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Numerous metagenomic studies aim to discover associations between the microbial

composition of an environment (e.g., gut, skin, oral) and a phenotype of interest.

Multivariate analysis is often performed in these studies without critical a priori knowledge

of which taxa are associated with the phenotype being studied. This approach typically

reduces statistical power in settings where the true associations among only a few taxa

are obscured by high dimensionality (i.e., sparse association signals). At the same time,

low sample size and compositional sample space constraints may reduce beyond-study

generalizability if not properly accounted for. To address these difficulties, we developed

the Selection-Energy-Permutation (SelEnergyPerm) method, a nonparametric group

association test with embedded feature selection that directly accounts for compositional

constraints using parsimonious logratio signatures between taxonomic features,

for characterizing and understanding alterations in microbial community structure.

Simulation results show SelEnergyPerm selects small independent sets of logratios that

capture strong associations in a range of scenarios. Additionally, our simulation results

demonstrate SelEnergyPerm consistently detects/rejects associations in synthetic data

with sparse, dense, or no association signals. We demonstrate the novel benefits of our

method in four case studies utilizing publicly available 16S amplicon and whole-genome

sequencing datasets. Our R implementation of Selection-Energy-Permutation, including

an example demonstration and the code to generate all of the scenarios used here, is

available at https://www.github.com/andrew84830813/selEnergyPermR.

Keywords: microbiome association study, sparse association signals, pairwise logratios, compositional data,

multivariate analysis, feature selection

1. INTRODUCTION

Metagenomic studies have enabled unprecedented insight into connections between microbes,
their functions, and human disease (Martín et al., 2014). These insights are a direct result of rapid
advances in next-generation sequencing technologies which are critical to metagenomic studies.
Specifically, these technologies are leveraged in two popular approaches: 16S ribosomal rRNA
amplicon (16S) and whole-genome shotgun (WGS) sequencing (Ranjan et al., 2016). Application
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of these approaches are widespread and have been used to
study associations between the gut microbiome composition and
colorectal cancer (Gopalakrishnan et al., 2018), inflammatory
bowel disease, obesity (Manichanh et al., 2012), cirrhosis (Qin
et al., 2014), and anxiety/depression (Foster and McVey Neufeld,
2013) in humans via the gut-brain axis, to name a few. The
skin (Kong et al., 2012), oral (Dewhirst et al., 2010), and nasal
microbiomes (Wilson andHamilos, 2014) among other sites have
also been studied in connection to disease onset and progression.
With an increasing number of putative associations between
microbial communities from various sites of the human body and
disease being reported, microbial compositions are now being
explored as diagnostic and screening tools (Zackular et al., 2014;
Schlaberg, 2020). While exciting, appropriate statistical methods
are still needed to overcome methodological challenges in these
exceptional data, so that robust microbial biomarkers and true
associations can be discovered among noisy high-dimensional
metagenomic data, especially when sample sizes in observational
studies are smaller than the number of features discovered.

Before metagenomic data can be used to test for associations,
raw sequencing data must be appropriately processed.
Taxonomic count tables are created by processing raw 16S
or WGS sequencing data through bioinformatics pipelines
such as Quantitative Insights Into Microbial Ecology (QIIME)
(Caporaso et al., 2010) or mothur (Schloss Patrick et al., 2009)
for amplicon sequencing data and Metagenomic Phylogenetic
Analysis 2.0 (MetaPhlAn2) (Truong et al., 2015) or Kraken
(Wood et al., 2019) for WGS data. Sequencing reads are assigned
to taxonomic units where the resulting count tables are then
used to profile and analyze the association between groups
under study at various taxonomic levels (Phylum-Species).
These data are often sparse and summarize the total number
of reads for each taxonomic assignment within each sample.
In current practice, total counts in these settings have been
widely recognized as being uninformative due to limitations
within sequencing technology (Gloor and Reid, 2016; Gloor
et al., 2017; Weiss et al., 2017). That is, these data carry only
relative information, requiring special statistical techniques
and considerations. In particular, these relative data have a
unit-sum simplex sample space where traditional Euclidean-
based statistical methods have limited applicability due to
geometrical differences between sample spaces. Ignoring these
constraints has been shown to increase type I error (Weiss
et al., 2017) and the chance of reporting spurious associations
(Pearson, 1897), thus limiting the ability to generalize beyond
studies.

A direct way to address simplex sample space constraints
imposed by relative data is through a logratio transformation.
Such transformations, which emerged from the statistical
analysis of compositional data (Aitchison, 1982), function by
mapping relative data from the unit-sum simplex to traditional
Euclidean space. Importantly, logratio transformations are
sub-compositionally coherent (Aitchison, 1982; Greenacre and
Lewi, 2009), independent of the number of dimensions (Taxa,
Operational Taxonomic Units (OTUs), etc.) observed in a cohort
whereby true associations in the logratio form are preserved. This
is not true for relative abundance where proportions change as

new dimensions are considered, discovered, or removed. Sub-
compositional coherence is of practical importance in biomedical
studies where biomarker discovery, disease prediction, and
beyond-study generalization are paramount. While logratio
transformations are well-known and routinely applied in some
fields (Pawlowsky-Glahn and Buccianti, 2011), their use in
metagenomic datasets has been limited. Indeed, significant
challenges exist when applying a logratio transformation to
metagenomic data, including properly handling zeroes (Martın-
Fernandez et al., 2003; Martın-Fernández et al., 2015), selecting
and interpreting various logratio forms (Aitchison, 1982;
Egozcue et al., 2003; Greenacre, 2019), and scale differences in
counts (Lovell et al., 2020).

While the importance of the compositional nature of
metagenomic data has recently been recognized (Gloor et al.,
2017; Quinn et al., 2019), relatively few multivariate statistical
methods have been developed directly for such data. The
current state of the art methods for detecting differential
abundance in compositional metagenomic data include ANOVA-
like differential expression2 (Fernandes et al., 2014), Analysis
of Compositions of Microbiomes (Mandal et al., 2015),
and Analysis of Compositions of Microbiomes with Bias
Correction (Lin and Peddada, 2020). However, these univariate
methods, while powerful, are unable to detect multivariate
structure within complex interconnected microbial communities
(Layeghifard et al., 2017). In contrast, appropriate network and
multivariate statistical methods—which are appropriate when
there exist relationships between a set of variables (i.e., microbial
composition) and two or more groups are to be analyzed—can be
used to discover complicated microbial patterns, even in settings
where there are significantly more variables than samples, and
have better control over type I error (Obuchowski, 2005).

Currently, several multivariate statistical methods to detect
between-group distributional differences or associations in
metagenomic data can be used. A subset of these methods
require a suitable beta diversity or between-sample distance
(Euclidean, Manhattan, Mahalanobis, etc.) or dissimilarity (Bray-
Curtis, weighted/unweighted Unique Fraction, Jaccard, etc.)
metric be specified before analysis. Nonparametric tests such as
permutational multivariate analysis of variance (PERMANOVA)
(Anderson, 2017), Analysis of Similarity (ANOSIM) (Clarke,
1993), and the energy distance (Rizzo and Székely, 2016) can
then be applied to test distributional differences between groups.
Between-group association signals in metagenomic data may
be sparse, i.e., resulting from differences among only a few
features (OTUs, taxa, etc.), or they may be densely formed
by differences between many features. Importantly, the above-
mentioned nonparametric tests lack embedded feature selection
and thus may have limited statistical power for detecting sparse
signals in high-dimensional data.

Feature selection, which is essential to detecting sparse
association signals in high-dimensional metagenomic data,
requires sophisticated methods and care to simultaneously select
features and test associations while maintaining reasonable type
I error control (Lindgren et al., 1996; Baumann, 2003). Indeed,
for this reason, the adaptive microbiome-based sum of powered
score (aMiSPU) (Wu et al., 2016) and microbiome higher
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criticism analysis (MiHC) (Koh and Zhao, 2020) methods were
developed to test sparse associations in ultra-high-dimensional
OTU-based 16S data (without taxonomic aggregation requiring
phylogenetic analysis of sequences). Unlike these methods
and inspired from concepts put forth in the Direction-
Projection-Permutation (DiProPerm) method for assessing
statistical significances in high-dimensional settings (Wei et al.,
2016), we introduce here the Selection-Energy-Permutation
(SelEnergyPerm) method for testing and understanding sparse
associations in both 16S and WGS data at the taxonomic level.
SelEnergyPerm is the first method to our knowledge to utilize
robust pairwise logratios to detect multivariate associations
and understand them using parsimonious logratio signatures
from all types of metagenomic data through simultaneous
feature selection and association testing. Importantly, because
SelEnergyPerm is a compositional data approach to multivariate
association testing, our benchmarks focus on multivariate
associations formed between a set of logratios rather than
repeated univariate associations. We first show that our novel
approach selects smaller subsets of non-redundant logratios that
better maximize between-group associations when compared
to other popular feature selection methods. Next, we show
through an extensive simulation study using synthetic and
empirical 16S/WGS data distributions that SelEnergyPerm
has, on average, better combined power and false discovery
control via the Matthews Correlation Coefficient (MCC) when
compared to existing beta-diversity-based approaches. Finally,
to demonstrate the utility of SelEnergyPerm in detecting and
understanding differences between metagenomic distributions,
we apply ourmethod in four unique case studies utilizing publicly
available metagenomic datasets where we test associations
between: (1) cerebrospinal fluidmicrobiomes and post-infectious
hydrocephalus in Ugandan infants, (2) delivery mode and the
composition of infant gut microbiomes over the first 3 months of
life, (3) adult gut microbiomes and abnormal fecal calprotectin
levels, and (4) the gut microbiome composition of infants within
the first 6 months of life and future food allergy to egg, milk, or
peanuts. Notably, the case studies considered here to demonstrate
SelEnergyPerm identify associations not previously reported in
the original studies.

2. METHODS

2.1. Selection-Energy-Permutation
(SelEnergyPerm) for Simultaneous Feature
Selection and Group Association Testing in
Sparse High-Dimensional Compositional
Data
In this section, we explain the SelEnergyPerm framework in
detail. First, we describe our Differential Compositional Variation
(DCV) scoring measure applied to each element of the full set
of pairwise logratios (PLR) and then detail the construction of
the weighted DCV network representations of these quantities.
We next discuss the removal of redundant ratios using a
maximum spanning tree that simultaneously maximizes logratio
variance. After this, we introduce our network-based approach to

feature selection and the two multivariate test statistics utilized
to measure the strength of the association. We then detail
our between-group association maximization algorithm with
pseudocode. Finally, we describe the approach for assessing
statistical significance via permutation testing using Monte Carlo
sampling.

2.1.1. Differential Compositional Variation Scoring
For a given metagenomic study, let M ∈ R

n×d be the taxa count
table for n samples and d taxa. Before working in the set of all
p = (d2) = d(d − 1)/2 PLR of M (up to a sign, that is, since
log(a/b) = − log(b/a), we only include one ratio between each
pair of taxa), we must first address the problem of zero counts.
While there are numerous strategies with various drawbacks to
model and impute zeros based on type/cause (Martın-Fernández
et al., 2015; Palarea-Albaladejo and Martín-Fernández, 2015),
there is in general no consensus on which strategy should be
used in metagenomic data. Notwithstanding, here we treat zero
taxa counts as being below the detection level, and we adopt a
corresponding multiplicative replacement strategy for imputing
zeros proposed in Martın-Fernández et al. (2015) that preserves
the essential logratio and covariance structure. Specifically, we
apply the closure operator to M to map the count data onto the
unit-sum simplex, defining the matrix X with elements xij as

xij = (C[M])ij =
mij

∑d
k=1mik

. (1)

Importantly, we set δ to be a constant equal to the smallest
nonzero value across allX and then replace zeros to obtainRwith
elements

rij =
{

δ , xij = 0

xij
[
1−

∑
k δ1(xik = 0)

]
, xij > 0

for i = 1, . . . , n ,

(2)
where 1(xik = 0) indicates (= 1) if the element xkl = 0 (and = 0
otherwise). In this way, the interpretation of zeroes is consistent
across samples which may not be the case strictly following the
Bayesian approach. Additionally, to limit rare taxa, we remove
sparse features with a default 10% threshold. That is, we retain
only those taxa present (counts ≥ 1) in at least 10% of samples.
We then compute all PLRs from R to obtain Z ∈ R

n×p including
all p PLRs. To express the PLR transformation, we first define a
PLR matrix Pi ∈ R

p×p for the ith sample from logratios of the
elements in the ith row of R, according to pi

jk
= log

rij
rik
. Note that

Pi is antisymmetric by construction, requiring only the lower or
upper off-diagonals be computed to define the full frame of PLRs.
We then obtain the ith row (denoted here as zi) of Z by reshaping
the lower off-diagonal elements of Pi into a row vector, that is,

zi = [pi21, . . . , p
i
jk, . . . , p

i
d(d−1)] for all (j = 2, · · · , d);

(k = 1, · · · , d − 1) such that j > k . (3)

Because feature selection is critical to maximizing power and
identifying sparse signals hidden within noisy high-dimensional
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data, we seek to reduce the dimensionality through feature
selection. Notably, this setting is distinct from traditional logratio
analysis (Aitchison, 1982) where dimensionality reduction using
PCA is applied to all PLR transformed features to reduce
dimensionality. Importantly, the set of p different PLRs are
not independent of one another and require careful treatment
to select ratios that are independent of each other. Here we
propose Differential Compositional Variation (DCV), a scoring
measure that enables efficient screening and ranking of PLR
features within compositional data. Like the screening concept
in Fan and Lv (2008) for ultra-high-dimensional feature spaces,
DCV is motivated by Aitchison’s compositional variation array
(Aitchison, 1982) where patterns of compositional variability for
a group of data can be expressed in terms of the logratio means
ξj = E[Z∗j] and variances τj = var[Z∗j] where j = 1, . . . , p.
Similarly, let ζj = median[Z∗j].

The DCV score utilizes 5 different statistics to score
the contained variation of each logratio; each component of
DCV provides unique insight, enabling efficient screening of
uninformative logratios for downstream multivariate analysis.
Let y contain the labels for the binary classes/groups c1 and c2
under consideration, with nc indicating the number of samples in
class c. In terms of ξj and τj, the first component of DCV, which
measures differences in group means, is Welch’s t-statistic:

11
j =

ξ
c1
j − ξ

c2
j√

1
n1

τ
c1
j + 1

n2
τ
c2
j

, (4)

where superscripts on ξ cj and τ cj indicate the mean and variance,

respectively, are computed over samples in class c, and we use
superscripts on 1 to indicate the different components of DCV
(not powers).

Next, we decompose the compositional variability of each
Z∗,j using the classical F-statistic to again measure differences of
means:

12
j =

n1

(
ξ
c1
j − ξj

)2
+ n2

(
ξ
c2
j − ξj

)2

τ
c1
j + τ

c2
j

. (5)

The third component of DCV is the Brown-Forsythe F-Statistic,
measuring heterogeneity of variances, computed as follows. We
collect the values for the jth logratio in the array aci, indexed as
the ith sample in class c. From this, we let bci = |aci − ζc|, where
ζc indicates the median of class c, and define

13
j =

∑
c nc(b̄c· − b̄··)2∑

c

∑
i(bci − b̄c·)2/

∑
c(nc − 1)

, (6)

where b̄c· indicates the group means and b̄·· is the overall mean of
the bci values.

For the fourth component, we first define the empirical
distribution function for each ordered logratio, notated simply
here for the jth logratio of the cth class as

Fcj (x) =
1

nc

∑

i

1c(yi)1(Zij < x) (7)

where the 1c(y) indicator selects out samples in class c and the
second indicator indicates whether the Zij logratio value is less
than x, with the sum thus counting the number of samples that
satisfy both criteria. We then set the fourth component of DCV
to be equal to the Kolmogorov–Smirnov statistic between the
different empirical distributions for the j logratio:

14
j = sup

x

∣∣∣Fc1j (x)− Fc2j (x)
∣∣∣ . (8)

The fifth component of DCV measures the importance of the
logratios as attributes in terms of an entropy reduction when
splitting by class, as implemented using the information_gain
function in the R FSelectorRcpp package (Zawadzki and
Kosinski, 2021) with default settings on the logratio attributes
and class response variable. The scores output from this function
are organized into 15

j .

We aggregate the different components into the DCV matrix
(logratios by DCV components):

V =




11
1 · · · 15

1
...

. . .
...

11
p · · · 15

p


 . (9)

To account for differences in scale between the DCV
components, we z-score standardize each component
(column) to define the standardized DCV matrix V̂:
v̂ij = (vij − v̄∗j)/SD(v∗j). The final set of DCV scores, V̆ ∈ R

p×1,
which contains a score for each logratio, is then defined as

v̆j =
5∑

k=1

v̂jk where j = 1, . . . , p . (10)

2.1.2. Construction of DCV Network and Conversion

to Maximum Spanning Tree
Here we leverage the inherent network structure of logratios
(Greenacre, 2019) to form our DCV network, defined as a
directed graph where edges point from numerator vertices to
denominator vertices. We then define G = (N,E, V̆) to be the
DCV network where N is the set of d taxa vertices, E is the
edge set formed by all p pairwise logratios between taxa, and
edge weights V̆ are the corresponding DCV scores in V̆ between
classes. In the initial phase of feature selection on Z, we require
the logratio subsets tomeet three important properties: 1) explain
maximum logratio variance, 2) form a linearly independent
set, and 3) contain maximum total DCV among the different
possible subsets that satisfy the first two properties. Notably,
by construction the column rank of Z is (d − 1) and thus
any single-component connected network containing all d taxa
explains 100% of the logratio variance contained in Z. The
second property requires the undirected version of the logratio
subset to be acyclic, as may be achieved with a spanning tree.
However, the number of spanning trees from G can be expressed
by Cayley’s formula: T|N| = |N||N|−2. To circumvent considering
this unmanageably large number of spanning trees, we utilize
the weights imposed from the DCV scoring to enable efficient
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selection of a suitable spanning tree from G. In particular, the
third property drives us to select a spanning tree that includes
only edges (logratios) corresponding to the highest V̆ DCV
scores, insofar as possible, to attempt to include maximum
possible DCV, as described next.

We sort the logratios of V̆ in descending order by DCV score
to form V̆′ and retain the first set of q logratios that contain all
d taxa to form V̆′′. We then redefine the logratio network G =
(V ,E,W) whereV is the set of d taxa vertices and E is the edge set
corresponding to these q pairwise logratios, with edge weightsW
from the values in V̆′′. In practice, we have always found that the
resulting network at this stage is a single connected component—
in the event that the network is not, additional logratios from
V̆′ should be added to G to make it connected. From G we
compute the maximum spanning tree GMST using the minimum
spanning tree function in the R igraph package (Csardi and
Nepusz, 2006), which uses a greedy approach known as Prim’s
algorithm (sometimes also as Jarník’s algorithm). Specifically, to
obtain a maximum spanning tree, we pass negative edge weights
(−1× DCV scores) to the minimum spanning tree function.
While the selected tree is not guaranteed to be unique given G,
we note the presence of multiple equivalent candidate trees is
highly unlikely for continuously-weighted graphs G (unlike for
unweighted graphs). Further, we confirmed that repeated runs of
the algorithm returned the same tree for each run. Finally, we
define Z′ ∈ R

n×(d−1) to be the subset of logratios corresponding
to the edge set of GMST .

2.1.3. Multivariate Test Statistics
SelEnergyPerm considers two multivariate test statistics to
determine the statistical significance of retained subsets of
logratios. The first multivariate test statistic, the Distance
Components F-ratio (discoF) is utilized when between-group
dispersion effects are not detected in Z′. The discoF statistic,
proposed by Rizzo and Székely (2010), is like the traditional
Analysis of variance ‘F’ ratio (but does not follow an F-
distribution) where the total dispersion is partitioned into
between- and within-group components derived from an
inter-sample Euclidean distance matrix computed from Z′.
Computation of the discoF statistic is done here using the R
energy package (Rizzo and Szekely, 2021). As described by Rizzo
and Székely (2010), the discoF test statistic for binary groups is of
the form

Fn,α = Sn,α

Wn,α/(n− 2)
(11)

where Sn,α is the between-sample energy statistic, Wn,α is the
within-sample dispersion statistic and 0 < α ≤ 2 is the
exponent on the pairwise between-sample norm. See Rizzo and
Székely (2010) and Rizzo and Székely (2016) for specific details
on computing the between- and within-group components of the
discoF statistic.

The second statistic, used by SelEnergyPerm when dispersion
effects between groups are detected in Z′, is a scaled combined-
F (cF) statistic which is distribution-free and attempts to jointly
account for differences in both location and scale between
distributions. The unscaled cF statistic is the sum of F-ratios

obtained from PERMDISP2 with spatial medians (Anderson,
2006) and PERMANOVA (Anderson, 2017), computed using
the R vegan package (Oksanen et al., 2020). We partition the
variation of Z′ and define the unscaled combined-F statistic as

c̃F = Flocation + Fdispersion =
(

SSα

SSw/(n− 2)

)
+

(
SST

SSE/(n− 2)

)

(12)
where SSα and SST are the between-group sum of squares
components, and SSw and SSE are the within-group sumof square
components of variation from the PERMANOVA (Flocation) and
PERMDISP2 (Fdispersion) procedures, respectively. See Anderson
(2006) and Anderson (2017) for specific details on computing
these between- and within-group components. Likewise, the
scaled combined-F statistic that we use is computed in the same
way but with z-score standardization relative to the permutation
distribution. Let nFloc. and nFdisp. be m-dimensional vectors
of null Floc. or Fdisp. statistics sampled from the permutation

distribution. We consider m = 106 permutations here as
a balance between computational cost and minimizing this

variation of the estimate statistic. We scale F̂loc. = Floc.−E[nFloc.]
SD(nFloc.)

and F̂disp. = Fdisp.−E[nFdisp.]

SD(nFdisp.)
and define the scaled combined-F

statistic as

cF = F̂loc. + F̂disp. , (13)

taking care to note that cF is approximate and thus the estimate
has variability based on the number of samples drawn from the
permutation distribution.

2.1.4. Association Maximization and Greedy Forward

Selection
In this step, we focus on the multivariate structure formed
by a subset of logratios. Specifically, we are interested in
maximizing the between-group variation induced by a subset
of logratios in a low-dimensional multivariate space. To
find a minimal, statistically-significant subset of logratios that
maximizes Fn,α (location effects only) or cF (dispersion and
location effects) between classes, we utilize a greedy forward
stepwise feature selection procedure (see Algorithm 1 in the
Supplementary Material). This procedure is notated here as
selectionEnergy().

2.1.5. Association Significance Testing
To assess the statistical significance of the observed association
Fobs = selectionEnergy(Zobs, y) we compute the null distribution
by permutation testing via Monte Carlo sampling (Ernst, 2004).
Letting the number of permutations be k and π be the set of
random permutations of y, we obtain samples from the null
distribution by Fnull = selectionEnergy(Zobs,π). We then test if
the Fobs is more extreme than what is expected at random given
the data using the one-sided estimated p-value

p̂ = 1+
∑k

i=1 1(F
null > Fobs)

k+ 1
. (14)
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2.2. Simulation Strategy
We adapted several simulation settings to investigate
and highlight key association detection characteristics of
SelEnergyPerm when compared to ANOSIM, PERMANOVA,
and the energy test. Additionally, to detect the presence of
heterogeneity of multivariate dispersion between groups and
understand its impact on association detection, we utilized the
PERMDISP2 method as an indicator. The empirical association
detection ability of each method was assessed within a binary
classification framework. To do this, we measured the rate of
each statistical test to correctly reject (Power) or accept (Type
I Error) the null hypothesis (no difference between groups)
at significance α = 0.05. Further, to truly assess detection
capabilities, we presented each method with binary instances
drawn from either the same (Null Case) or different (True Case)
distributions for each scenario using Monte Carlo simulations.
The Matthews Correlation Coefficient (MCC), which effectively
summarizes the binary confusion matrix, was then used to
measure the overall accuracy of each method’s ability to detect
associations across various simulation scenarios. MCC was
computed as

MCC = (TP)(TN)− (FP)(FN)√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

(15)

where TP = true positive (reject the null hypothesis for True
Case), TN = true negative (accept null hypothesis for Null Case),
FP = false positive (reject the null hypothesis for Null Case), and
FN = false negative (accept null hypothesis for True Case). For
each simulation scenario, we generated 100 simulated datasets
with 40 samples each in class 1 and class 2 for the balanced
binary design and 20/60 (class 1/2) samples for the unbalanced
design. Given we rely on permutation testing for significance
of all methods, we generate a common set of 150 permutations
per dataset to consistently compute significance for each method
across all scenarios and settings.

2.3. Simulation Scenarios (Synthetic Data)
For all synthetic data scenarios, we consider datasets with d =
50, 150, and 250 taxa, yielding a total of p = 1, 225, 11, 175,
and 31, 125 pairwise logratios, respectively. We note, based on
our experience, that the sizes d tested, while modest, are in
general reflective of the actual number of taxa typically analyzed
for 16S or WGS datasets after sparse taxa are removed. The
following simulation scenarios are in our SelEnergyPermR R
package available at https://github.com/andrew84830813/selEne
rgyPermR using the function scenarioN() where N = [1,5]. All
synthetic scenarios are inspired by settings considered in Wei
et al. (2016).

In Scenario 1, for the true case, we consider both multivariate
location (in all dimensions) and dispersion effects that grow with
increased numbers of dimensions. The increase in dispersion
with dimension is similar to settings studied in Wei et al. (2016).
Here, data from each sample are generated from the Dirichlet
distribution Dir(α), commonly used to model compositional
data whereby data are naturally constrained within the unit-sum

simplex. Data from class 1 are simulated with α1 = 3. Data
from class 2 are generated with α2 = 3

5 log d where the log(d)/5
factor shifts the overall location and increases dispersion as the
dimensionality increases. For the null case, data from both classes
are generated fromDir(α1).

In Scenario 2, for the true case, we generate sparse count data
from two Dirichlet distributions that differ in the location of the
first component only and overall dispersion. To generally mimic
real library size or total counts per sample, we use a negative
binomial (NB) distribution to model the total counts for each
sample and simulated as Ci ∼ NB(s, s/(s + µ)) where s = 1 and
µ = 107. Notably, other discrete distributions can be used to
achieve user specified library size characteristics. Count data for
class 1 were generated by roundingCi·Dir(α1) where α1 elements
are drawn from uniform distributions as

α1 = (x1 ∼ U[3000,5000], xi∈[2,10] ∼ U[500,1500], xi∈[11,d] ∼ U[1,5]) .
(16)

Count data for class 2 were generated after rounding Ci ·Dir(α2)
where the α2 elements are drawn as

α2 = (x1 ∼ U[12500,17500], xi∈[2,10] ∼ U[500,1500], xi∈[11,d] ∼ U[1,5]) .
(17)

Notably, we use the xi∈[11,d] ∼ U[1,5] terms here tomodel random
sparsity. For the null case, data from both classes are generated
from Ci ·Dir(α1).

In Scenario 3, for the true case, we generate compositional
data with a large location effect that increases while the dispersion
effects decrease with dimensionality. These settings are similar
to settings considered for association benchmark comparisons in
Wei et al. (2016). We simulate data from the additive logistic
normal distribution on the simplex (Aitchison, 1982). To do
this we first let S1 = N (µ1,61) and S2 = N (µ2,62) be
samples drawn from multivariate normal distributions. We set
µ1 = (0, . . . , 0) and µ2 = (1/

√
d, . . . , 1/

√
d) in the first

25% of dimensions and 0 in the remaining dimensions. The
covariance structure was defined in the same way as in Wei
et al. (2016) where 6 was defined with 1’s along the main
diagonal and 0.2 along the two diagonals off the main. From
this, 61 = 6 + δId and 62 = 6 + U + δId where
U ∈ R

d×d is a matrix with U[0,32/d2] entries and δ =∣∣min
(
eigenvalues(6), eigenvalues(6 + U)

)∣∣ + 0.05. Here row
vectors from S represent additive logratio (ALR) vectors and
are subsequently projected onto the simplex using the inverse
additive logratio transformation defined in terms of the closure
operator as ALR−1 = C[exp([s, 0])]. For the null case, data for
both classes were simulated from N (µ1,61).

In Scenario 4, for the true case, we generate compositional
data with sparse location effects in the first dimension that
grow stronger while dispersion effects grow weaker as the
dimensionality increases. That is, S1 = N (µ1,61) and S2 =
N (µ2,62) are defined as in scenario 3 except we set µ2 to
log d

3 in the first dimensions and 0 in the remaining dimensions.
The simplex projection and null case are done as described
in scenario 3.

Finally, in Scenario 5 for the true case, we generate
compositional data from the additive logistic normal distribution
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with a small location shift and large dispersion difference that
increases with dimensionality. Let S1 = N (µ1,61) and S2 =
N (µ2,62) be defined in as in scenario 3 except for µ2 set to

1√
n1+n2

in all dimensions and U ∈ R
d×d with entries drawn

from U[0,32]. The simplex projection and null case are done as
described in scenario 3.

2.4. Simulation Scenarios (Experimental
Data)
For all experimental data scenarios, we used publicly available
taxa count tables where sequencing data were already pre-
processed. The following simulation scenarios are available
in our SelEnergyPermR R package available at https://
github.com/andrew84830813/selEnergyPermR using the
functions simFromExpData.covarianceShift() or
simFromExpData.largeMeanShft(). Notably, the simulation
scenarios below first convert count data into compositional data
represented on the unit simplex (i.e., normalized). To control
simulation parameters, the compositional data are modeled
using the additive logistic normal distribution (Aitchison, 1982).
After adjusting the mean/covariance structures in a controlled
way, the compositional data are then converted back to count
data for analysis.

For general 16S data characteristics, we utilized the
ob_goodrich_results.tar.gz dataset from the microbiomeHD
database (Goodrich et al., 2014; Duvallet et al., 2017). We
aggregated the taxa to the genus level (distinct genera= 247) and
extracted the 428 healthy samples from the goodrich16S dataset
for our 16S data simulations. For WGS data characteristics,
we utilized the ZeeviD2015 (Zeevi et al., 2015) dataset from
the curatedmetagenome (Pasolli et al., 2017) database. We
aggregated taxa counts by species (distinct species = 1,776) and
extracted the 900 control samples for our WGS data simulations.
Here we model the 16S and WGS count data using zero-inflated
negative binomial (ZINB) models which have been shown to be a
reasonable choice for modeling microbiome count data (Calgaro
et al., 2020). ZINB models were fit to the 16S and WGS dataset
described above using the ZINBWAVE R package (Risso et al.,
2018) with default settings. For all experimental data scenarios,
we used the fitted 16S/WGS ZINB models to simulate new
samples for each dataset. That is, we first simulated 428 samples
from the ZINB model for the 16S datasets or 900 samples for
the WGS datasets. We then randomly select 40 samples per class
for the balanced design and 20/60 (classes 1/2) samples for the
unbalanced design. To reduce the presence of rare features we
only retained features present in at least 15% of all samples for all
datasets.

For Scenario 1, for the true case in both 16S andWGS datasets,
we consider settings where the percent P = {5, 20, 35, 50} of
dimensions with a location shift increases while the dispersion
effect between classes remains fixed. To do this, we first simulate
count data M from the ZINB model, map it onto the unit-sum
simplex using Equation (1) and impute zeros to obtain R as in
Equation (2). The ALR transformation is then applied to R to
obtain A with elements aij = log(rij/rid) for j = 1, . . . ,(d − 1).

For each class we simulate data from N(µ,6) where

µ = E[A] =
(
E[a∗1], . . . , E[a∗d−1]

)T
and 6ij = cov[a∗i, a∗j] .

(18)
The variance (diag(6)) of each dimension is ranked in ascending
order whereby µ and 6 are reordered accordingly to form
µr and 6r . Of note, this is done to ensure the location shift
occurs in features with minimal variance. We then simulate
S1 from N(µr ,6r) with µ1 and 61 using as above. Letting
µ2 = µ1 we then shift the first Pi% of dimensions of µ2

by a factor of 1.25. From this we simulate S2 from N(µ2,61).
Finally, S1 and S2, which are in Euclidean ALR form, are mapped
back to the simplex (relative abundance) using the inverse ALR
transformation. For the null case, data for both classes are
simulated from N(µr ,6r).

Finally, for Scenario 2, we consider settings for the true
case (in both 16S and WGS datasets) with location shifts in
the first 10% of dimensions that are confounded by increasing
dispersion effects as the number of dimensions increase. Here
we compute S1 in Euclidean ALR form as described in Scenario
1 (Experimental Data) such that S1 ∼ N(µ1,61). From this,
6s1 = 61 + δId and 6s2 = 61 + T + δId where T is
a d × d matrix with entries drawn from U[0,βi] and δ =∣∣min

(
eigenvalues(61), eigenvalues(61 + T)

)∣∣ + 0.05. For 16S
data β = (0.10, 1.40, 2.70, 4.00) and for WGS data β =
(0.10, 4.07, 8.03, 12.00). Additionally, letting µ2 = µ1 we shift
the first 10% of dimensions of µ2 by a constant factor of 1.25
for WGS data and by a factor F = (1.20, 1.17, 1.13, 1.10) for 16S
data. In all, the final multivariate forms are S1 ∼ N(µ1,6s1 )
and S2 ∼ N(µ2,6s2 ). These distributions, which are in ALR
form, are mapped back onto the simplex using ALR−1(si∗) =
C[exp([si∗, 0])]. Lastly, for the null case, data for both classes are
simulated from N(µ1,6s1 ).

For both scenarios, counts could alternatively be obtained
via a negative binomial distribution (or other suitable discrete
distribution) using a similar process as described in Scenario 2
of the Synthetic Data simulation section above.

2.5. Feature Selection Benchmarks
For the feature selection (FS) benchmark we used the Boruta
R package (Kursa and Rudnicki, 2010) with maxRuns set
to 100 and importance set to Gini for the Boruta FS. The
glmnet R package (Simon et al., 2011) was used for LASSO
FS where the elastic net mixing parameter α was set to
1 and λ was optimized via cross-validation. The caret R
package (Kuhn, 2021) was used to implement Random Forest
Recursive Feature Elimination (RFE) FS where 5-fold cross-
validation was used to evaluate AUC and feature importance
of sets s = {21, 22, . . . , 2n}, where n = floor

(
log2 p

)
.

The FSelectorRcpp R package (Zawadzki and Kosinski, 2021)
with default settings was used for the Information Gain Filter
FS. For each Scenario (Synthetic Data), FS characteristics
were evaluated on 200 synthetic datasets across feature space
sizes of p = {1, 225, 4, 950, 11, 175, 19, 900, 31, 125} logratios.
Performance characteristics considered were the number of
logratios selected, logratio network clustering coefficient, and
the combined-F statistic. Here we use the number of logratios
selected by each method as a proxy for model complexity.
Specifically, higher model complexity or the number of features
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retained increases the risk of overfitting and unnecessarily
reduces the biological interpretation corresponding to the
logratios. logratio networks were formed using the final subset
selected by each method, defined as a graph where vertices
represent taxa and edges connect taxa pairs to form a logratio.
Redundancy in a logratio network of this type can be inferred
from cycles in the network. While it does not detect all cycles,
the clustering coefficient can be used here to detect cycles
between three nodes (closed triangles vs. triplets). Computation
of the global clustering coefficient was done using the R
igraph package (Csardi and Nepusz, 2006). Finally, the cF
statistic, measuring the strength of the overall association,
was computed as in Equation (13) for each subset. All
performance characteristics were evaluated in both balanced
and unbalanced sampling designs. Computational time was
recorded in seconds for each simulation scenario, feature space,
and sample design. The recorded time represents the CPU
time required by each FS method to select the final logratio
subset. All computations were run on UNC–Chapel Hill’s Linux-
based Longleaf cluster in R parallelized with 10 cores using
the foreach R package (Microsoft and Weston, 2020) with 5GB
of RAM.

3. RESULTS

To robustly uncover sparse microbial signatures while
simultaneously testing multivariate group associations, we
based our SelEnergyPerm framework on a novel network-based
feature selection approach combined with permutation testing
for sparse high-dimensional low-sample-size compositional
metagenomic data. Our framework (Figure 1A), which selects
from all pairwise logratios between features (Taxa, OTUs,
etc.), first scores the between-group variation of individual
logratios using our Differential Compositional Variation (DCV)
scoring measure (see Methods). From this, a weighted DCV
logratio network is formed and subsequently pruned to reduce
redundancy and complexity via a maximum spanning tree. Final
subsets are then selected by maximizing the between-group
association using a greedy forward stepwise selection procedure.
Multivariate test statistics, which measure the strength of
the association between groups, are then computed on the
final retained subset. Statistical significance is determined by
repeating this process with permuted group labels to obtain
the permutation distribution of the test statistic of interest
under feature selection. In this way, we determine whether the

FIGURE 1 | Overview of the SelEnergyPerm framework for non-parametric group association testing in metagenomic data. (A) Relative abundance/count data are

transformed using all pairwise logratios. These logratios are subsequently scored (DCV) and used to efficiently select a subset that: (1) is independent via a maximum

spanning tree and (2) maximizes the energy or association between groups via greedy optimization. The entire process is repeated using permutation testing to

control false discovery and assess statistical significance. (B) Detection/rejection of sparse associations hidden within high dimensional data via simultaneous feature

selection and permutation testing.
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observed association is larger than what would be expected by
chance (Figure 1B). To this end, our framework tests the overall
null hypothesis of no association between the metagenomic
composition and group labels.

3.1. Feature Selection Comparison to
Other Methods
We first benchmarked the multivariate characteristics of subsets
selected by our feature selection approach against a set of
other popular methods for feature selection: Boruta (Kursa
et al., 2010), Least Absolute Shrinkage and Selection Operator
(LASSO) (Tibshirani, 1996), Information Gain Filtering (KENT,
1983), and Random Forest Recursive Feature Elimination
(RFE) (Granitto et al., 2006). The benchmarks were carried
out by varying the number of logratio dimensions in the full

feature set using five simulation scenarios, considering both
balanced and unbalanced sampling designs (see Methods).
Specifically, for subsets returned by each method, we studied the
number of logratios selected (as a proxy for model complexity),
the clustering coefficient of the logratio network (measuring
logratio redundancy), and the combined F-statistic (strength
of association, see Methods), and the computational time
required to return the final subset (Supplementary Figure S1).
In Figure 2, we present results from scenarios with a balanced
sampling design. Notably, the results for the unbalanced
sampling design scenarios are similar and do not change the
overall comparative interpretation (Supplementary Figure S2).
Examination of the clustering coefficient across all simulation
scenarios/dimensions demonstrates that SelEnergyPerm
consistently selects linearly independent subsets of logratios

FIGURE 2 | SelEnergyPerm-selected logratio subset characteristics compared with Boruta, Information Gain Filtering, LASSO, and RFE across five simulation

scenarios for the balanced sampling design. Using 200 simulations for each scenario-dimension by method we assessed: (Top Row) the clustering coefficient of

logratio networks formed by selected subsets returned from each method, (Middle Row) the magnitude of the association as measured by the combined-F (cF )

statistic on selected subsets returned from each method, and (Bottom Row) the number of logratios returned by each method. Points are the mean for each

experimental condition and error bars indicate 95% confidence interval.
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(Figure 2 and Supplementary Figure S2, clustering coefficient
= 0), in contrast with the subsets observed in other methods
tested. Of note, a clustering coefficient > 0 indicates a
selected logratio subset contains at least one triple of linearly-
dependent logratios (closing a triangle in the logratio network),
thereby unnecessarily increasing dimensionality and model
complexity. (We note that any cycle present in a logratio
network indicates linear dependence, though we did not
test for cycles larger than closed triangles. We emphasize
that by construction the SelEnergyPerm-selected subsets do
not include any such cycles). Additionally, the number of
logratios retained by each method across every scenario tested
revealed subsets selected by SelEnergyPerm were, on average,
14 to 149 times smaller than other methods (Figure 2 and
Supplementary Figure S2).

Next, the strength of the association measured by the
combined-F statistic (see Methods) indicates SelEnergyPerm-
selected subsets typically capture higher between-group
variations than other methods tested. In Scenarios 2–4,
SelEnergyPerm subsets were observed to have on average,
higher combined-F values than all other methods across all
dimensions tested (Figure 2 and Supplementary Figure S2).
Meanwhile, in Scenarios 1 and 5, SelEnergyPerm subsets
generally performed similarly to the other methods but better
as the dimensionality increased. Notably, Scenarios 1 and 5
do not simulate sparse association signals and have strong
between-group dispersion effects present. These results indicate
SelEnergyPerm returned subsets better capturing sparse
associations (Scenarios 2–4) than the other feature selection
methods tested. Computational time experiments show, across
all scenarios tested, SelEnergyPerm is on average faster than
Boruta and RFE but slower than LASSO and Information Gain
Filtering (Supplementary Figure S1). Overall, SelEnergyPerm
subsets were non-redundant, significantly more parsimonious,
and captured stronger associations than other methods tested,
thereby enabling robust biological interpretation using logratios
in high-dimensional feature spaces.

3.2. Detection of Sparse Associations in
Synthetic Data
Here, we use data simulated from theoretical distributions
to compare the ability of SelEnergyPerm, PERMANOVA,
ANOSIM, and the energy test to detect associations in sparse
high-dimensional data. That is, we are interested in determining
how well each method accepts or rejects the null hypothesis (no
difference between groups) when presented with two groups of
data that, as ground truth, come from the same (Null Case; Type
I error assessment) or different (True Case; power assessment)
distributions. From this, we report the performance of each
method in terms of the Matthews Correlation Coefficient (MCC)
at α = 0.05 for 4 simulation scenarios (see Methods) with
balanced or unbalanced sampling designs (Figure 3). For brevity,
we shall refer to the collection of PERMANOVA, ANOSIM, and
energy tests as the standard methods.

In Scenario 1, where data are simulated from a Dirichlet
distribution with between-group location and dispersion effects

that grow as the number of dimensions increase (see Methods),
we see for the balanced design that both SelEnergyPerm and
the energy test perform well over all dimensions (number
of logratios) tested. Notably, ANOSIM loses the ability to
detect associations as the number of dimensions increases
while PERMANOVA performs poorly over all dimensions.
The poor performance of ANOSIM and PERMANOVA
is directly attributable to the underlying heterogeneity of
variance present in the data generated in this scenario; these
limitations of PERMANOVA and ANOSIM have been discussed
previously (Anderson and Walsh, 2013). The presence of
dispersion effects is confirmed with the Distance-Based Tests
for Homogeneity of Multivariate Dispersions (PERMDISP2)
(Anderson, 2006) method and can be observed to be steady
(Figure 3-Scenario 1) and increasing across dimensions. For
the unbalanced design, SelEnergyPerm and the energy test both
retain strong performance and have comparable performance
over most dimensions, whereas ANOSIM completely loses
the ability to detect associations under the unbalanced design
and PERMANOVA continues to perform poorly across all
dimensions.

For Scenario 2 (Figure 3), the data distributions for each
group are simulated from two Dirichlet distributions that differ
in the location of the first component and overall variance.
That is, this scenario embeds a sparse signal (location shift)
in the first dimension with random noise in the remaining
dimensions. The results for this scenario show that for the
balanced case SelEnergyPerm performs significantly better than
all othermethods tested. For the unbalanced case, SelEnergyPerm
performs better than all other methods for smaller numbers of
dimensions, however, it performs similarly to ANOSIM as the
number of dimensions increases. Notably, the performance of
ANOSIM improves as the number of dimensions increases for
both the balanced and unbalanced cases.

For Scenario 3 (Figure 3), the data distributions for the first
class are simulated from the additive logistic normal distribution.
Data for the second class are also generated from an additive
logistic normal distribution with the same parameters (same
covariance matrix) but with location shifts in the first 25% of the
dimensions. Under this scenario, we observed the performance of
SelEnergyPerm to be comparable to the standard methods for the
balanced case and slightly worse than the standard methods for
the unbalanced case. The reduced performance in the unbalanced
case is attributable to the dense signal (25% of features) being
in direct tension with the SelEnergyPerm objective of reduced
feature selection.

Lastly, in Scenario 4 (Figure 3), a location shift only
(same between-class covariance structure) was embedded
in the first component of two additive logistic normal
distributions, with the shift increasing with the number
dimensions. Here, SelEnergyPerm outperformed the standard
methods as the number of dimensions increased for both
the balanced and unbalanced cases. While performing better
overall relative to the standard methods, a notable decrease in
performance from the balanced to the unbalanced case was
observed for SelEnergyPerm. This decrease in performance was
exacerbated among the standard methods where performance
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FIGURE 3 | Comparison of the Matthews Correlation Coefficient measuring the ability of each method to properly detect/reject associations in data generated from

synthetic distributions in both balanced and unbalanced sampling designs. For each scenario and logratio feature space size, test datasets were simulated to include

data distributions that have either true between-group differences (n = 100) or no between-group difference (n = 100). Results from the PERMDISP2 procedure are

displayed to indicate heterogeneity of variance between groups.

not only decreased between sampling designs but also generally
declined as the number of dimensions increased in the
unbalanced design.

Overall sparse association detection performance as measured
by MCC, sensitivity, specificity, positive predictive value,
negative predictive value, Youden index, and false-positive
rate across all scenarios at an α = 0.05 are shown in
Supplementary Figure S3. These aggregate results demonstrate
SelEnergyPerm generally outperforms the standard methods for
detecting sparse associations under the synthetic data simulation
scenarios considered here.

3.3. Detection of Sparse Associations in
Data Simulated From Real 16S and WGS
Datasets
To further assess performance, we benchmarked our method
against the standard methods on data simulated from properties
observed in real metagenomic datasets. In this way, unique
metagenomic data characteristics such as sparsity, over
dispersion, and complex co-occurrence patterns are assessed

synthetically. As above, MCC is used to assess the ability of each
method to detect associations across these settings.

In the first setting, (Figure 4 – 16S/WGS: Increasing
Covariance Diff.), an increasing covariance effect with a
decreasing location effect between classes was simulated using
healthy subsets of 16S and WGS samples. The increasing
dispersion effect is confirmed with PERMDISP2 for both
sampling designs (Figure 4). For 16S and WGS data with
a balanced sampling design, SelEnergyPerm outperforms the
standard methods across all effect sizes and has strong
performance as the number of dimensions increases. For 16S data
with an unbalanced design, all methods performed poorly as the
location shift effect increases. This trend is traceable to the strong
embedded covariance effect between classes, which is a known
confounder in high-dimensional association settings (Anderson
and Walsh, 2013). Notably, only SelEnergyPerm and ANOSIM
maintain positive MCCs on average, indicating these methods
better control type I error (albeit with severely limited power)
under this sampling design. For WGS data with an unbalanced
design, SelEnergyPerm outperformed the standard methods and
had better association detection across all effect levels.
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FIGURE 4 | Comparison of the Matthews Correlation Coefficient measuring the ability of each method to properly detect/reject associations in data simulated from

real 16S and WGS data distributions in both balanced and unbalanced sampling designs. For each data type and scenario, datasets were generated to include data

distributions that have either true between-group differences (n = 100) or no between-group difference (n = 100). Results from the PERMDISP2 (dashed line)

procedure are displayed to indicate heterogeneity of variance between groups.

For the second simulation setting, (Figure 4 – 16S/WGS:
Increasing Location Effects), we simulated large location shifts
between classes by increasing the size of the association
signal from 5 to 50% of all features with fixed covariance
structures. These shifts were computed using synthetic subsets
of WGS and 16S samples from publicly available healthy
gut microbiomes. Indeed, PERMDISP2 analysis confirmed the
absence of covariance effects. For both 16S and WGS data with
a balanced sampling design, SelEnergyPerm outperformed all
standard methods. As expected, in both WGS and 16S data,
the performance of the standard methods increased as the
association signal became less sparse. Again, for the unbalanced
design in both WGS and 16S data, SelEnergyPerm outperformed
all standard methods. Importantly, the detection ability of the
standard methods improved as the association signal became less
sparse.

Finally, overall sparse association detection performance
metrics are shown in Supplementary Figure S4. These aggregate
results demonstrate SelEnergyPerm has better overall sparse
association detection performance when compared to standard
methods using data simulated from real 16S and WGS datasets.

3.4. Microbial Association Between
Cerebrospinal Fluid Microbiomes and
Post-infectious Hydrocephalus in Ugandan
Infants
The cerebral spinal fluid (CSF) of Ugandan infants was profiled
by Paulson et al. using 16S sequencing to characterize microbial

agents associated with Post Infectious Hydrocephalus (PIH)
following neonatal sepsis (Paulson et al., 2020). This processed

gut microbiome dataset, retrieved frommicrobiomeDB (Oliveira
et al., 2018), consisted of 369 distinct taxa measured on 92

samples (58 PIH and 34 Non-Post Infectious Hydrocephalus

(NPIH) patients). Removing taxa not present in at least 10%
of samples yielded 57 total distinct taxa (i.e., 1,596 logratios

between taxa). We apply SelEnergyPerm to determine if there

was an association between the microbiome composition in the
CSF and PIH/NPIH disease status. We then utilize the reduced
SelEnergyPerm logratio signature of PIH in CSF to gain insight
into specific microbiome compositional differences.

Using SelEnergyPerm we confirm, as reported in the
original study, a significant association (combined-F= 33.59817,
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empirical p = 0.007) exists between the composition of
microbes in the CSF and PIH/NPIH (Figure 5A). Unlike the
original study, using SelEnergyPerm we identified a multivariate
association between a reduced logratio signature of 12 ratios
between 13 taxa as being significantly associated with PIH/NPIH
(Figure 5B). Random forest (RF) models were then used to
understand the capability of this SelEnergyPerm signature for

discriminating between disease statuses. Using 50 repeats of 10-
fold cross-validation, we computed an Area Under the Receiver
Operating Characteristic Curve (AUC) = 0.906 (0.879–0.935
95% CI) (Figure 5C). We emphasize, however, that the more
complex RF models with all 1,596 pairwise logratios yielded a
comparable AUC = 0.892 (0.860–0.923 95% CI) (Figure 5C).
For comparison, microbiome analysis carried out in Paulson

FIGURE 5 | SelEnergyPerm case study examining the association between Ugandan infant’s cerebrospinal fluid microbiomes and post-infectious hydrocephalus

using 16S data. (A) SelEnergyPerm permutation test results displaying the null distribution of the cF statistic (Histogram, Density, and Points) and the empirical cF

statistic (dashed red vertical line). (B) Random forest (RF) importance weighted directed logratio network (edges point from numerator to denominator) of the

SelEnergyPerm selected signature (nodes = taxa, node size = weighted degree, edges = logratio, edge width/color = RF variable importance). (C) ROC (Receiver

Operator Characteristic) comparisons of disease status discrimination using RF. Models were trained with repeated (r = 50) 10-fold cross-validation using either the

SelEnergyPerm Signature, all logratios, or Paenibacillus alone. (D) Principal component analysis using the SelEnergyPerm signature. (E) (Left) logratio means

comparison (NPIH/PIH) of each logratio included in the SelEnergyPerm signature. (Right) Loading weights of the first principal component. Significance codes (*, **,

***, ****) indicate BH corrected p-value < (0.05, 0.01, 0.001, 1e-4) for NPIH vs. PIH Wilcoxon Rank Sum Test. For the logratio means, positive values indicate

numerator more abundant than the denominator and negative values indicate the denominator is more abundant numerator. Error bars indicate the 95% CI of the

mean. Notably, error bars that do not span 0 indicate numerator/denominator is on average more abundant than the opposite.
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et al. revealed Paenibacillus alone to be important for predicting
PIH; but here using only the relative abundance of Paenibacillus
with RF we observed an AUC = 0.830 (0.792–0.867 95%
CI), significantly lower than that obtained using the logratios
identified by SelEnergyPerm. Combined, these results suggest the
parsimonious SelEnergyPerm-derived logratio signature retains
important disease interactions and better discriminates PIH vs.
NPIH when compared to Paenibacillus alone.

To understand how the logratios in our signature work
together to explain differences between the CSF microbiome
of PIH vs. NPIH patients, we applied principal component
analysis (PCA) (Figure 5D) and analyzed the means of the
logratios. Examination of the distribution of samples shows the
greatest separation between disease groups occurs along PC1
(Figure 5D), which explains 78.48% of the total variation. This
separation indicates positive (negative) scores along PC1 are
associated with NPIH (PIH) samples. Analyses of the logratio
mean between groups for each logratio in the SelEnergyPerm
signature indicate the abundance of Paenibacillus is significantly
increased (Figure 5E) relative to taxa it is connected to
(Figure 5B). Moreover, RF variable importance indicates the
logratio between Paenibacillus relative to Pseudomonas to be
most important for distinguishing between disease statuses.
Indeed, analysis of Principal Component 1 loadings (Figure 5E)
reveals increased abundance of Pseudomonas relative to
Paenibacillus results in positive loadings (NPIH associated)
along Principal Component 1. Overall, our results confirm, using
pairwise logratios derived from SelEnergyPerm, the importance
of Paenibacillus in PIH. Additionally, we show the interaction
between the abundance of Pseudomonas relative to Paenibacillus
is particularly important whereby more Pseudomonas is
characteristic of NPIH and more Paenibacillus is associated
with PIH.

3.5. Association Between Delivery Mode
and the Composition of Infant Gut
Microbiomes Over the First 3 Months of
Life
Bokulich et al. (2016) monthly profiled the gut microbiome of
infants with either a vaginal or cesarean delivery mode using
16S sequencing for the first 2 years of life. The processed dataset
was retrieved from the Qiita repository using study ID 10249
(Gonzalez et al., 2018). Specifically, we extracted samples during
the first 3 months of life, totaling 230 samples from 63 infants
(Cesarean = 25, Vaginal = 38). We aggregated OTUs to the
family-genus level which resulted in 140 distinct taxa (9,730
logratios) present in at least 10% of all samples by month. Here
we apply SelEnergyPerm to determine if the gut microbiomes
are different between the delivery modes of infants at any of the
first 4 monthly time points collected (0–3 months). Secondarily,
we studied our reduced logratio signatures to understand gut
microbiome compositional differences between delivery modes
at time points where significant differences were detected.

Applying SelEnergyPerm to each time point with restricted
permutation testing to account for repeated host microbiomes
within a collection month and correcting for multiple

comparisons using the Benjamini-Hochberg (BH) procedure,
we found significant differences in the composition of the gut
microbiomes between delivery modes during the collection
periods in months 0–2 (Figure 6A). Notably, restricted
permutation testing with PERMANOVA and ANOSIM using
all taxa pairwise logratios (PLR) failed to detect differences
between the gut microbiomes at α = 0.05. Notably, the all
pairwise logratio PERMANOVA results reported here similarly
fail to detect an association between delivery mode as reported
in (Bokulich et al., 2016) where PERMANOVA with UniFrac
distance was applied. Similarly, when using Partial Least Squares
Discriminate Analysis (PLS-DA) with repeated cross-validation
stratified by both delivery mode and host, we observed the
AUC of the SelEnergyPerm-derived signatures to be higher
across all time points compared to models trained using all PLR
(Figure 6B). We next used the reduced logratio signatures and
their PLS-DA variable importance scores to better understand
which taxa are most important for discriminating between
delivery modes. Indeed, aggregating to the family level for
ease of interpretation, we found during months 0 and 1
that Bacteroidaceae were top contributors to compositional
differences (Figure 6C). This pattern changed during month 2
where Rikenellaceae taxa were most important for discriminating
between delivery modes (Figure 6C). Finally, to understand
the direction of these differences (i.e., for a given logratio, is
the numerator more abundant than denominator or vice-versa
between groups), we analyze the directed logratio means network
of the SelEnergyPerm signature relatively (i.e., taxa A more/less
abundant than taxa B) between delivery modes (Figure 6D).
Specifically, given the spoke-hub character of the observed
network, with a single highly connected and central node in the
directed maximum spanning tree formed by the SelEnergyPerm
signature, we can see month 0 is dominated by differences
between logratios that include Lachnospira and Bacteroides,
which are more abundant relative to their network of taxa
connections for infants with a vaginal delivery mode whereas the
opposite is true for infants with a cesarean delivery mode. For
month 1, Bacteroides are observed to be more abundant relative
to its network of taxa connections for infants with a vaginal
delivery mode. The opposite is true for infants with a Cesarean
delivery mode where Bacteroides are less abundant within its
network of taxa connections. Finally, for month 2, Rikenellaceae
taxa can be observed to be more (less) abundant relative to
both Clostradiacea and Proteus taxa for infants with a vaginal
(Cesarean) delivery mode.

3.6. Association Between Abnormal Fecal
Calprotectin Levels and the Composition
of the Gut Microbiome in Healthy and
Inflammatory Bowel Disease Individuals
Here we apply SelEnergyPerm to analyze WGS microbiome
data from the integrative human microbiome project (Proctor
et al., 2019), a longitudinal study designed to uncover
interactions between disease and human-associated microbial
communities. Specifically, using the inflammatory bowel disease
(IBD) part of the integrative human microbiome project
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FIGURE 6 | SelEnergyPerm case study examining the association between delivery mode and the gut microbiome composition of infants over the first 3 months of life

using 16S data. (A) SelEnergyPerm permutation test (permutations = 1,000) results displaying the null distribution of the test statistic (violin and gray points) and the

empirical test statistic (red if significant, black otherwise) with Benjamini-Hochberg corrected p-values. Test statistics values were z-score scaled (by Collection Month)

for ease of visualization. (B) AUC comparisons of delivery mode discrimination using PLS-DA. Models were trained with repeated (r = 20) 5-fold stratified (delivery

mode and host) cross-validation using either the SelEnergyPerm signature or all logratios. Points represent the mean AUC and error bars indicate the 95% CI.

(C) Relative taxa strength by family measuring the importance of each taxon for discriminating between delivery modes across each collection time point. Relative

strength was computed using the top 5 nodes derived from the PLS-DA variable importance weighted logratio networks across each collection time. (D) Directed

(edges point from numerator to denominator) network of the SelEnergyPerm-derived signature by month and delivery mode weighted by the absolute logratio means

[nodes = taxa, node size = mean strength, edge = logratio, edge width = logratio mean, red edges = negative logratio mean (incoming node more abundant), blue

edges = positive logratio mean (outgoing node more abundant)].

study, we tested whether there exists an association between
the gut microbiome composition and abnormal levels of
fecal calprotectin, a protein marker of intestinal inflammation
(Proctor et al., 2019). Processed microbiome data were
extracted from the Inflammatory Bowel Disease Multiomics

Database (Lloyd-Price et al., 2019) resulting in 399 samples (93
individuals) reporting fecal calprotectin levels that were above
120 (abnormal; n = 190) or below 50 (normal; n = 209). There
were 122 species identified (7,381 logratios) as being present in at
least 10% of all samples.
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Using restricted permutation testing, accounting for the order
of visit and diagnosis of Ulcerative Colitis, Crohn’s Disease,
or non-IBD, SelEnergyPerm identified a significant association
(combined-F = 92.507, p = 0.000999, 1,000 permutations)

between the composition of the gut microbiome and abnormal
levels of fecal calprotectin in corresponding stool samples
(Figure 7A). Notably, both ANOSIM and PERMANOVA with
restricted permutation designs using all pairwise logratios

FIGURE 7 | SelEnergyPerm case study examining the association between abnormal fecal calprotectin levels and the gut microbiome composition in nonIBD and IBD

individuals using WGS data. (A) SelEnergyPerm permutation test results displaying the null distribution of the cF statistic (Histogram, Density, and Points) and the

empirical cF statistic (dashed red vertical line). (B) AUC comparisons of fecal calprotectin level (Abnormal/Normal) discrimination using PLS-DA with 2 components.

Models were trained with repeated (r = 20) 10-fold cross-validation using either the SelEnergyPerm signature or all logratios. Points represent the mean AUC and error

bars indicate the 95% CI. (C) PLS-DA latent space projection plot extracted from final PLS-DA model fit using the full dataset with the SelEnergyPerm signature.

Points represent non-IBD or IBD samples. (D) Directed network (edges point from numerator to denominator) of the SelEnergyPerm-selected logratio signature (nodes

= taxa, node size = DCV strength, edges = logratio, edge width/color = PLS-DA Variable Importance). The top 5 taxa names by strength (PLS-DA Variable

Importance) are displayed. (E) Logratio means comparison (normal/abnormal fecal calprotectin level) of each logratio included in the SelEnergyPerm signature

stratified by Crohn’s Disease (CD), Ulcerative Colitis (UC), and non-IBD individuals. Significance codes (ns, *, **, ***, ****) indicate BH corrected (within diagnosis)

p-value < (Not Significant, 0.05, 0.01, 0.001, 1e-4, 0) for normal vs. abnormal Wilcoxon Rank Sum Test. Error bars indicate the 95% CI of the mean. Notably, error

bars that do not span 0 indicate numerator/denominator is on average more abundant than the opposite.
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(PLR) also detected this association. To assess whether
the associated SelEnergyPerm logratio signature (25 logratios
between 31 species) retained enough information to adequately
discriminate between levels of fecal calprotectin, we estimated
the discriminatory ability both using the reduced signature
and using all PLR. Using repeated cross-validation with PLS-
DA we found the SelEnergyPerm signature (AUC = 0.829,
0.803–0.854 95%CI) to have comparable performance to PLS-
DA models trained using all logratios (AUC = 0.833, 0.803–
0.862 95%CI) (Figure 7B). Examination of the latent space
projection of a final PLS-DA model fit using the SelEnergyPerm
signature reveals strong separation between individuals with
normal vs. abnormal fecal calprotectin levels (Figure 7C).
A directed logratio network of the SelEnergyPerm signature
weighted by PLS-DA variable importance shows logratios
involving Dialister invisus, Streptococcus salivarius, Bacteroides
fragilis, Escherichia coli, and Blautia wexlerae to be most
important for discriminating between levels of fecal calprotectin
(Figure 7D). Interestingly, stratifying the logratio signature by
diagnosis reveals both shared (significant between diagnosis
differences across all groups) and distinct (significant between
diagnosis differences among a single group) gut microbiome
differences (Figure 7E). Particularly increased abundance of
Dialister invisus relative to Bacteroides ovatus, Intestinimonas
butyriciproducens, and Anaerotignum lactatifermentans was
observed to be associated with abnormal fecal calprotectin
independent of diagnosis. Notably, the associations reported here
are novel and were not reported or tested in the original study.

3.7. Association Between the Gut
Microbiomes of Infants in Early Life and
the Development of Allergen-Specific
Sensitization
In this case study, we apply SelEnergyPerm to WGS gut
microbiome data from the DIABIMMUNE study (Vatanen et al.,
2016). The focus of this longitudinal study was to characterize
interactions between the immune system and the gutmicrobiome
in the context of autoimmunity and allergy. Specifically, the gut
microbiomes of infants from Finland, Russia, and Estonia were
profiled monthly during the first 3 years of life. Here we apply
SelEnergyPerm to test if associations exist between allergy status
and the composition of the gut microbiome at 6-month intervals
during the first 2 years of life. Allergy status was defined as food
allergy (FA) if the host reported an allergy to egg, peanuts, and/or
milk at year 2 (non-FA otherwise). We extracted 646 samples
from 192 infants (Russia= 53, Finland= 70, Estonia= 59) across
170 unique species (14,365 logratios).

Using restricted permutation testing to account for repeated
host microbiomes and host country we applied SelEnergyPerm
to each timeframe and corrected for multiple comparisons
using the BH procedure. We found significant differences in
the composition of the gut microbiomes between allergy status
during both the first 6 months and the 6–12 month collection
periods (Figure 8A). PERMANOVA and ANOSIM using all taxa
PLR detected differences between the gut microbiome during
the first 6 months of life but did not detect differences between

the gut microbiomes during the remaining time frames at α =
0.05 after correcting for multiple comparisons. This difference
is further apparent when comparing the discriminatory ability
between the SelEnergyPerm signature and all logratios. Using
Partial Least Squares Discriminate Analysis (PLS-DA) with
repeated cross-validation stratified by allergy status, host, and
month, we observed the AUC of the SelEnergyPerm-derived
signatures to be significantly higher across all time points when
compared to models trained with all logratios (Figure 8B). Using
the SelEnergyPerm logratio signatures and the corresponding
PLS-DA variable important scores we next examine which
taxa are important for discriminating between food allergy
statuses later in life. Stratifying by month and selecting the
top 5 species by strength (weighted degree) from our variable
importance logratio network, we found Clostridium ramosum,
Streptococcus parasanguinis, and Bifidobacterium bifidum to be
major contributors to the DCV score between allergy status
during the first 6 months of life (Figure 8C). However, for the
6–12 month period we found the abundance of Clostridium
hathewayi, Bacteroides dorei, andHaemophilus haemolyticus to be
major contributors to DCV (Figure 8C). A review of the logratio
mean networks (Figure 8D) between allergy status during the
first 6 months shows Clostridium ramosum is, in general, more
abundant relative to species (node strength indicated by size) it
is connected to in infants with FA vs. non-FA. Further, during
the 6–12 month period we see more distinct differences in
the logratio mean networks whereby Bacteroides dorei can be
observed to be more abundant relative to species it is connected
to in FA infants. We also observe Clostridium hathewayi to be
more (less) abundant than the species it is connected to in infants
with FA (without FA). Notably, the associations reported here are
novel and were not reported or tested in the original study.

4. DISCUSSION

We here presented SelEnergyPerm, a group association testing
framework for high-dimensional metagenomic data with sparse
microbiome associations between groups. False discovery is
properly controlled for by repeating the entire process with
permuted labels using appropriate permutation test design (e.g.,
restricted design for longitudinal supervised data) for statistical
significance (Ernst, 2004). Importantly, because multivariate
effect sizes are not well studied, in case studies we use AUC as
a proxy of effect size between groups (i.e., AUC= 1 indicates
perfect separation, and AUC = 0.5 for no separation). Notably,
AUC used in this context indicates strength of association rather
than out-of-sample predictive accuracy. We also emphasize that
SelEnergyPerm is designed to detect sparse associations in the
sense of including relationships (logratios) between a relatively
small number of taxa, whereas identifying associations in sparse
taxa appearing in a relatively small number of samples would
require different methods.

The association detected by the SelEnergyPerm framework
is expressed as a logratio signature. That logratio signature can
then be further analyzed with traditional statistical techniques to
better interpret and visualize (e.g., with PCA or PLS-DA) how
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FIGURE 8 | SelEnergyPerm case study examining the association between the gut microbiomes of infants in early life and the development of food allergy later in life.

(A) SelEnergyPerm permutation test (permutations = 1,000) results displaying the null distribution of the test statistic (violin and gray points) and the empirical test

statistic (red if significant, black otherwise) with Benjamini–Hochberg-corrected p-values. Test statistics values were z-score scaled by collection period to improve

visualization. (B) AUC comparisons of future food allergy development discrimination using PLS-DA. Models were trained with repeated (r = 20) 10-fold stratified (host

and food allergy development) cross-validation using either the SelEnergyPerm signature or all logratios. Points represent the mean AUC and error bars indicate the

95% CI. (C) Relative taxa strength by family measuring the importance of each taxon for discriminating between food allergy statuses later in life across each

collection month. Relative strength was computed using the top 5 nodes derived from the PLS-DA variable importance weighted logratio networks across each

collection month. (D) Directed (edges point out from numerator to denominator) networks of the SelEnergyPerm-derived signature by collection period and food

allergy development weighted by the absolute logratio means [nodes = taxa, node size = mean strength, edge = logratio, edge width = logratio mean, red edges =
negative logratio mean (incoming node more abundant), blue edges = positive logratio mean (outgoing node more abundant)].

the microbiome is associated with the phenotype of interest. In
the context of microbiome studies, each logratio represents the
interaction between a pair of taxa. Rather than comparing the

count (or even the count relative to the total) of each taxon
separately between samples, the value of each logratio is instead
compared between samples. Working in terms of logratios forces
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a comparison between samples that directly utilizes and respects
the compositional nature of microbiome data. In particular,
whether a specific taxon is “high” or “low” in a sample is not in
itself meaningful, even if expressed as a fraction of total counts.
In contrast, as indicated by Aitchison (1982), logratios enable
robust comparisons between samples as they inherently account
for variability due to, e.g., different sequencing instruments or
different total reads. Moreover, in detecting sparse associations,
logratios provide greater opportunity for developing a more
complete biological insight. For example, since a positive value
of log( a

b
) indicates a is more abundant than b, a positive

association of a phenotype with log( a
b
) indicates that it is the

increase in taxon a relative to taxon b that associates with the
phenotype, not just the increase (decrease) in the count of
taxon a (b) by itself. Finally, when used as summary statistics
in between-group comparisons, multivariate logratio signatures
extracted by selEnergyPerm are not limited to single taxon
comparisons alone but may instead represent complex relative
differential abundance patterns between mutliple taxa. Using
logratio networksmay additionally enable researchers to visualize
and examine relationships between many taxon simultaneously.

Overall, our results demonstrate that SelEnergyPerm is a
powerful framework for detecting sparse association under
various scenarios. However, in the presence of heterogeneity of
variance and/or unbalanced group designs—both of which are
common enemies of multivariate association testing methods—
the power of SelEnergyPerm was reduced, albeit to a lesser
degree than the standard methods tested. Therefore, caution
should be used when applying SelEnergyPerm in these settings.
Additionally, in some scenarios with dense association signals,
the performance of SelEnergyPerm was slightly reduced when
compared to standard methods. While the power reduction
was small, the enhanced interpretation from a smaller logratio
signature may nevertheless outweigh the loss of power in such
settings.

Notwithstanding these limitations, SelEnergyPerm is the
first method to our knowledge to fully utilize the pairwise
logratio compositional approach in a group association testing
framework for metagenomic data. Importantly, given the
compositional sample space imposed on these data, where
features are relative, our approach enables the discovery of
associations using pairwise logratios which, by design, robustly
interpret features relative to one another rather than alone.
While the benefits of employing logratios are well documented,
implementing and carrying out these analyses using pairwise
logratios can be challenging and time consuming in practice.
To this end, we developed an R package, SelEnergyPermR, with
functions to perform the method as developed and including
the demonstrations utilized in this paper. Additionally, our
package enables rapid preprocessing of relative abundance data,
calculation of all pairwise logratios, and multiplicative zero
imputation. Our package also includes functions to simulate
data from all scenarios presented in this work. Lastly, our
approach adds to a small list of compositional methods for
testing associations (Fernandes et al., 2014; Mandal et al., 2015;
Lin and Peddada, 2020) and is to our knowledge, the first
compositional data method developed for sparse multivariate

group association testing in metagenomic data. We also add to
a small list of compositional approaches for feature selection
(Susin et al., 2020); however, unlike these other methods, our
approach directly uses pairwise logratios which enables simple
interpretation and may better elucidate taxa-taxa interactions
through logratio network analysis. While not demonstrated
explicitly here, SelEnergyPerm is also compatible with multi-
class (> 2 groups) group association testing (as implemented
in our R package and demonstrated in Hickman et al., 2021).
Future directions to usefully expand this methodology could
focus on incorporating covariate information and extending the
framework to longitudinal data.

5. CONCLUSION

We developed SelEnergyPerm to be a versatile group association
testing method for detecting and understanding sparse
associations in high-dimensional metagenomic data. We
showed through rigorous simulation study with synthetic and
real data distributions that SelEnergyPerm selects parsimonious
subsets of independent logratios that better maximize between-
group associations when compared to existing feature selection
methods. In comparison to popular alternatives, we show the
SelEnergyPerm feature selection approach is able to select
fewer logratios, guarantee logratio subsets are independent,
and better maximize between-group associations with relatively
modest computational time requirements. To this end, our
simulation results demonstrate SelEnergyPerm is significantly
better at detecting sparse associations when compared to existing
multivariate group association tests. Overall, SelEnergyPerm
will enable researchers to robustly detect, characterize, and
understand sparse associations in metagenomic data using
novel logratio signatures. The SelEnergyPerm method is
implemented in the R package SelEnergyPermR, freely
available on GitHub (https://github.com/andrew84830813/
selEnergyPermR.git), including an example demonstration and
code for each of the analyses using the method presented here.
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