinities for HSA, and tight but reversible binding to these albumin molecules.

Table 7. HSA biding constants (K) of Cu(II)/Co(II)/Ni(II)/Mn(II)/Zn(II)−NSAID complexes.

NSAIDs K
(M−1) Cu(II) K

(M−1) Co(II) K
(M−1) Ni(II) K

(M−1)
Mn(II)/
Zn(II)

K
(M−1)

Diflunisal
(difl)

1.22 (±0.07)
× 105 Cu(II)-difl 7.36 (±0.11)

× 104 Co(II)-difl 2.26 (±0.12)
× 105 Ni(II)-difl2

1.41 (±0.08)
× 105 Zn(II)-dilf2

9.94 (±0.35)
× 105

Naproxen
(nap) 5.35 × 103 - - Co(II)-nap 3.15 (±0.57)

× 104 Ni(II)-nap2
2.73 (±0.25)
× 104 Mn(II)-nap2

6.50 (±0.30)
× 104

Diclofenac
(dicl) 3.55 × 103 Cu(II)-

dicl
2.23 (±0.09)
× 103 Co(II)-dicl 6.41 (±2.04)

× 105 Ni(II)-dicl 2.54 (±0.27)
× 104 Mn(II)-dicl 1.86 (7) ×

105

Tolfenamic
acid (tolf)

3.12 (±0.25)
× 105 Cu(II)-tolf 4.16 (±0.24)

× 105 Co(II)-tolf 6.78 (±0.50)
× 105 Ni(II)-tolf2

2.23 (±0.11)
× 105

Mn(II)-tolf2
3.56 (±0.13)
× 105

Zn(II)-tolf 4.12 × 105

It is noteworthy that all K values of the given examples are within an optimal range;
i.e., in general they are higher than those of the free corresponding NSAIDs, allowing the
binding of the complexes to serum albumins. However, these values are well below the
association constant of one of the strongest known non-covalent bonds, the avidin–ligand
interaction (K ≈ 1015 M−1), suggesting a possible release from the serum albumin to the
target cells [82].

5. Conclusions

During the past 60 years, and after the success of platinum complexes for cancer
treatment, metal-based drugs have been studied and nowadays some are commercially
available. In particular, metal complexes containing NSAIDs are a group of compounds that
have attracted much interest among the scientific community. More specifically, d-block
metals and their cations, namely, copper, cobalt, nickel, manganese and zinc are by far the
most exploited in NSAID-based metal complexes (metallodrugs).

In this review, the focus has been on the remarkable effects of these metallodrugs, in-
cluding their wide ranges of biological activities (as anti-tumor, antimicrobial or antioxidant
agents), and also on their ability to interact with nucleic acids. Since the pharmacologic
effects of NSAIDs can be altered upon coordination to metal ions, it is possible to enhance
the biological effects of the drugs and to decrease possible side effects, and eventually it may
allow the interaction with new biomolecular targets. In this last case, the present review
reports the potential of these coordination compounds as possible candidates for RNA
targeting, since this last biomolecule not only plays important roles in cell and molecular
biology (e.g., protein synthesis, messenger of genetic information, etc.), but also offers
more extensive structural diversity than DNA that could be beneficial for RNA-binding
metallodrug therapeutics. However, this review also considered protein targets (HSA, BSA),
since binding to these proteins may be also of interest as targets or for the delivery of metallo-
drugs in chemotherapy. Moving toward a better understanding of these non-DNA molecular
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targets and their interactions with metallodrugs may be an advantageous path for the further
optimization and consequent clinical development of metal−NSAID compounds.
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