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Inodilators in septic shock: should these be used?
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Abstract: Septic shock involves a complex interaction between abnormal vasodilation, relative and/or 
absolute hypovolemia, myocardial dysfunction, and altered blood flow distribution to the tissues. Fluid 
administration, vasopressor support and inotropes, represent fundamental pieces of quantitative resuscitation 
protocols directed to assist the restoration of impaired tissue perfusion during septic shock. Indeed, current 
recommendations on sepsis management include the use of inotropes in the case of myocardial dysfunction, 
as suggested by a low cardiac output, increased filling pressures, or persisting signals of tissue hypoperfusion 
despite an adequate correction of intravascular volume and mean arterial pressure by fluid administration 
and vasopressor support. Evidence supporting the use of inotropes in sepsis and septic shock is mainly based 
on physiological studies. Most of them suggest a beneficial effect of inotropes on macro hemodynamics 
especially when sepsis coexists with myocardial dysfunction; others, however, have demonstrated variable 
results on regional splanchnic circulation, while others suggest favorable effects on microvascular 
distribution independently of its impact on cardiac output. Conversely, impact of inodilators on clinical 
outcomes in this context has been more controversial. Use of dobutamine has not been consistently related 
with more favorable clinical results, while systematic administration of levosimendan in sepsis do not prevent 
the development of multiorgan dysfunction, even in patients with evidence of myocardial dysfunction. 
Nevertheless, a recent metanalysis of clinical studies suggests that cardiovascular support regimens based 
on inodilators in sepsis and septic shock could provide some beneficial effect on mortality, while other one 
corroborated such effect on mortality specially in patients with proved lower cardiac output. Thus, using 
or not inotropes during sepsis and septic shock remains as controversy matter that deserves more research 
efforts.
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Introduction

Early recognition and prompt reversal of sepsis-induced 
tissue hypoperfusion are key elements in the management of 
septic shock (1,2). In this regard, quantitative resuscitation 
protocols based on fluid administration, vasopressor support 
and inotropes, represent the core of therapy directed to 

restore macro and microcirculatory derangements occurred 
during shock (2). Current guidelines on sepsis management 
recommend the use of dobutamine up to 20 μg/kg·min−1 
in cases of septic shock and myocardial dysfunction or 
when signs of hypoperfusion persist despite of an adequate 
intravascular volume and mean arterial pressure (1). 
Nevertheless, evidence supporting the use of dobutamine 
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and other inodilators in sepsis and septic shock is preferably 
physiologic with most data suggesting beneficial effects 
on macro hemodynamics and indices of tissue perfusion. 
Conversely, impact of inodilators on clinical outcomes in 
this context has been more controversial. However, recent 
metanalyses suggest that cardiovascular support regimens 
based on inodilators in sepsis and septic shock could provide 
some beneficial effect on mortality (3), especially in patients 
with a lower cardiac output (4). In this review, we will 
discuss about the physiological and clinical data supporting 
or not the use of inodilators in septic shock.

Basic pharmacology and mechanisms of action

Dobutamine 

Dobutamine used in clinical practice is a racemic mixture 
of (+) and (–) enantiomers (5). The (–)-enantiomer exerts 
a potent pressor activity mediated by alpha-1 stimulation 
and also produces marked increases in cardiac output, 
stroke volume, total peripheral resistance and mean arterial 
pressure, but does not induce significant increases in heart 
rate (6). Conversely, the (+)-enantiomer is a potent alpha-1 
antagonist able to counteract the effects of the (–)-enantiomer 
on these receptors. Moreover, the (+)-enantiomer posses 
a predominant beta-1 and beta-2 agonist activity which 
leads to increase cardiac output and to reduce total 
peripheral vascular resistance and mean arterial pressure (7). 
Nevertheless, as racemic mixture, pharmacological activity of 
the (+/–)-dobutamine will result from the composite effects 
of the individual stereoisomers (6). 

Compared to norepinephrine, the (+/–)-dobutamine 
exerts more prominent inotropic than chronotropic effects 
on the heart, with minimal changes in peripheral vascular 
resistance maybe because the counterbalancing of alpha-1 
receptor-mediated vasoconstriction and beta-2 receptor-
mediated vasodilation (6). In healthy volunteers, an infusion 
dose of 2.5 µgr/kg·min−1 increased cardiac output due to 
augmentation in stroke volume by improvement of left 
ventricular contractility (8). However, at higher plasmatic 
concentrations (infusion doses ≥5 µgr/kg·min−1), the linear 
increase of cardiac output relied entirely on increased heart 
rate since stroke volume did not change or even decreased (8).  
On the other hand, in critically ill patients, dobutamine 
might exert a potent dose-dependent vasodilatory effect when 
administered at doses >10 µgr/kg·min−1. Thus, in a randomized 
controlled trial targeting supranormal oxygen delivery and 
oxygen consumption values, patients receiving higher doses of 

dobutamine also required higher doses of norepinephrine to 
sustain arterial pressure (9). Nevertheless, in other randomized 
controlled trial including 330 patients with septic shock, this 
vasodilatory effect of dobutamine at doses <10 µgr/kg.min-1 
was not clinically relevant since the dose of vasopressors to 
sustain arterial pressure was identical in both norepinephrine + 
dobutamine vs. epinephrine groups (10).

Milrinone and other phosphodiesterase 3 (PDE-3) 
inhibitors

PDE-3 inhibitors such as milrinone or enoximone 
impede cAMP degradation, thus increasing intracellular 
cAMP levels and activating the cAMP-PKA pathway. 
This phenomenon ultimately results in higher peak Ca++ 
concentrations during systole and thereby, myocardial 
peak force (11). All PDE-3 inhibitors hasten myocardial 
contraction (positive clinotropic effect) and relaxation 
(positive lusitropic effect), which allow sufficient perfusion 
time during diastole, even under catecholamine stimulation 
and concomitant tachycardia (12). PDE-3 inhibitors 
also have important vasoactive effects in the peripheral 
circulation through cAMP-mediated effects on intracellular 
calcium handling in vascular smooth muscle, resulting in 
decreased arterial and venous tone. The combination of 
positive inotropy and mixed arterial and venous dilation 
effects, led to the designation as “inodilators” (11). This 
is how despite its inotropic properties, concurrent use of 
vasopressors is frequently necessary during administration 
of PDE-3 inhibitors.

Levosimendan and other Ca++ sensitizers

Calcium (Ca++) sensitizers augment myocardial contractility 
by inducing conformational changes in TnC, thus enhancing 
the sensitivity of troponin-C (TnC) to Ca++ (13,14). 
This potentiating effect increases the extent of actin–
myosin interactions at any given concentration of intra-
cellular Ca++, without a substantial increase in myocardial 
oxygen consumption (15,16). Increased myofilament Ca++ 
sensitivity also causes reduced dissociation of Ca++ from the 
myofilaments in diastole and prolongation of relaxation 
(“negative lusitropic effect”), which could potentially 
aggravate the diastolic function in some patients with heart 
failure. Nevertheless, Ca++ sensitizers as levosimendan have 
additional selective and potent inhibitory effects on PDE-3, 
whose positive lusitropic consequence appears to antagonize 
the negative lusitropic effect of Ca++ sensitization (17,18). 



Annals of Translational Medicine, Vol 8, No 12 June 2020 Page 3 of 9

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(12):796 | http://dx.doi.org/10.21037/atm.2020.04.43

Meanwhile, in the peripheral circulation, levosimendan 
activates ATP-sensitive K+ channels, leading to systemic 
vasodilation (19,20).

Cardiac myocyte Ca++ homeostasis is commonly altered 
during sepsis and lipopolysaccharide exposure, with serious 
alterations in cardiac muscle contractility. Nevertheless, it is 
not clear whether this phenomenon is product of abnormal 
rapid calcium cycling (which increases myocardial oxygen 
demand) (21) and decreased myofilament sensitivity to 
calcium (with subsequent worsening of the myofilament 
force–calcium relationship) (22) or, simply, sluggish 
intracellular calcium cycling. In any of these cases, Ca++-
sensitizing agents could have theoretical advantages over 
other inotropes by improving Ca++ handling.

Theoretical rationale for using inotropes in 
patients with septic shock

Pathogenesis of septic shock involves a complex interaction 
between abnormal vasodilation, relative and/or absolute 
hypovolemia, myocardial dysfunction, and altered blood 
flow distribution to the tissues caused by the inflammatory 
response to infection. Vasopressors and inotropes are 
used as therapeutic interventions to assist the restoration 
of impaired tissue perfusion during shock. In this sense, 
dobutamine and other inotropes have typically been used 
to increase cardiac output and oxygen transport, aiming to 
restore cell respiration and aerobic metabolism. According 
to current recommendations in sepsis management, 
inotropes should be considered in the case of myocardial 
dysfunction, as suggested by a low cardiac output, increased 
filling pressures, or persisting signals of tissue hypoperfusion 
despite an adequate correction of intravascular volume and 
targeting mean arterial pressure by fluid administration and 
vasopressor support (1). Theoretically, inotrope therapy 
should increase myocardial contractility and then stroke 
volume, while counterbalancing increases in myocardial 
oxygen consumption (23) and maintaining the lower filling 
pressures to ensure adequate downstream pressures to the 
systemic circulation.

Although cardiac output is usually normal or even high 
after initial fluid resuscitation, myocardial contractility 
may be impaired in an important proportion of septic 
patients (24,25). Such myocardial dysfunction in sepsis is a 
multifactorial phenomenon that includes the mediation of 
some pro inflammatory cytokines (26-28), increased nitric 
oxide synthase expression (29,30), down-regulation of the 
beta-adrenergic response to catecholamines, but with a 

preserved myocardial blood flow, net myocardial lactate 
extraction and diminished coronary artery-to-coronary 
sinus oxygen difference (31). Whatever the mechanism, 
myocardial dysfunction has represented the main reason to 
administering inotropes during septic shock. 

An early study using radionuclide scans reported a 
decreased left ventricular ejection fraction, left ventricle 
dilation, and preserved stroke volume (32). Interestingly, 
reversion of such alterations was observed in patients that 
finally survived (25,32). Other observations suggested 
abnormal ventricular responses to fluid loading, with 
lower increases in left ventricular stroke work index than 
in non-septic controls (33). Subsequent studies using 
echocardiography found similar decreased ejection fractions, 
but described less prominent ventricular dilation and low 
stroke volumes in those patients that finally died (24,25). 

An interesting feature of sepsis-induced myocardial 
dysfunction is that survivors exhibited lower left ventricular 
ejection fractions and higher end-diastolic volumes, 
suggesting that ventricular dilatation may confer a 
“protective” effect during myocardial depression (32). 
Usually, decreased systolic contractility restricts the ability 
of the ventricle to eject up to low end-systolic volumes, so 
stroke volume decreases (31). Nevertheless, falls in stroke 
volume may be compensated by increasing end-diastolic 
volume through an adequate fluid resuscitation and by 
the decreased afterload due to arterial vasodilation. Such 
compensatory mechanisms can generate a high stroke 
volume hyperdynamic shock, even systolic contractility is 
decreased and ejection fraction remains low. Conversely, 
in the most severe cases, left ventricular afterload is more 
severely decreased, which provocates low stroke volumes 
and the contraintuitive phenomennon of preserved ejection 
fraction in non-survivors. 

To add more complexity, diastolic dysfunction can also 
happen during sepsis and septic shock, thus impairing 
the ventricular filling (34). Thus, the combination of 
impaired ability to fill and impaired ejection capacity 
leads to low stroke volume, hypodynamic and fatal septic 
shock. Inotropes as dobutamine can potentially increase 
contractility if systolic dysfunction is present. However, 
patients with systolic dysfunction are more likely to 
survive even without dobutamine treatment. Meanwhile, 
patients with a decreased diastolic compliance are unlikely 
to benefit from dobutamine, and they are more likely to 
die and therefore, more prone “to require” therapeutic 
interventions. Alternatively, levosimendan has been 
proposed as a treatment for septic myocardial dysfunction 
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because its ability to increase ventricular contractility 
without impairing diastolic relaxation. Nevertheless, current 
clinical evidence does not support its routinely use in septic 
shock (35).

Cardiovascular failure due to sepsis also involves 
peripheral vascular dysfunction, which includes arterial 
and venous vasodilation, impaired regulation of the 
distribution of arteriolar blood flow, heterogeneity of 
capillary microcirculatory flow, inflammation involving 
the endothelium and microcirculation, and increased 
permeability of vessels with capillary leakage leading to 
tissue edema and intravascular hypovolemia. In this sense, 
myocardial dysfunction becomes critical because peripheral 
vascular dysfunction places much greater demand on the 
heart. Important misdistribution of flow to the tissues 
may persist even after optimizing cardiac output because 
abnormalities in microcirculatory blood flow distribution 
induced by the inflammatory response. In this regard, 
low doses of dobutamine have been advocated to improve 
microcirculatory blood flow even independently of 
variations in cardiac output (36,37).

Use of specific inotropes in septic shock

Dobutamine 

Even though dobutamine is currently recommended in 
septic shock to improve cardiac output and to correct 
hypoperfusion, its real clinical benefit has been widely 
debated. Early studies demonstrated beneficial effects of 
dobutamine on macro hemodynamics (38-41), hepatic 
microcirculation (42), splanchnic perfusion and tissue 
oxygenation (43-47). Nevertheless, effects on macrovascular 
splanchnic blood flow (48-55), total intestinal microvascular 
blood flow (43,56), and sublingual microcirculation 
(36,57,58) have sometimes been conflicting. Conversely, 
in format ion  about  the  e f fec t  o f  dobutamine  on 
microcirculatory blood flow distribution at intestinal 
villi during sepsis or endotoxemia has been limited but 
favorable (37,59). Measurements of total microvascular 
blood flow and its distribution (i.e., estimation of blood 
flow heterogeneity) could be more relevant than total 
mesenteric arterial blood flow measurements (60,61). 
Interestingly, the favorable effects of low doses of 
dobutamine on microcirculatory blood flow seems to be 
dissociated from macro hemodynamics (36,37). Indeed, 
this apparent “dissociation” between macro and micro 
hemodynamics during human and experimental septic 

shock is a phenomenon commonly described in clinical 
observational studies (36,62-64) and highlighted in expert 
opinion manuscripts (61,65). Microcirculatory blood flow 
distribution should be ultimately the determinant of tissue 
perfusion beyond normalization of macro hemodynamic 
parameters (61,62,66). In this sense, dobutamine could exert 
a favorable effect on microvascular blood flow distribution, 
and this in turn, on the cellular oxygen consumption 
capabilities at intestinal mucosa (37). 

No randomized controlled trials have compared the 
effects of dobutamine versus placebo on clinical outcomes. 
Nevertheless, dobutamine has been incorporated in a number 
of quantitative resuscitation protocols as fundamental piece 
of the resuscitation strategy. Use of dobutamine was included 
in the original protocol of early goal-directed therapy 
(EGDT) in patients with sepsis and septic shock (67). In 
this study, 15.54% of patients assigned to the EGDT group 
received dobutamine within the first 72 hours. Although 
EGDT group was related with a significant decrease of 
in-hospital, 28 and 60-day mortality, the direct impact of 
dobutamine on final results is not possible to discern (67). 
Nevertheless, no significant increases of adverse effects 
linked to dobutamine were there reported (67). Subsequent 
randomized controlled trials on EGDT in septic shock, 
failed to demonstrate a clinical benefit with such strategy 
(68-70). In these trials, use of dobutamine was significantly 
higher in EGDT than in standard care groups (ProCESS 
trial 8.0 vs. 1.1%, respectively; P<0.001; ProMISe trial 8.0 
vs. 1.1%, respectively; P<0.001; and ARISE trial 15.4 vs. 
2.6%, respectively; P<0.0001). Again, no significant adverse 
events could be attributed to the use of dobutamine (68-70). 
Other multicenter, randomized controlled trial compared 
the combination of dobutamine plus norepinephrine vs. 
epinephrine in 330 patients with septic shock (10). There 
were no significant differences in all-cause mortality rate 
at day-28 and no significant differences in vasopressor 
requirements or adverse effects were observed between study 
groups. Nevertheless, the group assigned to dobutamine plus 
norepinephrine evolved with lower lactate and glucose levels 
during the experimental period (10). 

Finally, a recent metanalysis demonstrated that 
combination of norepinephrine and dobutamine is 
associated with a reduction in mortality at day-28 in patients 
with septic shock and low cardiac output (4), while other 
one suggested that regimens based on inodilators in septic 
shock have the highest possibility to improve survival (3). 
Thus, after years of fruitless attempts to prove the clinical 
benefit of dobutamine, the results of these metanalyses 
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apparently support the use of dobutamine in patients with 
septic shock. Nevertheless, results of such metanalyses 
should be considered carefully since heterogeneity of the 
studies included remains substantially high.

Levosimendan 

Use of levosimendan has been related with beneficial 
effects in acute and chronic cardiac failure and in cardiac 
perioperative patients (71,72). However, despite the potential 
advantages based on its mechanism of action, its value in 
septic shock remains highly debatable. In an experimental 
model of sepsis, levosimendan was superior to dobutamine 
and milrinone in restoring cardiac function (73). Other 
experimental data suggest that levosimendan could modulate 
inflammatory response by downregulating nuclear factor 
kappa-beta (NF-κβ)-dependent transcription (74), inhibiting 
inducible nitric oxide synthase promoter activity and 
reducing NO expression (75). An experimental model of 
sepsis suggested that levosimendan and norepinephrine had 
comparable effects in restoring cardiac output but without 
significant influence on microcirculatory blood flow (76). 
Nevertheless, levosimendan was related with better oxygen 
partial pressure (pO2) at tissue level (76). Both human 
and experimental studies revealed a beneficial effect of 
levosimendan on hepatic flow, sublingual microcirculation 
and intestinal intramucosal acidosis (77-79).

An early prospective randomized controlled trial studied 
the systemic and regional hemodynamics in 28 patients 
with septic shock and depressed left ventricular ejection 
fraction (LVEF <45%) after 48 hours of conventional 
treatment. Levosimendan increased LVEF, decreased left 
ventricular end-diastolic volume, increased gastric mucosal 
flow and creatinine clearance while induced a faster lactate 
normalization (80). Nevertheless, in the levosimendan 
for the Prevention of Acute Organ Dysfunction in Sepsis 
(LeoPARDS) trial (81), which studied the effects of this 
drug in 515 patients with septic shock, the addition of 
levosimendan to standard management did not result in 
less severe organ dysfunction or mortality (81). This trial 
recruited a wide range of patients with septic shock, so the 
lack of benefit of levosimendan was attributed to the fact 
that not all patients had cardiac dysfunction (82). However, 
a subsequent subanalysis of the data from the LeoPARDS 
study confirmed the lack of benefit of levosimendan in 
patients with biochemical evidence of cardiac dysfunction 
evidenced by high N-terminal prohormone of brain 
natriuretic peptide (NT-proBNP), troponin I (cTnI) 

and other five inflammatory mediators (83). Other study 
evaluating the effects of levosimendan on organ dysfunction 
in a population of elderly patients with sepsis also revealed 
no benefit of levosimendan on the development of organ 
failure (84).

Metanalyses on the effects of levosimendan in patients 
with sepsis and septic shock have yielded contradictory 
results. A metanalysis depicted favorable results of 
levosimendan in septic shock in comparison with standard 
inotropic therapy (85). Nevertheless, a recent metanalysis 
including 10 studies and 1,036 patients with sepsis and 
septic shock demonstrated a lack of benefit of levosimendan 
on mortality (OR 0.89, 95% CI, 0.69 to 1.16, P=0.39), 
although levosimendan was related with a more effective 
reduction in lactate levels and improvement of cardiac 
function (35). No significant benefit on mortality was 
observed when the use of levosimendan was compared 
with dobutamine in patients with demonstrated cardiac 
dysfunction (35). Similarly, other recent metanalysis 
suggested that there is no evidence of superiority of 
levosimendan over dobutamine in patients with sepsis 
and septic shock (86). Nevertheless, these authors found a 
significant amount of heterogeneity in mortality data, which 
hinder the interpretation of the data.

PDE-3 inhibitors 

Most of the information of the use of milrinone in sepsis and 
septic shock come from pediatric populations. Early studies 
demonstrated that milrinone (87) and amrinone (88) might 
improve cardiovascular function in pediatric patients with 
septic shock. Milrinone also exhibited beneficial effects in 
patients with meningococcal sepsis and purpura with severe 
peripheral vasoconstriction (89). In experimental sepsis, 
milrinone improved central venous saturation and lactate levels 
when compared with placebo (90). In the same line, milrinone 
demonstrated to attenuate arteriolar vasoconstriction and 
to improve functional capillary density in an experimental 
endotoxemic model (91). An in vitro study in cardiomyocyte 
cultures treated with lipopolysaccharide or tumor necrosis 
factor-alpha, alone or in presence of amrinone or milrinone, 
demonstrated a significant reduction of nuclear factor kappa-
beta (NF-κβ) and pro-inflammatory cytokines (92).

All PDE-3 inhibitors have vasodilatory effects that might 
exacerbate hypotension in sepsis, whereby their use in this 
condition might theoretically cause harm. There is no 
metanalysis evaluating the effects of milrinone on clinical 
outcomes in patients with sepsis or septic shock.
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Conclusions

Inotropes should be considered in cases of sepsis and septic 
shock with evidence of myocardial dysfunction or persisting 
signals of tissue hypoperfusion despite an adequate 
correction of intravascular volume and targeting mean 
arterial pressure by fluid administration and vasopressor 
support. Use of inotropes is mostly based on physiological 
data. Nevertheless, recent metanalyses suggest that 
regimens using inotropes could provide some benefit on 
mortality, especially in patients with cardiac dysfunction.
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