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Abstract: Glaucoma is one of the leading causes of irreversible blindness. It is generally caused
by increased intraocular pressure, which results in damage of the optic nerve and retinal ganglion
cells, ultimately leading to visual field dysfunction. However, even with the use of intraocular
pressure-lowering eye drops, the disease still progresses in some patients. In addition to mechanical
and vascular dysfunctions of the eye, oxidative stress, neuroinflammation and excitotoxicity have also
been implicated in the pathogenesis of glaucoma. Hence, the use of natural products with antioxidant
and anti-inflammatory properties may represent an alternative approach for glaucoma treatment. The
present review highlights recent preclinical and clinical studies on various natural products shown
to possess neuroprotective properties for retinal ganglion cells, which thereby may be effective in
the treatment of glaucoma. Intraocular pressure can be reduced by baicalein, forskolin, marijuana,
ginsenoside, resveratrol and hesperidin. Alternatively, Ginkgo biloba, Lycium barbarum, Diospyros kaki,
Tripterygium wilfordii, saffron, curcumin, caffeine, anthocyanin, coenzyme Q10 and vitamins B3 and
D have shown neuroprotective effects on retinal ganglion cells via various mechanisms, especially
antioxidant, anti-inflammatory and anti-apoptosis mechanisms. Extensive studies are still required
in the future to ensure natural products’ efficacy and safety to serve as an alternative therapy
for glaucoma.

Keywords: glaucoma; herbs; traditional medicine; retinal ganglion cells; intraocular pressure

1. Introduction

Glaucoma is one of the leading causes of irreversible blindness, causing 6.6% of all
blindness in 2010 [1]. According to the World Health Organization’s (WHO) World Report
on Vision, of the estimated 2.2 billion people having a vision impairment around the world,
glaucoma affects an estimated 6.9 million people [2]. It has been further estimated that by
2040, approximately 111.8 million people worldwide aged between 40 and 80 years old will
be affected by glaucoma [3]. Glaucoma is generally caused by intraocular pressure (IOP,
>21 mmHg) build-up, resulting from blockage of intraocular fluid and aqueous humor
drainage [4]. The elevated IOP progressively damages the retinal ganglion cells (RGCs) and
optic nerve, causing visual field constriction that affects the peripheral field initially and the
central vision field gradually [5]. Glaucoma patients require lifelong treatment and follow-
up, and the disease has a significant negative impact on patients’ quality of life in terms
of anxiety, psychological well-being, daily life, driving and confidence in healthcare [6].
The main risk factors for glaucoma prevalence include age, family history with glaucoma,
African American race, thinner central corneal thickness, pseudoexfoliation, pigment
dispersion and myopia [7]. Additionally, an association between diabetes, hypertension,
triglyceride levels and glaucoma were also identified [7,8]. Furthermore, genetic factors are
also known to be risk factors for glaucoma, in which single-nucleotide polymorphisms in
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numerous genes (e.g., myocilin, apolipoprotein E, X-ray repair cross-complementing group
1, zona pellucida glycoprotein 4) have been shown to be associated with an increased risk
of glaucoma [9,10].

Glaucoma can be classified into two major types, i.e., open-angle (OAG) and angle-
closure glaucoma (ACG), according to the physical obstruction of the aqueous humor
drainage system, and the appearance of the iridocorneal angle and trabecular meshwork
(TM) [11]. Alternatively, it can also be categorized as primary (idiopathic, not associated
with other diseases or conditions) or secondary (attributed to underlying diseases or
conditions, such as trauma, long-term medication, ophthalmic surgery, uveitis, necrotic
tumors, diabetes or syndromic conditions) [11,12].

In primary OAG (POAG), aqueous humor drainage is obstructed or inadequate as
there is an internal blockage within the TM [13]. In contrast, primary ACG (PACG) is
characterized by the presence of a physical obstacle to the aqueous drainage as the iris is
adhered to the cornea, obstructing the flow of aqueous humor to the TM and the uveoscleral
drainage [12,14]. Symptoms appear more drastically in PACG, which results in a rapid
reduction in the vision field, leading to total blindness. Other symptoms include ocular
pain, headache, nausea, vomiting, multicolored halos and blurred vision [12]. Additionally,
PACG is an ophthalmic emergency that requires immediate treatment to prevent the
progression of irreversible ocular damage [12].

2. Pathogenesis of Glaucoma

The exact pathogenesis of glaucoma is complex and has not yet been fully eluci-
dated. The potential mechanism involved in the neurodegeneration of glaucoma has been
postulated to involve an amalgamation of mechanical, vascular, genetic and immunologi-
cal factors.

2.1. Mechanical Hypothesis

The mechanical hypothesis explains the relationship between the IOP and RGC patho-
physiology. The perforated lamina cribrosa (LC) is the weakest part of the sclera, and it is
where the RGC axons pierce through the minute perforations to form the optic nerve, while
the central retinal artery and vein pass through the LC via a larger central aperture [15].
Elevated IOP resulted from the imbalance between the production and drainage of aqueous
humor, which led to the irreversible backwards bowing of the LC, in the process known
as ‘cupping’ [16]. Optic nerve cupping is characterized by the remodeling of the extracel-
lular matrix (ECM) and fibrosis in the LC [17]. Glaucomatous LC cells showed increased
ECM gene expression and elevated intracellular calcium, which is known to promote
proliferation, activation and contractility in fibroblasts via the nuclear factor of activated
T cells/calcium signaling pathway [17]. This deformation damages the optic nerve and
capillaries passing through the LC, disturbing the anterograde axonal transportation of
RGCs, which then ultimately triggers visual field defects in glaucoma [16]. Furthermore,
elevated IOP also resulted in activated pro-fibrotic pathway-induced ECM accumulation in
the TM, leading to less efficient aqueous humor outflow, thereby causing further damage
to the LC [18].

Ivers et al. [19] demonstrated that in experimental glaucoma monkeys, the first struc-
tural abnormality induced by elevated IOP was an increased anterior LC surface depth,
followed by a decreased minimum rim width, and, lastly, a reduced retinal nerve fiber
layer (RNFL) thickness. Different levels of increased IOP showed a remarkable effect on
the visual field, best-corrected visual acuity and LC parameters (cup depth, LC depth, LC
curvature index and prelaminar tissue thickness) [20]. Additionally, greater posterior dis-
placement of the LC was significantly associated with a faster rate of loss of the RNFL [21].
RGC axonal degeneration and anterograde axonal transport deficits at the optic nerve
head (ONH, the location where RGC axons converge to form the optic nerve and traverse
the LC) precede the structural and functional loss of RGCs [22]. Disturbance of the RGC
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anterograde axonal transport leads to the accumulation of metabolic waste in the cells and
deprives the metabolic needs of the RGCs, subsequently causing their apoptosis [23].

In normal-tension glaucoma (NTG), patients also present with glaucomatous optic disc
excavation, despite a normal IOP [24]. This suggests other risk factors are involved in the
optic neurodegeneration of glaucoma. The LC serves as a barrier between the IOP within
the eye, and the intracranial pressure within the cerebrospinal fluid-filled subarachnoid
space surrounding the optic nerve; the pressure gradient between the LC is known as the
translaminar pressure gradient (TLPG) [25,26]. The TLPG is higher in glaucoma patients,
including NTG patients, and is associated with mechanical damage to the optic nerve
fibers, anterograde axonal transportation disruption and altered blood flow, leading to
glaucomatous damage [26–28].

2.2. Vascular Hypothesis

The blood flow of the ONH was significantly reduced in the eyes of pre-perimetric
glaucoma patients, where there are characteristic glaucomatous changes in the optic disc,
but without the presence of visual field defects [29,30]. POAG and PACG patients pos-
sess a lower capillary density, but with greater tortuosity and more dilated capillaries,
compared to healthy individuals [31]. Similarly, both NTG and POAG patients showed
lower retrobulbar velocities, and higher retinal venous saturation and choroidal thickness
asymmetries, when compared to control subjects [32]. Decreased ocular blood flow was
also shown to be correlated with structural glaucomatous progression, as indicated by
retinal and optic nerve changes [33]. A recent retrospective longitudinal study revealed
that reduced blood flow in the ONH precedes glaucomatous neurodegeneration in POAG
patients [34]. The vascular hypothesis is thus based on the reduced perfusion pressure,
faulty vascular autoregulation or loss of neurovascular coupling, which leads to optic nerve
degeneration in glaucoma [35]. Due to the reduced ocular blood flow, this hypothesis
proposes that the RGC axons suffer from oxygen and nutrient insufficiency, ultimately
causing their degeneration. In a glaucoma rat model, ocular hypertension (OHT) led to
selective hypoxia in the LC, which was associated with injured RGC axons, and axonal
transport disruption [36]. This study also demonstrated upregulation of hypoxia-inducible
enzyme heme oxygenase-1 (HO-1) and the anaerobic glycolytic enzyme lactate dehydro-
genase, and increased generation of superoxide radicals in the retina and ONH, as well
as the active subunit of the superoxide-generating enzyme NADPH oxidase, suggesting
the involvement of oxidative stress [36]. Similarly, hypoxic RGCs were observed in young
and aged glaucoma model DBA/2J (D2) mouse retinas, with a significant increase in the
hypoxia-inducible factor-1α (HIF-1α) protein and reactive oxygen species (ROS), followed
by a significant decrease in the antioxidant capacity and mitochondrial mass in the aged
retinas [37].

2.3. Oxidative Stress and Neuroinflammation in Glaucoma

In accordance with animal studies, numerous studies have provided evidence of in-
creased oxidative stress in glaucoma patients. In addition, blood and aqueous humor levels
of oxidative stress-related molecular biomarkers, i.e., protein carbonyls and advanced
glycation end products, significantly increased in glaucomatous samples compared with
healthy controls [38]. Similarly, PACG patients presented with decreased serum levels of
total antioxidant status (TAS) and superoxide dismutase (SOD), as well as increased levels
of malondialdehyde (MDA), compared to healthy controls [39]. A meta-analysis further
indicated that POAG patients had lower TAS in the blood and higher levels of SOD, glu-
tathione peroxidase (GPX) and catalase (CAT) in the aqueous humor [40]. Oxidative stress
is known to induce or dysregulate inflammation in the event of optic neurodegeneration
from glaucoma.

Studies have shown that inflammation contributes to the disease progression of glau-
coma. In glaucomatous human optic nerves, the number of CD163+ cells (a commonly used
marker for anti-inflammatory macrophages involved in tissue repair and remodeling) was
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significantly increased [41]. Systemic inflammatory status markers, i.e., the neutrophil-to-
lymphocyte ratio, platelet-to-lymphocyte ratio and systemic immune inflammation index,
were significantly increased in POAG patients compared with the control group [42]. POAG
patients exhibited a significant increase in various cytokines, i.e., serum interleukin (IL)-4,
-6 and -12p70 and tumor necrosis factor-alpha (TNF-α), compared with the controls [43].
Similarly, elevated plasma TNF-α levels in patients with POAG and pseudoexfoliation glau-
coma were detected [44,45]. Additionally, aqueous humor samples collected from chronic
PACG patients showed significantly increased levels of eotaxin, macrophage inflammatory
protein-1-alpha and interferon gamma (IFN-γ)-induced protein-10, and lower levels of
TNF-α, IL-5, -9 and -17 and granulocyte-macrophage colony-stimulating factor, compared
to the control group [46].

Glial cells in the retina, i.e., astrocytes, Müller cells and microglial cells having an
important role in mediating inflammatory responses, have been shown to become reactive,
leading to the production of inflammatory cytokines, causing further neuronal damage
in glaucoma patients and experimental glaucoma models [47,48]. In general, cytokine
signaling is linked to the inflammatory transducer nuclear factor-kappa B (NF-κB). In D2
mice, low energy-induced 5′ adenosine monophosphate-activated protein kinase (AMPK)
phosphorylation in the retina and optic nerve triggered NF-κB p65 signaling, leading to
increased pro-inflammatory TNF-α, IL-6 and nitric oxide synthase (NOS)-2 expression [49].
Injection administration of TGF-β2 increased IOP and ECM deposition in the TM of wild-
type mice. In contrast, mice harboring a mutation in NF-κB blocked the effect, suggesting
NF-κB is necessary for TGF-β2-induced ECM production and OHT [50]. Additionally,
transgenic inhibition of astroglial NF-κB restrained the neuroinflammatory (reduced pro-
inflammatory cytokine expressions, i.e., IL-1A, -1B, -2, -6, -10, -12 and -13, TNF-α and
IFN-γ) and neurodegenerative outcomes (attenuated loss of RGCs and axons) of the eyes
of an experimental OHT mouse model [51].

The current evidence indeed supports the contribution of neuroinflammation in the
pathogenesis of glaucoma, but it is still not clear as to when neuroinflammation takes
part in the sequence of pathological events in glaucoma. Neuroinflammation has been
suggested to be secondary to the initial pathology (i.e., optic nerve crush injury) [52]. Optic
nerve crush injury induced glial activation in the retina, which was significantly muted if
RGC death was blocked by deletion of the Bax gene [52]. On the other hand, the inhibition
of monocyte infiltration and microglial activation by X-ray treatment prevented neuronal
damage and dysfunction in the ONH [53]. Nevertheless, immunomodulation has been
shown to be beneficial in the progression of glaucomatous changes.

2.4. Excitotoxicity of Glutamate

In addition to the inflammatory response, glial cells in the retina also play a vital role
in the function of the retina by providing homeostatic and metabolic support to the photore-
ceptors and retinal neurons [54]. Müller cells and astrocytes possess uptake and exchange
systems for various neurotransmitters, including glutamate, via the glutamate/aspartate
transporter (GLAST) in rodents, also known as the Na+-dependent high-affinity glutamate
transporter-1 (EAAT-1) in humans [54,55]. Glaucomatous eyes have been shown to have
decreased levels of EAAT-1, and the glutamate receptor subunit N-methyl-d-aspartate
(NMDA)-R1 [56]. Furthermore, mice deficient in GLAST demonstrate spontaneous RGC
loss and optic nerve degeneration without elevated IOP, suggesting the decrease in GLAST
expression leads to glutamate excitotoxicity in the retina, as a possible pathogenesis of
glaucoma [57].

As reviewed by others, perhaps the most accepted hypothesis involved in glaucoma
pathogenesis currently may include the mechanical damage to the ONH induced by
increased IOP, followed by vascular dysregulation (reduced ocular blood flow) and neu-
roinflammation (glial activation), which then disrupt axonal transport due to axonal mito-
chondrial function loss in the RGCs, ultimately leading to RGC axonal degeneration and
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RGC cell death (Figure 1) [58–60]. However, the combination of mechanisms described
earlier may vary greatly among different glaucoma patients [60].
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Figure 1. Schematic diagram showing how oxidative stress, neuroinflammation, reduced ocular
blood flow and excitotoxicity lead to subsequent pathological changes observed in glaucoma. The
therapeutic potential of natural products against glaucomatous changes at various steps is shown
with the symbol ×. RGC, retinal ganglion cell; IOP, intraocular pressure; ONH, optic nerve head.

3. Glaucoma Research Models

Numerous research models have been used to gain a considerable understanding
of the pathogenesis of glaucoma, and to assess therapeutic approaches for glaucoma
treatments [61–64]. In this section, we provide a brief overview of some of these models
used by the studies presented in this review (summarized in Table 1); this helps to provide
a better understanding of the discussions in the following sections.

There are several genetic glaucomatous animal models that present with an elevated or
normal IOP. For instance, the D2 mouse presents a late-onset, chronic pigmentary glaucoma
due to the high IOP that progresses with age, resulting from tyrosinase-related protein 1
(Tyrp1) mutation and a premature stop codon in glycoprotein non-metastatic melanoma
protein B (Gpnmb), which collectively lead to anterior segment anomalies, iris atrophy,
peripheral anterior synechiae and pigment dispersion [64,65]. In contrast, D2-Gpnmb+

mice are the wild types for the Gpnmb mutation that do not develop increased IOP and
glaucoma [66]. Alternatively, the Vav2/Vav3-deficient and connective tissue growth factor
(βB1-CTGF) mouse models are other murine models of spontaneous glaucoma that present
with elevated IOP, which leads to subsequent RGC loss [67,68]. Transgenic mice with a low
overexpression of E50K mutant optineurin (E50K-OPTN) have been reported to present
with enhanced axonal degeneration and decreased RGC survival, under normal IOP [69].

Glaucoma can also be induced in wild-type animal models by elevating the IOP
experimentally. A high IOP can be achieved by blocking aqueous humor drainage with
the injection of various substances (e.g., microbeads, hydroxypropyl methylcellulose and
hyaluronic acid) into the anterior chamber [70–72]. Alternatively, injection of hypertonic
saline into the episcleral vein [73], and cauterization [74] or laser photocoagulation [75–77]
of the episcleral or limbal veins lead to TM scarring, which increases the resistance to
aqueous humor drainage, resulting in an elevation in IOP. The elevated IOP in these models
leads to varying degrees of RGC loss, glial activation and visual defects [75–78].

To investigate the role of excitotoxicity in glaucoma, RGC loss can be induced with
the injection of NMDA intravitreally [79]. The optic nerve crush (performed by applying a
crush injury to the optic nerve with a pair of cross-action forceps) or the complete optic
nerve transection model causes all RGC axons to be damaged simultaneously, which
results in the gradual loss of RGCs [80,81]. This non-IOP-related axonal degeneration
research model is commonly used to assess the RGC neuroprotection properties of various
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substances [82]. The partial optic nerve transection model causes damage to only a portion
of the RGC axons; thus, this model can study both primary (the death of RGCs whose axons
have been cut off) and delayed secondary neurodegeneration (the death of RGCs whose
axons are intact) [83]. Retinal ischemia/reperfusion (I/R) injury is known to be associated
with glaucoma, and other eye diseases, and has been widely used as an animal model for
OAG. I/R injury reduces retinal blood flow, which creates a state of retinal hypersensitivity
to oxygen and other nutrients, precipitating severe oxidative and inflammatory damage
when the circulation is subsequently reinstated (reperfusion) [84,85].

Table 1. Overview of glaucoma research models.

Research Models Genes Involved Mechanisms References

Genetic in vivo model D2 mice Tyrosinase-related protein 1
(Tyrp1)
Glycoprotein non-metastatic
melanoma protein B (Gpnmb)

Blockage of aqueous humor
drainage, leading to
progressive elevated IOP

[65]

Methods Surgery involved Mechanisms References

Experimental in vivo
model

Injection Injection of microbeads into
the anterior chamber

Blockage of aqueous humor
drainage, leading to
elevated IOP

[70]

Injection of hydroxypropyl
methylcellulose into the
anterior chamber

Blockage of aqueous humor
drainage, leading to
elevated IOP

[71]

Injection of hyaluronic acid
into the anterior chamber

Blockage of aqueous humor
drainage, leading to
elevated IOP

[72]

Injection of hypertonic saline
into the episcleral vein

Produced scarring in the TM,
increasing resistance to
aqueous humor drainage,
leading to elevated IOP

[73]

Intravitreal injection of NMDA NMDA induced excitotoxicity,
leading to RGC death

[79]

Cauterization/laser
photocoagulation

Episcleral vein cauterization Produced scarring in the TM,
increasing resistance to
aqueous humor drainage,
leading to elevated IOP

[74]

Argon laser photocoagulation
of the episcleral/limbal vein

Produced scarring in the TM,
increasing resistance to
aqueous humor drainage,
leading to elevated IOP

Nerve injury Optic nerve crush Optic nerve injury leading to
axonal degeneration and
gradual RGC loss

[80]

Complete optic
nerve transection

Optic nerve injury leading to
axonal degeneration and
gradual RGC loss

[81]

Partial optic nerve transection Optic nerve injury leading to
axonal degeneration and
gradual RGC loss

[83]

Retinal I/R injury Reduced retinal blood flow by
induction of elevated IOP
(ischemia), followed by
reinstation of blood flow
(reperfusion)

Extreme acute OHT-induced
ischemic injury to RGC,
followed by severe oxidative
and inflammatory damage to
RGCs after reperfusion

[84,85]

D2, DBA/2J; I/R, ischemia/reperfusion; IOP, intraocular pressure; NMDA, N-methyl-d-aspartate; RGC, retinal
ganglion cell.

Numerous in vitro studies have utilized the RGC-5 cell line in glaucoma research
to evaluate the neuroprotective properties of various supplements, including the studies
reviewed here. However, it has now become clear that RGC-5 cells that were originally
identified as immortalized rat RGCs were contaminated early in their development by the
immortalized photoreceptor 661W cell line (RGC precursor-like cells) in the laboratory they
originated from [86,87]. Therefore, the RGC-5 cells used by many of the studies described
in the following section may not reflect the true phenotype of a mature RGC. Perhaps the
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use of primary RGCs from animal models would be better to investigate glaucomatous
RGC responses to therapies in vitro [88].

In general, the various research models described represent only some aspects of
glaucoma, thus each having different advantages over other models. It is important to use
a suitable model based on the objective of the study.

4. Natural Products Used for Glaucoma Treatment and Their Mechanism of Action

In view of the role played by oxidative stress and neuroinflammation in glaucoma,
the use of antioxidants may represent an alternative approach for glaucoma treatment.
Currently, the mainstay of glaucoma treatment is the reduction in IOP, using IOP-lowering
eye drops [89]. Other glaucoma treatments include laser trabeculoplasty and cyclodestruc-
tion, or surgical trabeculectomy, trabeculotomy, deep sclerectomy and viscocanalostomy,
based on the European Glaucoma Society guidelines [90]. However, even when the IOP
normalizes, the disease still progresses and affects visual function in some patients.

There has been significant research interest in complementary and alternative medicine
(CAM), and it has been widely used in the treatment of glaucoma. In a survey involving a
total of 1516 glaucoma patients in Canada, 10% of patients used CAM therapy specifically
for glaucoma, and half of them believed that the treatments were beneficial [91]. Other
recent surveys reported the prevalence of CAM usage to be 22% in Saudi Arabia and 67%
in Palestine among eye patients [92,93]. The present review highlights recent studies on
various CAMs used for the treatment of glaucoma.

4.1. Gingko biloba L.

Ginkgo biloba L. (GB) belongs to the Ginkgoceae family, and its leaves and seeds have
been used for medicinal purposes for centuries [94]. With more than 70 different flavonoids
having been identified in GB, it has been suggested to have broad-spectrum free radical
scavenging activities [95]. Indeed, treatment with GB extract was able to increase the
survival of a rat RGC line, following exposure to oxidative stress induced by hydrogen
peroxide (H2O2) [96]. Furthermore, POAG patients treated with 120 mg of GB extract
daily for at least 6 months demonstrated a lower rate of single-stranded DNA breaks in
circulating leukocytes, indicating reduced oxidative stress [97].

Numerous clinical trials have also demonstrated that GB extract supplementation
slows the progression of visual field damage and improves visual function in NTG pa-
tients [98,99]. However, Shim et al. [99] demonstrated that supplementation with 40 mg of
GB extract, three times per day, showed no effect on the mean defect or contrast sensitivity
in NTG patients, compared to those receiving placebo. Based on the vascular hypothesis
of glaucoma pathogenesis, NTG patients receiving 80 mg GB extract tablets, twice a day
for four weeks, showed a significant increase in ocular blood flow, volume and velocity, in
comparison to the placebo group [100]. Furthermore, GB supplementation increased the
radial peripapillary capillary vascular density in healthy subjects who received a 120 mg
GB extract capsule daily for 4 weeks [101]. Table 2 summarizes clinical trials of natural
products used for glaucoma treatment.

In animal studies, intraperitoneal injections of GB extract administered after optic
nerve injury in rats were associated with a higher survival rate of RGCs [96,102]. This
could be due to the anti-apoptosis property of GB, as demonstrated by the inhibition
of apoptosis of RGCs via the modulation of mitogen-activated protein kinase (MAPK)
signaling pathways, in the adult rat optic nerve injury model, following the retrobulbar
injection of diterpene ginkgolides meglumine injection (DGMI, made from GB extracts,
including ginkgolides A, B and K) [103]. Mechanistically, DGMI could inhibit cell apoptosis
by inhibiting p38, JNK and Erk1/2 activation [103]. Additionally, GB extract-derived
procyanidin B2 and rutin were shown to be able to protect human retinal pigment epithelial
cells subjected to tert-butyl hydroperoxide-induced oxidative stress by modulating nuclear
factor erythroid 2-related factor (Nrf)-2 and Erk1/2 signaling [104]. Another study proposed
that P53, Bax, Bcl-2 and caspase-3/-9 could be considered as the core targets for GB extract
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against apoptosis in H2O2-treated RGCs [105]. A summary of preclinical studies of natural
products used for glaucoma treatment is provided in Table 3.

4.2. Scutellaria baicalensis Georgi—Baicalin, Baicalein and Wogonin

Scutellaria baicalensis Georgi, commonly known as Baikal skullcap or Chinese skullcap,
is a widely used Chinese medicinal herb [106]. S. baicalensis extract and its three major active
flavonoids, namely, baicalin, baicalein and wogonin showed low cytotoxicity and possessed
neuroprotective, antioxidant, anti-inflammatory and anti-cancer properties [106–108].

Intragastric administration of 200 mg/kg of baicalein for 28 days significantly reduced
IOP in a rat model of chronic OHT [109]. The decreased thickness of the RGC complex and
the reduced nucleus of the RGC layer mediated by OHT were significantly ameliorated
by baicalein treatment and associated with reduced apoptosis of RGCs by upregulating
the expression of the anti-apoptotic protein Bcl-2 [109]. Additionally, baicalein protects
RGCs against retinal ischemia via the downregulation of HIF-1α, matrix metalloproteinase
(MMP)-9 and vascular endothelial growth factor (VEGF), and upregulation of HO-1 [110].

The intraperitoneal administration of wogonin, 10 min after the establishment of the
optic nerve crush rat model, reduced the loss of RGCs and inhibited RGC apoptosis [111].
The study also demonstrated the anti-inflammatory property of wogonin in preventing
TLR4-NF-κB-mediated neuroinflammation, as indicated by the reduced gliosis response,
microglial activation and pro-inflammatory cytokine (TNF-α, monocyte chemoattractant
protein-1 (MCP-1), iNOS, IL-6 and -1β and cyclooxygenase (COX-2)) expressions in the
retina following optic nerve crush [111].

Intraperitoneal administration of baicalin increased the number of RGCs and atten-
uated pathological changes (indistinct layer of retinas, decrease in the thickness of the
RGC layer (GCL, a retinal layer where RGCs and displaced amacrine cells reside) and
RGC density) in a model of episcleral venous occlusion with cauterization to establish
a mouse model of glaucoma with chronic elevated IOP [112]. Baicalin treatment also
inhibited autophagy and activated PI3K/AKT signaling in glaucoma mice, as PI3K/AKT
signaling was shown to restrain the apoptosis and inflammatory response of RGCs in
glaucoma development [112]. Additionally, treatment with baicalin significantly increased
cell survival, reduced ROS production and inhibited pro-inflammatory factor IL-1α and
endothelial leucocyte adhesion molecule-1 (ELAM-1) production in cultured human TM
cells exposed to H2O2 [113].

4.3. Coleus forskohlii (willd.) Briq.—Forskolin

Coleus forskohlii (willd.) Briq. is a medicinal plant indigenous to India and Southeast
Asia [114]. The leaves, roots and tubers of C. forskohlii are a rich source of a diterpenoid
called forskolin, which acts as a second messenger cyclic adenosine 3′,5′-monophosphate
(cAMP) booster, via the direct stimulation of adenylate cyclase [114]. Studies have revealed
that cAMP is important in regulating aqueous humor dynamics in the ciliary body and
TM [115]. Indeed, a previous study has shown that forskolin perfused arterially at 30, 100
and 1000 nM caused a significant reduction in the rate of aqueous humor formation in an
isolated bovine eye preparation [116]. This may explain the hypotensive effect of forskolin
administration, as shown in a double-blind, randomized controlled trial where POAG
patients treated with forskolin 1% w/v aqueous solution eye drops, at two drops thrice a
day, for 4 weeks, showed a significant decrease in IOP [117,118].

In animal studies, a dietary combination of forskolin, homotaurine, spearmint and
vitamins B1, B6 and B12 was able to protect against RGC loss in a rodent model of optic
nerve injury [119] and hypertensive glaucoma [120]. Both studies demonstrated that
the forskolin supplement mixture may counteract the inflammatory processes via the
reduction in cytokine (iNOS, IL-6 and TNF-α) secretion, thereby leading to decreased
apoptotic markers (Bax/Bcl-2 ratio and active caspase-3), finally sparing RGC death and
the preservation of visual function [119,120]. However, in contrast to the clinical studies, the
forskolin supplement mixture did not affect IOP elevation in glaucomatous rodents [120].
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4.4. Erigeron breviscapus (vant.) Hand. Mazz.—Scutellarin

Erigeron breviscapus (vant.) Hand. Mazz. (DengZhanHua in Chinese) is a dicotyle-
donous plant in the Compositae chrysanthemum family found primarily in southwest
China, especially in Yunnan [121]. It has been used in traditional Chinese medicine, for
the prevention and treatment of cardiovascular diseases [121]. E. breviscapus supplements
administered for 6 months showed no obvious adverse effects, with a significant decrease in
the mean defect and an increase in the mean sensitivity, in POAG patients with a controlled
IOP, demonstrating its partial protective effect on the visual field in glaucoma [122]. In
chronic elevated IOP animal models, E. breviscapus oral supplements were shown to reduce
IOP, improve impaired visual function, increase the RGC density and reduce RGC axonal
degeneration caused by elevated IOP [123,124]. In RGCs, E. breviscapus extract was shown
to suppress the outward potassium channel currents, which was suggested to be one of the
key mechanisms behind E. breviscapus’s beneficial effects against glaucoma-induced RGC
damage and visual impairment [125].

The flavonoid scutellarin is one of the major constituents of E. breviscapus. A 3-week
oral scutellarin treatment ameliorated retinal thinning and visual deficits in an induced
chronic OHT glaucoma model [126]. Scutellarin protected RGCs and reduced impaired
retinal microglial cells by inhibiting NLRP3 inflammasome-mediated inflammatory reac-
tions, which was associated with a reduced upregulation of apoptosis-associated speck-like
protein (a caspase recruitment domain), cleaved caspase-1 and IL-18 and -1β following
acute OHT [127].

4.5. Lycium barbarum L.

Lycium barbarum L., commonly known as goji berry or wolfberry, has been widely used
in China to treat various diseases, i.e., blurry vision, abdominal pain, infertility, dry cough,
fatigue, dizziness and headaches, and has been used as a potent anti-aging agent [128]. The
most abundant component in goji berries is represented by carbohydrates, and isolated
L. barbarum polysaccharides (LBPs) have been found to exert various pharmacological prop-
erties, i.e., neuroprotective, hypoglycemic, anti-cancer, immunomodulatory and antioxidant
properties [129,130]. LBP supplementation has been shown to protect RGC survival and
preserve retinal function in various glaucoma models, i.e., acute OHT [131,132], chronic
OHT [133,134] and partial optic nerve transection [135]. In the partial optic nerve transec-
tion model, LBP pre-treatment for 7 days prior to the injury was shown to delay secondary
degeneration of RGCs [136]. The study also reported LBP exerting its neuroprotective
effects by inhibiting oxidative stress and the JNK/c-jun pathway, and by transiently increas-
ing the expression of insulin-like growth factor-1, which is a known neurotrophic factor
determining the survival of RGCs during the early stages of optic nerve injury [136].

LBP has been shown to protect RGCs against oxidative stress injury by inhibiting the
generation of ROS and reducing the mitochondrial membrane potential following cobalt
chloride (CoCl2)-induced hypoxia [137]. Additionally, LBP significantly promoted cell
viability, reduced apoptosis and decreased cleaved caspase-3/-9 and ROS levels in human
TM cells after H2O2 administration [138]. Alternatively, LBP treatment has been shown
to promote M2 polarization of microglia and downregulate autophagy after partial optic
nerve resection, which contributes to the delayed secondary degeneration of RGCs [139].
Other studies have also suggested that LBP provides neuroprotection to the RGCs and
retina by inhibiting vascular damage, probably via the regulation of endothelin-1 (ET-
1)-mediated biological effects [131,133]. In a recent study, LBP treatment also promoted
blood–retinal barrier maintenance and survival of RGCs in acute OHT mice, which were
mediated through the regulation of amyloid-β production and advanced glycosylation end
product receptor expression [140]. Furthermore, L. barbarum ethanolic extracts reduced
angiopoietin-like 7 protein (ANGPTL7) expression while increasing that of caveolin-1 in
PC12 neuronal cells exposed to hydrostatic pressures, which was associated with decreased
gene expressions of ECM proteins, i.e., MMP-2, MMP-9, collagen I and TGF-β [141]. Pre-
vious studies have indeed indicated that ANGPTL7 modulates the TM’s ECM [142] and
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MMP-mediated ECM turnover in the TM, which leads to a reduction in outflow resistance
in the conventional outflow pathway, and to maintenance of IOP homeostasis [143].

LBP treatment significantly reduced neuronal death and glial activation in the retina
following I/R injury [144,145]. Furthermore, LBP treatment was able to alleviate ischemia-
induced retinal dysfunction (exhibiting greater b-wave and oscillatory potential
responses) [144,146]. The antioxidant levels (glutathione, SOD and CAT) in the retina
were significantly higher, while the MDA level was lower, in the submicron and blended
L. barbarum extract-treated groups, compared to the control [146]. Further studies demon-
strated that LBP exerted its neuroprotective effects via the activation of Nrf2 and an increase
in HO-1 protein expression in the retina after I/R injury [145].

4.6. Diospyros kaki L.

Persimmon (Diospyros kaki L.), belonging to the family Ebenaceae, is a well-known
fruit rich in carbohydrates, dietary fibers, vitamins, minerals, carotenoids, phenolic com-
pounds and other bioactive phytochemicals [147]. In addition to its fruit, persimmon’s
leaves are also rich in flavonoids that exhibit antioxidant properties [148]. Pre-treatment
of RGCs exposed to excessive oxidative stress and excitotoxicity with an ethanolic extract
of persimmon leaves (EEDK) increased cell viability in a concentration-dependent man-
ner [149]. Further studies revealed that the neuroprotective effect of EEDK was associated
with decreased levels of apoptotic markers, i.e., poly (ADP-ribose) polymerase, p53 and
cleaved caspase-3, and increased expression levels of antioxidant enzymes, i.e., SOD, GPX
and glutathione S-transferase [149]. The same study demonstrated that EEDK treatment
protects the retina and RGCs in a partial optic nerve crush mouse model [149]. Additionally,
EEDK was also shown to reduce elevated IOP in a glaucoma mouse model, by regulating
the soluble guanylate cyclase α-1 (sGCα-1, a primary regulator of vascular hypertension)
signal [150].

4.7. Tripterygium wilfordii Hook F.—Triptolide and Celastrol

Tripterygium wilfordii Hook F., commonly known as thunder god vine, is a traditional
Chinese medicine widely used to treat autoimmune and inflammatory diseases including
rheumatoid arthritis, systemic lupus erythematosus and dermatomyositis [151]. Triptolide
and celastrol are the predominant active phytochemicals isolated from this plant, which
exhibit similar pharmacological activities, i.e., anti-cancer, anti-inflammatory, immunosup-
pressive, anti-obesity and anti-diabetic activities [152]. Triptolide treatment improved RGC
survival via the inhibition of microglial activation in glaucoma models [153–155]. Addition-
ally, triptolide treatment inhibited the expression of TNF-α and the nuclear translocation of
NF-κB in an optic nerve crush model, suggesting that the neuroprotective effect of triptolide
was attributed, partly, to its anti-inflammatory property [155]. Similarly, celastrol treatment
also improved RGC survival in glaucoma models [156,157].

4.8. Crocus sativus L.—Crocetin and Crocin

Saffron (the dried stigma of Crocus sativus L.) is a spice that is widely used in food
preparation, as a flavoring and coloring agent [158]. Referred to as the ‘golden spice’,
saffron is the highest-priced aromatic medicinal plant in the world, with numerous phar-
macological properties such as anti-cancer, anti-diabetic, anti-inflammatory, antioxidant,
immunomodulatory, antifungal and antimicrobial properties [158]. Oral administration of
saffron extract was shown to decrease microglial numbers and their activation following
increased IOP, and this led to the prevention of RGC death [159]. A randomized interven-
tional pilot study revealed that 30 mg/day saffron supplementation significantly reduced
IOP in POAG patients, after 3 weeks of treatment [160].

More than 150 chemical compounds have been extracted from saffron, with crocin
and crocetin being the two major active ingredients [161]. Intraperitoneal treatment with
crocin can inhibit I/R-induced RGC death, and the effect of crocin may be mediated, partly,
by its antioxidant action through the ERK pathway [162], or activation of the PI3K/AKT
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signaling pathway [163]. Additionally, crocin protects RGCs against H2O2-induced damage
by reducing ROS production and activating NF-κB [164]. Similarly, crocetin, an aglycone of
crocin, prevented cell loss and apoptosis in the GCL in mice following NMDA- [165] and
I/R-induced retinal damage [166].

4.9. Curcuma longa L.—Curcumin

Curcumin is a yellow pigment and an active component of the rhizome of Cur-
cuma longa L., or turmeric [167]. It is known to possess antioxidant, anti-inflammatory,
anti-cancer, anti-arthritis, anti-asthmatic, antimicrobial, antiviral and antifungal proper-
ties [167,168]. Considering that curcumin is a powerful antioxidant natural compound, it
may represent another potential treatment to alleviate oxidative stress in glaucoma. Using
an elevated IOP rodent model, curcumin treatment decreased the intracellular level of ROS
and alleviated RGC apoptosis induced by oxidative stress [169]. In the same study, it was
also observed that curcumin inhibited pro-apoptotic factors, such as caspase-3 and Bax, and
upregulated the anti-apoptotic factor Bcl-2 [169]. In an ex vivo optic nerve injury model,
thinning of retinal layers, especially the GCL, and strong RGC apoptosis were observed
after 24 h post-injury, which correlated with a time-dependent increase in caspase-3 and
-9 and pro-apoptotic marker levels, and a powerful activation of the JNK, c-Jun and ERK
signaling (MAPK) pathways [170]. Curcumin prevented alterations in the apoptotic cas-
cade and MAPK pathways, preserving RGC survival and retinal thickness [170]. In another
experimental study in a rat retinal I/R injury model, curcumin supplementation in the diet
for 2 days before I/R was able to protect the retina from ischemic injury [171]. Additionally,
curcumin pre-treatment inhibited I/R-induced degeneration of retinal capillaries, which
may occur through its inhibitory effects on injury-induced activation of NF-κB and signal
transducer and activator of transcription 3 (STAT3), and on overexpression of MCP-1, a
chemokine involved in the inflammatory response via recruitment of monocytes to injury
sites [172].

Studies using TM cells exposed to H2O2-induced oxidative stress as an in vitro model
observed that pre-treatment with curcumin reduced the production of intracellular ROS
in a dose-dependent manner [173,174]. Curcumin alleviated oxidative stress-induced pro-
inflammatory factors such as IL-1a, -6 and -8 and ELAM-1 and inhibited the apoptosis of
TM cells [173]. Curcumin has also been shown to protect TM cells against oxidative stress
and apoptosis via the Nrf2-keap1 pathway [174].

4.10. Camellia sinensis (L.) Kuntze—Epigallocatechin-3-Gallate

Camellia sinensis (L.) Kuntze, commonly known as green tea, is consumed as a beverage
and is popular in China and Japan [175]. Green tea extract treatment administered orally
to retinal I/R injury rats showed a higher number of surviving RGCs, and less apoptotic
RGCs were observed [176]. Green tea extract treatment also reduced the increased protein
expression (i.e., of apoptotic markers (activated caspase-3 and -8) and inflammation-related
proteins (Toll-like receptor 4 (TLR4), IL-1β and TNF-α)) and p38 phosphorylation caused
by the ischemic injury [176]. Additionally, green tea extract treatment led to suppression of
activated microglia, astrocytes and Müller cells following lipopolysaccharide (LPS)-induced
retinal inflammation in rats [177]. The green tea anti-inflammatory effects were associated
with a reduction in the phosphorylation of STAT3 and NF-κB in the retina [177].

The major polyphenolic compounds contained in green tea are catechins, which
include epigallocatechin-3-gallate (EGCG), which is also a powerful antioxidant, anti-
angiogenic and anticarcinogenic agent [175,178]. EGCG treatment was shown to preserve
the RGC density in acute [179] and chronic elevated IOP rats [180], an optic nerve crush
rat model [181], a retinal I/R injury rabbit model [182] and NMDA-induced excitotoxicity
in rats [183]. Zhang et al. [179] reported that EGCG treatment significantly decreased
inflammation-associated cytokine levels (IL-4, -6, -1β and -13, TNF-α and IFN-γ), and the
proliferation rate of T lymphocytes. Furthermore, EGCG treatment inhibited the increase in
the phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B cells
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inhibitor, alpha (IκBα) and p65, leading to the suppression of NF-κB signaling pathway
activation [179].

4.11. Panax ginseng—Ginsenoside

Panax ginseng, in the family Araliaceae, is considered as one of the most frequently
employed medicinal herbs and functional foods [184,185]. In a randomized, placebo-
controlled, crossover study, daily consumption of 3 g of Korean red ginseng (KRG) for
4 weeks was shown to improve daytime contrast sensitivity and ocular pain in glaucoma
patients [186]. Following 8 weeks of KRG supplementation, glaucoma patients showed sig-
nificant improvement in their tear film stability and total Ocular Surface Disease Index score,
suggesting KRG improved dry eye syndrome in glaucoma patients [187]. Additionally,
OAG patients receiving 1.5 g of KRG, orally 3 times daily for 12 weeks, showed signif-
icant improvement in the retinal peripapillary blood flow in the temporal peripapillary
region [188].

Ginseng contains numerous phytochemicals such as ginsenoside (triterpenoid saponin),
phenols and acidic polysaccharides [189]. These phytochemicals have been shown to pro-
tect RGCs. Total Panax notoginseng saponin treatment increased RGC survival and inhibited
the cell apoptosis pathway induced by an optic nerve crush rat model [190]. Similarly,
ginsenoside Rg1 treatment was able to reduce RGC damage in an ultrasound-targeted mi-
crobubble optic nerve damage rabbit model [191]. Furthermore, ginsenoside Rb1 protects
RGCs against apoptosis caused by CoCl2-induced hypoxia and H2O2-induced oxidative
stress [192].

4.12. Cannabis sativa—Cannabinoids

Cannabis sativa, commonly known as marijuana, is one of the most used psychoactive
substances in the world [193]. The C. sativa plant contains more than 60 lipid-based cannabi-
noids, which are the signaling molecules of the endocannabinoid system; these include
∆-9-tetrahydrocannabinol (∆9-THC), ∆-8-tetrahydrocannabinol (∆8-THC), cannabidiol and
cannabinol [194]. A reduction in IOP was observed in glaucoma patients associated with
tachycardia, within the first 30 min after marijuana inhalation, with the duration of action
limited to 4 h [195]. Similarly, ∆9-THC inhalation reduced IOP significantly from baseline
in healthy adult subjects, detected from 40 min post-treatment and lasting up to 4 h [196].

In animal studies, a topically applied 2% ∆9-THC ophthalmic solution was shown
to reduce IOP in clinically normal dogs [197]. To prolong the IOP reduction duration, the
use of ∆9-THC-valine-hemisuccinate nanoemulsions, which help to increase absorption,
produced a greater drop in IOP, compared to latanoprost and timolol in normal rabbits [198].
Similarly, a submicron emulsion of ∆8-THC treatment to normal and OHT rabbits also
demonstrated a reduced IOP [199]. The IOP-lowering and RGC neuroprotective effects of
cannabinoids have been shown to be mediated by CB1 cannabinoid receptors [200,201].

4.13. Anthocyanins

Anthocyanins, considered as flavonoids, are blue, red or purple pigments commonly
found in the flowers, fruits and tubers of many plants [202]. Hence, the primary sources
of anthocyanins are found in berries, currants, grapes and some tropical fruits [202].
Studies have demonstrated that anthocyanins provide numerous health benefits such
as antioxidative and neuroprotective properties, prevention of cardiovascular diseases,
anti-angiogenesis, anti-cancer, anti-diabetic, anti-obesity and antimicrobial activities and
improved visual health [202,203].

OAG patients receiving supplementation of 50 mg of black currant anthocyanins daily
for 24 months also showed a reduced IOP and improved visual field damage progres-
sion [204]. Black currant anthocyanin supplementation also enhanced blood flow to the
ONH and its surrounding retina in OAG patients, with no changes in systemic conditions
such as blood pressure and pulse rates observed [204,205]. Black currant anthocyanin
supplementation also normalized the abnormal serum concentration levels of ET-1 in OAG



Nutrients 2022, 14, 534 13 of 39

patients, suggesting that anthocyanins possibly affect the ET-1 receptor functions such as
pharmacological reactivity and hypersensitivity [206].

The natural anthocyanins delphinidin, luteolinidin and peonidin were shown to be
non-toxic to human retinal pigment epithelial (ARPE19) and RGC-5 cells, with luteolin-
idin and peonidin increasing the survival rates of the RGC-5 cells following exposure
to H2O2 [207]. Administration of oral bilberry extracts rich in anthocyanins was shown
to suppress RGC death following an optic nerve injury mouse model [208]. Bilberry ex-
tract administration increased chaperone molecule (Grp78 and Grp94) protein levels, an
effect which may underlie the neuroprotective effect of bilberry extract after optic nerve
crush [208]. In a model of light-induced retinal damage in pigmented rabbits, adminis-
tration of bilberry anthocyanin extract at dosages of 250 and 500 mg/kg/day for 7 days
significantly inhibited retinal dysfunction, as evidenced by the increased retinal outer
nuclear layer thicknesses and lengths of the outer segments of the photoreceptor cells,
compared to untreated rabbits with retinal degeneration [209]. Additionally, anthocyanin
treatment attenuated the changes caused by light to the apoptotic proteins Bax, Bcl-2
and caspase-3 and increased the antioxidant enzyme levels (SOD, GPX and CAT), but it
decreased the MDA level in the retinal cells [209].

4.14. Resveratrol

Resveratrol (trans-3,4′,5-trihydroxystilbene) is a polyphenol found in berries, grapes,
pomegranates and red wine [210]. It has been reported to possess a wide range of phar-
macological effects, including cardioprotection, neuroprotection and anti-diabetic activity,
due to its potent antioxidant and anti-inflammatory properties [210]. Resveratrol has
been reported to increase oxidative stress markers, and the nitric oxide level in human
glaucomatous TM cells, possibly by increasing endothelial nitric oxide synthase (eNOS)
expression and reducing inducible NOS expressions [211]. In experimental glaucoma
models, resveratrol treatment was shown to reduce RGC death [212,213]. Cao et al. [213]
further demonstrated that intravitreal administration of resveratrol rescued RGCs by the
decreased ROS generation in RGCs of a microbead-induced high-IOP mouse model. These
studies support the antioxidant properties of resveratrol, which could be beneficial in
glaucoma treatment.

Resveratrol protects RGC-5 cells against H2O2-induced apoptosis, by reversing H2O2-
induced increased expressions of cleaved caspase-3/-9, production of ROS and the expres-
sions of p-p38, p-ERK and p-JNK, proposing that resveratrol suppresses MAPK cascades
to exert its neuroprotective effects in RGCs [214]. Additionally, resveratrol also mitigates
retinal I/R injury-induced RGC loss, glial activation and retinal function impairment
by inhibiting the HIF-1a/VEGF and p38/p53 pathways while activating the PI3K/AKT
pathway [215–217].

In both the chronic OHT rat model and RGC-5 cells incubated under elevated pressure,
RGCs showed apoptosis and mitochondrial dysfunction [218]. Resveratrol treatment
improved the expression of proteins involved in mitochondrial biogenesis and dynamics,
i.e., AMPK, Nrf-1, mitochondrial transcription factor A (Tfam), mitofusin 2 (mfn-2) and
optic atrophy 1 (OPA1), which led to a decrease in RGC apoptosis, mitochondrial membrane
potential depolarization and ROS generation [218,219]. Another recent study identified
a potential mechanism involving the protective role of resveratrol in preventing ONH
astrocyte dysfunction and degeneration, which would enable the astrocytes to continue
providing structural and nutrient support to the optic nerve [220].

4.15. Hesperidin

Hesperidin is a flavanone commonly found in citrus fruits such as oranges, tangerines,
lemons and grapefruits, known for its anti-inflammatory, antioxidant and anticarcinogenic
properties [221]. The antioxidant profile of a novel supplement containing hesperidin,
and two other food-derived antioxidants, i.e., crocetin and Tamarindus indica (tamarind),
was assessed in a prospective, single-arm design trial involving 30 NTG patients receiving
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the supplements for 8 weeks [222]. In patients with relatively high oxidative stress, the
supplement significantly reduced the urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG; a
marker of oxidative DNA damage) level, and the biological antioxidant potential was also
significantly elevated [222].

In an animal study, a single dose of oral hesperidin pre-treatment (25, 50 and 100 mg/kg)
significantly reduced the increased IOP level in dextrose- and prednisolone acetate-induced
OHT rats [223]. Additionally, hesperidin treatment increased the glutathione level in the
aqueous humor and reduced morphological alteration in the ciliary bodies caused by
elevated IOP [223]. Furthermore, hesperidin treatment ameliorated NMDA-induced retinal
injury by suppressing oxidative stress [224] and excessive calpain activation [225] while
also alleviating hypobaric hypoxia-induced retinal impairment through the activation of
the Nrf2/HO-1 pathway [226].

4.16. Caffeine

Caffeine (1, 3, 7-trimethylxanthine) is a natural alkaloid commonly consumed through
coffee, tea, carbonated soft drinks, energy drinks, chocolate and other cocoa-containing
foods [227]. Caffeine acts as a central nervous system stimulant through its A1 and A2a
adenosine receptor antagonist properties [227]. The effect of caffeine consumption on
IOP was found to be controversial in the literature. Tran et al. [228] demonstrated a
reduced IOP following 45 and 60 min consumption of caffeine in POAG patients, when
compared to the water-drinking group. However, another study reported that 1% caffeine
eye drops administered daily for a week showed no effect on IOP in POAG patients [229].
In contrast, healthy individuals receiving a single dose of a 4 mg/kg caffeine capsule
showed an increase in IOP, with low-caffeine consumers reporting a more abrupt IOP
increase compared to the high-caffeine consumers [230]. Further studies suggested the
increase in IOP was associated with a reduction in the anterior chamber angle, which
led to resistance to aqueous humor outflow [231]. Recent cross-sectional studies showed
caffeine consumption was weakly associated with a lower IOP but was not associated
with a decreased risk of developing glaucoma [232,233]. An in vivo study demonstrated a
reduced IOP and prevention of loss of RGCs in the caffeine-drinking animals following
laser-induced OHT in experimental rats [234]. However, the same study also reported that
caffeine treatment did not ameliorate OHT-induced impairment in the RGC retrograde
transport, although caffeine treatment appeared to partially attenuate axonal degeneration
of the optic nerve induced by OHT [234]. Interestingly, caffeine drinking led to increased
microglia reactivity, inflammatory response (IL-1β and TNF mRNA levels) and cell death
following 24 h post-I/R injury in a mouse model, which were then reduced at day 7 post-
injury [235]. Additionally, caffeine was shown to preserve the integrity of the blood–retinal
barrier in LPS-treated ARPE19 cells, which can be considered as a new strategy to treat
retinal degenerative diseases [236].

4.17. Coenzyme Q10

Coenzyme Q10 (CoQ10), or ubiquinone-10, is a natural lipophilic vitamin-like molecule
with antioxidant and anti-inflammatory properties and is involved in the production and
control of cellular bioenergy, pyrimidine synthesis, physicochemical properties of cellular
membranes and gene expression [237,238]. It is predominantly found in animal organs
(kidney, liver and heart) and is also present in meat, fish, soy oil and peanuts [238].

Treatment with CoQ10, either topically applied or supplemented in the diet, was
shown to promote RGC survival by inhibition of RGC apoptosis in glaucoma mod-
els [239–241]. CoQ10 treatment has also been shown to inhibit glaucomatous mitochondrial
alteration by the preservation of the mtDNA content and Tfam/oxidative phosphorylation
(OXPHOS) complex IV protein expressions [239,240]. Furthermore, CoQ10 treatment in-
hibited the activation of astrocytes and microglial cells in the retina [239,240]. In a clinical
study, CoQ10 and vitamin E eye drop administration in POAG patients for 12 months
showed a beneficial effect on the inner retinal function (PERG improvement), with a conse-
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quent enhancement of the visual cortical responses (VEP improvement) [242]. Additionally,
CoQ10 and vitamin E topical treatment increased RGC numbers, inhibited apoptosis and
activated astrocytes and microglial cells in a mechanical optic nerve injury rat model [243].

4.18. Vitamins

A cross-sectional study involving a total of 2912 participants in the United States
2005–2006 National Health and Nutrition Examination Survey reported that supplementary
consumption and serum levels of vitamins A and E were not associated with glaucoma
prevalence [244]. A meta-analysis did not find an association between serum vitamin B6,
vitamin B12 and vitamin D levels and different types of glaucoma [245]. Another recent
systematic review concluded that blood levels of vitamins (A, B complex, C, D and E) did
not demonstrate an association with OAG as well [246]. However, the same study reported
that dietary intake of vitamins A and C showed a beneficial association with OAG [246].

The nicotinamide adenine dinucleotide (NAD+, an important metabolite for mitochon-
drial metabolism and oxidative stress protection) level in the retina of D2-Gpnmb+ mice
decreased with age [247]. Oral administration of vitamin B3 (nicotinamide, precursor of
NAD+) was protective as both prophylaxis and an intervention of glaucoma, as shown by
the reduced incidence of optic nerve degeneration, prevention of RGC soma and axonal
loss and retinal nerve fiber layer thinning and preserved visual function [247,248]. In a
crossover, randomized clinical trial involving 57 glaucoma patients, oral vitamin B3 supple-
mentation for 6 weeks at 1.5 g/day, then for 6 weeks at 3.0 g/day, improved RGC function,
but without affecting the IOP and RNFL thickness [249].

Table 2. Clinical trials evaluating natural products for glaucoma treatment.

Natural Products Subjects Treatment Regime Clinical Findings References

Ginkgo biloba

POAG patients 120 mg GB extract, 1 tablet
daily, 6 months

Lower rate of single-stranded
DNA breaks in circulating
leukocytes (vs. untreated
patients, p < 0.001)

[97]

NTG patients 80 mg GB extract, 2 tablets
daily, 4 years

No effect on IOP (vs.
pre-treatment, p = 0.509)
Slowed visual field damage
progression (p < 0.001)

[98]

NTG patients 80 mg GB extract, 2 tablets
daily, 2 years

Improved HVF deviation (vs.
untreated patients, p = 0.002)

[99]

NTG patients 80 mg GB extract, 2 tablets
daily, 4 weeks

Increased ocular blood flow,
volume and velocity (vs.
placebo-treated patients,
p < 0.03)

[100]

Healthy subjects 120 mg GB extract, 1 tablet
daily, 4 weeks

Increased radial peripapillary
capillary vascular density (vs.
pre-treatment, p < 0.021)

[101]

Forskolin POAG patients Forskolin 1% w/v aqueous
solution eye drops,
2 drops thrice a day,
4 weeks

Reduced IOP (vs. timolol-treated
patients, p < 0.05)
No adverse events

[117]

Erigeron breviscapus POAG patients E. breviscapus extract,
2 tablets, 3 times daily,
6 months

No obvious adverse effects
Decreased mean defect (vs.
pre-treatment, p < 0.01)
Increased mean sensitivity
(p < 0.01)

[122]

Saffron POAG patients Aqueous saffron extract,
30 mg daily, 4 weeks

Reduced IOP (vs. pre-treatment,
p = 0.0046)
No obvious adverse effects

[160]
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Table 2. Cont.

Natural Products Subjects Treatment Regime Clinical Findings References

Ginseng Glaucoma patients Korean red ginseng, 3 g
daily, 4 weeks

Improved daytime contrast
sensitivity (vs. pre-treatment,
p = 0.004) and ocular pain
(p < 0.001)

[186]

Glaucoma patients Korean red ginseng, 3 g
daily, 8 weeks

Improved tear film stability and
total OSDI score (vs.
placebo-treated patients,
p < 0.01)

[187]

OAG patients Korean red ginseng, 1.5 g,
3 times daily, 12 weeks

Improved retinal peripapillary
blood flow in the temporal
peripapillary region (vs.
pre-treatment, p = 0.005)
No changes in blood pressure,
heart rate, IOP and visual
field indices

[188]

Marijuana Glaucoma patients Marijuana smoking,
single dose

Reduced IOP (vs.
placebo-treated patients, p value
not defined)
Increased heart rate

[195]

Healthy subjects Marijuana smoking,
single dose

Reduced IOP (vs. pre-treatment,
p < 0.01)
No effect on systemic
blood pressure

[196]

Anthocyanins NTG patients 60 mg, 2 tablets daily,
2 years

Improved best-corrected visual
acuity (vs. untreated patients,
p = 0.008), and HVF
deviation (p = 0.001)

[99]

OAG patients 50 mg black currant
anthocyanins daily, 2 years

Increased ocular blood flows (vs.
placebo-treated patients, p = 0.01)
Improved visual field damage
progression (p = 0.039)

[204]

OAG patients 50 mg black currant
anthocyanins daily,
24 months

Reduced IOP (vs. pre-treatment,
p = 0.027)
Improved HVF deviation
(p = 0.017)
No changes in systemic blood
pressure or pulse rates

[205]

OAG patients 50 mg black currant
anthocyanins daily,
24 months

Normalized serum ET-1
concentrations (vs. healthy
subjects, p < 0.05)
No changes in advanced
oxidation protein products, and
antioxidative activities

[206]

Hesperidin, crocetin and
Tamarindus indica

NTG patients Food supplement
containing hesperidin
(50 mg), crocetin (7.5 mg)
and T. indica (25 mg),
4 tablets twice a day,
8 weeks

Reduced 8-OHdG level in
high-oxidative stress patients (vs.
pre-treatment, p < 0.01)
Elevated BAP in high-oxidative
stress patients (p = 0.03)

[222]

Caffeine POAG patients Coffee containing 1.3%
caffeine (104 mg caffeine),
single dose

Reduced IOP (vs.
water-drinking patients,
p = 0.012)
Reduced IOP fluctuation
(p = 0.013)

[228]

POAG patients 1% caffeine eye drop,
thrice a day, 1 week

No effect on IOP (vs.
pre-treatment, p > 0.05)

[229]

Healthy subjects Caffeine capsule, 4 mg/kg,
single dose

Increased IOP (vs. pre-treatment,
p < 0.05)

[230]

Healthy subjects Caffeine capsule, 4 mg/kg,
single dose

Increased IOP (vs.
placebo-treated subjects, p < 0.05)
Reduced anterior chamber angle
(p < 0.05)

[231]
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Table 2. Cont.

Natural Products Subjects Treatment Regime Clinical Findings References

Coenzyme Q10 POAG patients CoQ10 and vitamin E eye
drop, 2 drops daily,
12 months

Decreased ERG P50 and VEP
P100 implicit times (vs.
pre-treatment, p < 0.01)
Increased PERG P50-N95 and
VEP N75-P100 amplitudes
(p < 0.01)

[242]

Vitamin B3 Glaucoma patients Vitamin B3 tablet,
1.5 g/day 6 weeks,
followed by 3.0 g/day for
6 weeks

Improved RGC
functions—PhNR Vmax (vs.
placebo-treated patients,
p = 0.03), Vmax ratio (p = 0.02)
and visual field mean deviation
(p = 0.02)
No effect on IOP (p = 0.59) and
RNFL thickness (p = 0.11)

[249]

8-OhdG, 8-hydroxydeoxyguanosine; BAP, biological antioxidant potential; ET-1, endothelin-1; HVF, Humphrey
visual field; IOP, intraocular pressure; NTG, normal-tension glaucoma; OAG, open-angle glaucoma; OSDI,
Ocular Surface Disease Index; PhNR, photopic negative; POAG, primary open-angle glaucoma; PERG, pattern
electroretinogram; RGC, retinal ganglion cell; RNFL, retinal nerve fiber layer.

Previous studies have reported that serum vitamin D levels are significantly lower in
glaucoma patients as compared to healthy subjects [250,251]. Additionally, the presence
of polymorphisms in vitamin D receptors, e.g., the BsmI ‘B’ allele and TaqI ‘t’ allele, was
shown to be a relevant risk factor in the development of POAG [251]. Vitamin D deficiency
subjects were reported to have higher, although not significant, IOP values compared
to healthy individuals [252]. Treatment with 1α,25-dihydroxyvitamin D3 and its analog
2-methylene-19-nor-(20S)-1α,25-dihydroxyvitamin D3 through eye drops reduced the IOP
in normal monkeys [253]. D2 mice treated with 1 µg/kg of 1α,25-dihydroxyvitamin D3,
intraperitoneally for 5 weeks, showed improved RGC function (increased PERG and
FERG amplitudes) and reduced RGC death, compared to vehicle-treated controls [254].
Additionally, the same study also reported decreased microglial and astrocyte activation,
reduced inflammatory cytokines (IL-1β and -6, IFN-γ and CCL-3) and increased expression
of neuroprotective factors (BDNF, VEGF-A and PlGF) in the 1α,25-dihydroxyvitamin D3
treatment group [254].

Induced OHT rats fed with a vitamin E-supplemented diet showed no difference in
RGC cell death, compared to normal diet-treated rats [255]. However, the same study
demonstrated that dietary vitamin E deficiency aggravated RGC apoptosis following in-
duced OHT, which was found to be related to the increased level of lipid peroxidation [255].
In contrast, both topical and systemic α-tocopherol administration preserved the RGC
numbers and retinal morphology in an optic nerve crush rat model [256].
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Table 3. Preclinical studies on natural products used for glaucoma treatment and their mechanism of action.

Natural Products Model RGC IOP Ocular Vasculation Other Findings References

Ginkgo biloba Rat RGC cells exposed to H2O2 Increased survival rate - - - [96]
Rat optic nerve crush model Increased RGC density - - - [96]
Rat optic nerve crush model Increased survival rate - - - [102]
Mouse RGC-5 cells exposed to H2O2 Reduced cell apoptosis - - Increased antioxidant capacity (reduced

T-AOC, SOD and CAT depletion)
[105]

Diterpene ginkgolides
meglumine injection

Rat optic nerve injury model Reduced cell apoptosis - - Decreased conduction time of F-VEP [103]

Scutellaria
baicalensis—Baicalein

Rat episcleral vein
cauterization-induced chronic
OHT model

- Reduced IOP - - [109]

Rat ischemic model Reduced cell apoptosis - - Upregulation of HO-1
Downregulation of HIF-1α, VEGF
and MMP-9

[110]

S. baicalensis—Wogonin Rat optic nerve crush model Reduced cell apoptosis - - Decreased caspase-3 activation
Decreased gliosis response and
microglial activation
Decreased pro-inflammatory cytokine
(TNF-α, MCP-1, iNOS, IL-6 and-1β and
COX-2) expression

[111]

S. baicalensis—Baicalin NMDA-stimulated RGC Reduced cell apoptosis - - Alleviated NMDA-induced oxidative
stress (reduced ROS and MDA levels)
Inhibited NMDA-induced autophagy

[112]

Mouse episcleral venous occlusion-
induced chronic OHT model

Increased RGC density
Increased GCL thickness

- - Inhibited OHT-induced autophagy
Activated PI3K/AKT signaling

[112]

Forskolin Isolated bovine eye - Reduced IOP - Reduced peak calcium response to ATP [116]

Forskolin, homotaurine,
spearmint extract and
vitamins B1, B2 and

B12 mixture

Mouse optic nerve crush model Increased RGC numbers - - Reduced cytokine (iNOS and
IL-6) secretion
Decreased apoptotic marker (Bax/Bcl-2
ratio and active caspase-3) levels

[119]

Rat methylcellulose-induced
OHT model

Increased RGC numbers No effect - Prevented the reduction in retinal function
(increased PhNR amplitude, PERG
amplitude and implicit time)
Prevented microglial and Müller
cell activation
Decreased inflammatory markers (NF-κB,
TNF-α and IL-6)
Decreased apoptotic marker (Bax/Bcl-2
ratio and active caspase-3) levels

[120]
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Table 3. Cont.

Natural Products Model RGC IOP Ocular Vasculation Other Findings References

Sodium alginate poly (vinyl
alcohol) electrospun

nanofibers of forskolin

Normal rabbit - Reduced IOP - - [257]

Erigeron breviscapus Rat episcleral vein
cauterization-induced OHT model

- Reduced IOP - Improved visual function [123]

Rabbit methylcellulose-induced
OHT model

Increased RGC density
Increased RNFL thickness
Reduced RGC
axonal degeneration

- - - [124]

Scutellarin Mouse clear hydrogel-induced
OHT model

- - - Reduced retinal thinning
Reduced visual behavioral deficits

[126]

BV-2 cells exposed to low
oxygen level

- - - Increased cell viability
Inhibited expression of NLRP3
Reduced the upregulation of ASC, cleaved
caspase-1 and IL-18 and -1β

[127]

Rat saline-induced acute
OHT model

Increased survival rate - - Reduced impaired microglial cells
Inhibited NLRP3 expression
Reduced upregulation of ASC, cleaved
caspase-1 and IL-18 and -1β

[127]

Lycium barbarum Rat argon laser
photocoagulation-induced
OHT model

Reduced ET-1 expression
in RGCs

- - - [131]

Mouse acute OHT model Increased RGC numbers
Increased IRL thickness

- Recovered blood vessel
density in retina

Protected retinal vasculature stability
(reduced IgG leakage, more continued
structure of tight junctions associated with
increased occludin protein level)
Downregulation of RAGE, ET-1, Aβ
and AGE

[131]

Rat acute OHT model Normalized GCL density
Preserved IRL thickness

- - Preserved positive scotopic threshold
response functions

[132]

Rat suture implantation-induced
chronic OHT model

Preserved RGCs - - - [134]

Rat partial optic nerve
transection model

- - - Preserved visual function [135]

Rat complete and partial optic
nerve transection

Delayed RGC degeneration - - Increased MnSOD and IGF-1 expressions [136]

RGC-5 cells exposed to
CoCl2-induced hypoxia

Reduced cell apoptosis - - Inhibited ROS generation
Inhibited reduction in mitochondrial
membrane potential

[137]
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Table 3. Cont.

Natural Products Model RGC IOP Ocular Vasculation Other Findings References

Human TM cells exposed to H2O2 - - - Promoted cell viability
Reduced apoptosis
Reduced cleaved caspase-3/-9 and
ROS levels

[138]

Rat partial optic nerve
transection model

Delayed secondary
degeneration of RGCs

- - Promoted M2 polarization of
microglia/macrophages
Downregulated autophagy level

[139]

PC12 cells exposed to
hydrostatic pressures

- - - Reduced ANGPTL7, MMP-2 and -9,
collagen I and TGF-β expressions

[141]

Mouse retinal I/R injury model Retinal cellular organization
remained normal
Fewer pyknotic nuclei in
GCL and INL

- - Reduced glial activation [144]

Rat retinal I/R injury model Reduced apoptosis in GCL
and INL

- - Increased Nrf2 nuclear accumulation
Increased HO-1 expression

[145]

Rat saline-induced acute
OHT model

Downregulation of APP
and RAGE expressions

- Reverse loss of function
of astrocyte endfeet
around blood vessels

Reduced numbers of astrocytes
and microglia
Decreased glutamine toxicity in astrocytes
(downregulation of glutamine synthetase)

[146]

Rat retinal I/R injury model - - - Preserved retinal thickness
Increased antioxidant levels (GSSH + GSH,
SOD and CAT)
Reduced MDA level

[146]

Diospyros kaki Mouse microbead-induced OHT
model, and D2 mouse

Reduced RGC loss Reduced IOP - Increased sGCα-1 expression [149]

RGC-5 cells exposed to glutamate Increased cell viability - - Decreased apoptotic protein levels (poly
(ADP-ribose) polymerase, p53 and
cleaved caspase-3)
Increased antioxidant-associated protein
expression levels (SOD, GST and GPX)

[150]

Mouse partial optic nerve
crush model

Reduced RGC death - - - [150]

T. wilfordii—Triptolide D2 mouse Improved RGC survival No effect - Suppressed microglia activation [153]
Angle photocoagulation-induced
chronic glaucoma rat model

Improved RGC survival - - Reduced microglia count
Reduced TNF-α expression

[154]

Mouse optic nerve crush model Improved RGC survival - - Reduced TNF-α expression
Inhibited nuclear translocation of NF-κB

[155]

T. wilfordii—celastrol Mouse optic nerve crush model Improved RGC survival - - Reduced TNF-α expression [156]
Rat trabecular laser
photocoagulation model

Improved RGC survival - - - [157]
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Natural Products Model RGC IOP Ocular Vasculation Other Findings References

Crocus sativus L. Mouse laser-induced OHT model Prevented RGC death - - Decreased microglial numbers and
their activation
Partially reversed downregulation
of P2RY12

[159]

C. sativus—Crocin Rat retinal I/R injury model Increased RGC survival - - Inhibited retinal thinning
Decreased cleaved caspase-3 and p-ERK
protein expressions
Increased GSH and T-SOD activities
Decreased ROS and MDA levels

[162]

Rat retinal I/R injury model Increased RGC survival
Reduced RGC apoptosis

- - Upregulation of Bcl-2/Bax level
Enhanced p-AKT levels

[163]

RGC-5 cells exposed to H2O2 Protected RGCs
from apoptosis
Enhanced cell viability

- - Decreased LDH release
Decreased ROS levels
Increased ∆Ψm
Downregulated Bax and cytochrome c
protein expressions
Promoted Bcl-2 protein expression
Activated NF-κB

[164]

C. sativus—Crocetin Mouse NMDA-induced retinal
injury model

Increased GCL density - - Reduced TUNEL-positive cells
Inhibited activated caspase-3/-7
Increased cleaved caspsase-3 expression

[165]

Rat retinal I/R injury model Increased GCL density
Reduced INL thinning

- - Decreased TUNEL-positive cells and
8-OHdG-positive cells
Decreased phosphorylation levels of p38,
JNK, NF-κB and c-Jun

[166]

Curcumin BV-2 cells exposed to H2O2 - - - Increased cell viability
Decreased ROS and apoptosis
Downregulated caspase-3, cytochrome c
and Bax
Upregulated Bcl-2

[169]

Rat episcleral vein cauterization Prevented RGC loss - - Downregulated caspase-3, cytochrome c
and Bax
Upregulated Bcl-2

[169]

Ex vivo optic nerve cut model Increased RGC survival
Preserved retinal thickness

Prevented alterations in apoptotic cascades
and MAPK and SUMO-1 pathways

[170]

Rat retinal I/R injury model - - - Prevented retinal damage [171]
Rat retinal I/R injury model Inhibited GCL cell loss

Reduced cell apoptosis
Inhibited retinal capillary degeneration
Inhibited upregulation of MCP-1, IKKα,
p-IκBα and p-STAT3 (Tyr), and
downregulation of β-tubulin II

[172]
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Primary porcine TM cells exposed
to H2O2

- - - Prevented cell death
Reduced ROS production
Inhibited pro-inflammatory factors (IL-6,
-1α and -8 and ELAM-1)
Decreased SA-β-gal activity
Reduced carbonylated proteins and
apoptotic cell numbers

[173]

Primary porcine TM cells exposed
to H2O2

- - - Reduced ROS level
Reduced apoptosis
Upregulated Bcl-2
Downregulated Bax and activated
caspase-3 levels
Reduced Nrf2, HO-1 and
NQO1 expressions
Increased Keap1 expression

[174]

Rat partial optic nerve
transection model

Improved RGC
density ratio

No effect - - [258]

Human TM cells exposed to H2O2 - - - Reduced TNF and IL-1α and -6 expression
Reduced mitochondrial ROS production
Reduced cleaved caspase-3 proteins
Reduced TUNEL-positive cells

[259]

Green tea Rat retinal I/R injury model Increased RGC numbers
Reduced apoptotic RGCs

- - Reduced activated caspase-3 and -8, SOD2
and inflammation-related
proteins expressions
Reduced p38 phosphorylation
Enhanced JAK phosphorylation

[176]

Rat LPS-induced retinal
inflammation model

- - - Suppressed activated microglia, astrocytes
and Müller glia
Reduced pro-inflammatory cytokine
expressions (IL-1β and -6 and TNF-α in
retina and vitreous humor)

[177]

Green tea—EGCG Rat saline-induced acute
OHT model

- - - Decreased inflammation-associated
cytokine levels
Decreased the proliferation rate of T
lymphocyte cells
Reduced IκBα and p65 phosphorylation

[179]

Mouse microbead-induced
OHT model

Increased RGC numbers No effect - - [180]

Rat optic nerve crush model Increase RGC density - - Increased NF-L protein expression [181]
Rabbit retinal I/R injury model Preserved organization of

GCL, IPL and INL
- - Reduced retinal gliosis

Reduced MDA level
[182]
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Rat NMDA-induced
excitotoxicity model

Increased GCL cell density - - - [183]

Ginseng Rat optic nerve crush injury model Increased cell survival
Reduced cell apoptosis

- - Increased Bcl-2/Bax protein ratio
Decreased c-Jun, P-c-Jun and P-JNK
protein expressions

[190]

Rabbit ultrasound-targeted
microbubble optic nerve
injury model

Reduced RGC damage Reduced IOP - Reduced oxidative stress level
Reduced MDA and NO levels
Increased SOD level

[191]

RGC-5 cells exposed to CoCl2
or H2O2

Reduced cell apoptosis - - Reduced cleaved caspase-3 and
-9 expressions

[192]

Marijuana—∆9-THC Normal dogs - Reduced IOP - No effect on aqueous humor flow rate [197]

Normal rabbit - Reduced IOP - - [198]

Marijuana—∆8-THC Rabbit chymotrypsin-induced
OHT model

- Reduced IOP - - [199]

Marijuana Rat retinal I/R injury model Reduced RGC damage - - - [201]

Anthocyanins RGC-5 cells exposed to H2O2 Increased survival rate - - - [207]
Mouse optic nerve crush model Increased survival rate - - Increased Grp78 and Grp94 levels [208]

Resveratrol Glaucomatous human TM cells - - - Increased eNOS and NO levels
Decreased iNOS expressions
Increased IL-1α level with low dose
Decreased IL-1α level with high dose

[211]

Rat hyaluronic acid-induced chronic
OHT model

Preserved RGC numbers No effect - - [212]

Mouse microbead-induced
OHT model

Preserved RGC numbers - - Decreased ROS generation and
acetyl-p53 expression
Upregulated BDNF and TrkB expressions

[213]

RGC-5 cells exposed to H2O2 Increased cell viability - - Reduced expressions of cleaved caspase-3
and -9
Reduced ROS production
Reduced loss of mitochondrial membrane
potential and p-p38, p-ERK and
p-JNK expressions
Promoted SOD, CAT and GSH activities

[214]

Mouse retinal I/R injury model Ameliorated retinal
thickness damage
Increased RGC numbers

- - Downregulated mitochondrial
apoptosis-related proteins (Bax and
cleaved caspase-3)
Increased Bcl-2 expression

[215]

Mouse retinal I/R injury model Reduced RGC loss
Reduced retinal damage

- - Reduced TUNEL staining
Reduced Bax and cleaved caspase-3 levels

[216]
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Mouse retinal I/R injury model Reduced RGC loss - - Reduced Bcl-2, Bax, caspase-3, GFAP,
COX-2 and iNOS expressions

[217]

Rat superparamagnetic iron
oxide-induced chronic OHT model

No effect on GCL density
Decreased cell apoptosis

No effect - Improved retinal morphology
Improved expressions of proteins involved
in mitochondrial biogenesis and dynamics

[218]

RGC-5 cells exposed to
elevated pressure

Decreased cell apoptosis - - Decreased mitochondrial membrane
potential depolarization
Decreased ROS production
Upregulated expressions of proteins
involved in mitochondrial biogenesis
and dynamics

[218]

Mouse retinal I/R injury model Decreased cell apoptosis
Restored retina thickness

Increased Opa1 expression, and long Opa1
isoform-to-short Opa1 isoform ratios

[219]

Normal rabbit - Reduced IOP - - [260]

Hesperidin Rat dextrose- or prednisolone
acetate-induced OHT model

- Reduced IOP - Increased glutathione
Reduced morphological alteration in
ciliary bodies

[223]

Mouse NMDA-induced retinal
injury model

- - - Reduced inflammatory cytokine (TNF-α,
IL-1b and -6 and MCP-1) expressions

[224]

Mouse NMDA-induced retinal
injury model

Prevented reductions in
RGC markers
Prevented RGC death

- - Reduced calpain activation, ROS
generation and TNF-α gene expression
Improved electrophysiological function
and visual function

[225]

Rat hypobaric hypoxia-induced
retinal injury model

- - - Enhanced Nrf2 and HO-1 activation
Attenuated apoptotic caspase levels
Reduced Bax and preserved
Bcl-2 expressions
Downregulated PARP1 expression
Upregulated CNTF expression

[226]

Caffeine Rat laser-induced OHT model Increased survival rate Reduced IOP - Downregulated TNF and IL-1β mRNA
and protein levels
Suppressed microglia activation
(downregulated MHC-II, TSPO, CD11b
and TREM2 expressions)

[234]

Rat retinal I/R injury model - - - Reduced microglial activation at 7 days
post-injury (reduced Iba1 and MHC-II
cells; reduced TSPO and MHC-II
mRNA levels)
Reduced TUNEL-positive cells

[235]
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Human retinal pigment epithelial
cells exposed to LPS

- - - Reduced LPS-induced inflammatory
cytokines (TNF-α, IL-1β and -6)
Restored BDNF expression
Reduced p-NF-κB p65
nuclear translocation
Restored blood–retinal barrier (increased
transepithelial electrical resistance value
and ZO-1 tight junction expression)

[236]

Mouse retinal I/R injury model - - - Increased PERG amplitude
Reduced IL-6 mRNA expression
Increased BDNF mRNA expression

[236]

Coenzyme Q10 Mouse retinal ischemia model Promoted RGC survival - - Prevented upregulation of SOD2 and
HO-1 protein expression
Blocked activation of astrocytes and
microglial cells
Blocked apoptosis by decreasing caspase-3
protein expression
Decreased Bax protein expression
Preserved Tfam protein expression

[239]

D2-Gpnmb+ mice Promoted RGC survival - - Preserved axons in the ONH
Inhibited astrocytes activation
Blocked the upregulation of NR1, NR2A,
SOD2 and HO1 protein expressions
Decreased Bax protein expression
Preserved mtDNA content and
Tfam/OXPHOS complex IV
protein expressions

[240]

Rat chronic OHT model Prevented RGC apoptosis
and RGC loss

No effect - - [241]

Rat mechanic optic nerve
injury model

Increased RGC numbers - - Reduced activation of astroglia and
microglial cells
Increased Bcl-xL protein expression

[243]

Vitamin B3 D2-Gpnmb+ mouse Prevented RGC loss
Prevented RNFL thinning

Reduced IOP at
high dose

- Prevented the decline in NAD levels
Reduced incidence of optic
nerve degeneration
Improved PERG amplitude
Inhibited formation of
dysfunctional mitochondria
Decreased PARP activation
Reduced DNA damage
Reduced HIF-1α transcriptional induction

[247]

D2 mouse Increased RGC density - - Increased F-PERG adaptation [248]
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Vitamin D Normal monkeys - Reduced IOP - - [253]
D2 mouse Reduced RGC death - - Improved PERG and FERG amplitudes

Increased neuroprotective factor (BDNF,
VEGF-A and PlGF) mRNA levels
Decreased microglial and
astrocyte activation
Decreased inflammatory cytokine (IL-1β,
-6, IFN-γ and CCL-3) expressions
Decreased NF-κB activation

[254]

Vitamin E
Rat episcleral vein cauterization No effect No effect - Increased serum vitamin E level [255]
Rat optic nerve crush model Preserved RGC numbers - - - [256]

∆9-THC, ∆-9-tetrahydrocannabinol; Aβ, amyloid beta; AGE, advanced glycation end products; ANGPTL7, angiopoietin-like protein 7; APP, amyloid precursor protein; ASC, caspase
recruitment domain; Bax, Bcl-2-like protein 4; Bcl-2, B cell lymphoma 2; CAT, catalase; CNTF, ciliary neurotrophic factor; COX-2, cyclooxygenase; D2, DBA/2J; ELAM-1, endothelial
leucocyte adhesion molecule-1; eNOS, endothelial nitric oxide synthase; ET-1, endothelin-1; F-VEP, flash visual evoked potentials; GCL, ganglion cell layer; GPX, glutathione peroxidase;
GSH, glutathione; HIF-1α, hypoxia-inducible factor-1α; HO-1, heme oxygenase-1; IGF-1, insulin-like growth factor 1; IL, interleukin; iNOS, inducible nitric oxide synthase; IRL,
insulin receptor-like; LDH, lactate dehydrogenase; LPS, lipopolysaccharide; MCP-1, monocyte chemoattractant protein-1; MDA, malondialdehyde; MHC-II, major histocompatibility
complex class II; MMP, metalloproteinase; NF-κB, nuclear factor-kappa B; NF-L, neurofilament light chain; NLRP3, NOD-, LRR- and pyrin domain-containing protein 3; NMDA,
N-methyl-d-aspartate; Nrf, nuclear factor erythroid 2-related factor; NQO1, NAD(P)H:quinone oxidoreductase; OHT; ocular hypertension; ONH, optic nerve head; OPA1, optic atrophy
1; OXPHOS, oxidative phosphorylation; PARP1, poly [ADP-ribose] polymerase 1; PERG, pattern electroretinogram; PhNR, photopic negative response; PlGF, placental growth factor;
ROS, reactive oxygen species; RAGE, receptor for advanced glycation end products; RGC, retinal ganglion cell; RNFL, retinal nerve fiber layer; sGCα-1, soluble guanylate cyclase
α1; SOD, superoxide dismutase; T-AOC, total antioxidant capacity colorimetric; TNF-α, tumor necrosis factor-alpha; TGF-β, transforming growth factor-beta; Tfam, mitochondrial
transcription factor A; TREM2, triggering receptor expressed on myeloid cells 2; TSPO, translocator protein (18 kDa); VEGF, vascular endothelial growth factor.
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5. Challenges for Natural Product Application in Glaucoma Treatment

The WHO has defined guidelines for evaluating the safety and efficacy of natural
products, which is important to further supporting the use of CAM in the healthcare sys-
tem [261]. This guideline provides general principles for both preclinical and clinical studies
on evaluating herbal medicines, i.e., quality and preparation of plant materials, and general
pharmacological, pharmacodynamic and toxicological analyses. Although the use of crude
extracts from whole plants or a particular part of any herbal plant proves to be useful in
the treatment of glaucoma, as described in this review, the identification and isolation of an
active phytochemical may also be important, especially in the drug development process.
Crude extracts contain a wide range of phytochemicals that may work synergistically or
individually to provide a polypharmacy effect in the treatment of glaucoma [262]. Similarly,
several studies have reported the use of a mixture of molecules to be effective in reducing
IOP in POAG patients. Researchers may have difficulty in identifying the exact mechanism
or compound responsible for such findings. For instance, oral administration of two tablets
per day of a food supplement containing 150 mg of C. forskohlii extract (containing 15 mg
forskolin), 200 mg of rutin, 0.7 mg of vitamin B1 and 0.8 mg of vitamin B2 for 30 days
contributed to reducing IOP in POAG patients [263]. The same supplementation has also
been shown to reduce ocular discomfort in POAG patients due to chronic use of multi-dose
eye drops containing preservatives [264], and to prevent IOP spikes after neodymium:YAG
laser iridotomy in patients at risk of POAG [265]. Additionally, supplementation with
tablets containing C. forskohlii extract, homotaurine, carnosine, folic acid, vitamins of the
B group and magnesium in POAG patients compensated by IOP-lowering drugs during
a period of 12 months showed a significant further decrease in IOP and an improvement
in the pattern electroretinogram amplitude at 6, 9 and 12 months, and foveal sensitivity
at 12 months [266]. In another study, daily intake of a similar supplement for 4 months
showed a decrease in IOP, improved light sensitivity and contrast sensitivity and a better
quality of life in POAG patients [267]. Additionally, supplementation with French maritime
pine bark/bilberry fruit extracts rich in anthocyanins to POAG patients for 4 weeks showed
a reduced IOP [268].

Numerous eye drops of various classes, such as prostaglandin analogs, beta blockers,
carbonic anhydrase inhibitors, adrenergic agonists, miotics and hyperosmotic agents, are
often preferred over surgeries for the treatment of glaucoma [269]. One of the major
issues in glaucoma treatment is patients’ noncompliance, due to improper techniques of
administering eye drops [270]. Another major issue is poor drug bioavailability across
the blood–retinal barrier, limited retention capacity of the cul-de-sac (usually 7–10 µL,
maximum 50 µL), rapid drainage of the medication caused by gravity and washout by
tearing or through the nasolacrimal duct [271]. The use of various nanoformulations such as
nanoparticles, nanoemulsions and nano lipid vesicles to transport phytochemicals may be
able to increase the bioavailability of the drugs to the eye. For instance, baicalein loaded in
trimethyl chitosan nanoparticles showed a longer pre-ocular retention time and improved
baicalein bioavailability, compared to baicalein solution [272]. Davis et al. [258] reported the
use of a curcumin-loaded nanocarrier formulation using D-α-tocopherol polyethene glycol
1000 succinate nanoparticles, with each particle measuring <20 nm in diameter. In an OHT
rat model, topical application of curcumin nanocarriers administered twice daily for three
weeks was shown to significantly reduce RGC loss, but not in the free curcumin treatment
group [258]. Additionally, the same study showed that curcumin nanocarriers protected
retinal cells against CoCl2-induced hypoxia and glutamate-induced toxicity in vitro, by
significantly increasing cell viability [258]. Similarly, a chitosan–gelatin-based hydrogel
containing curcumin-loaded nanoparticles decreased the inflammation (reduced expression
of TNF and IL-1α and -6, associated with downregulated mitochondrial ROS production)
and apoptosis levels (reduced TUNEL-positive cells and cleaved caspase-3 protein level) of
human TM cells exposed to H2O2-induced oxidative stress [259]. Apart from curcumin,
co-encapsulated resveratrol and quercetin in chitosan nanoparticles, and sodium alginate-
poly (vinyl alcohol) electrospun nanofibers of forskolin showed an efficient IOP reduction
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in adult normotensive rabbits [257,260]. These studies demonstrated that phytochemical
nanoformulations hold promising results, promoting their use as an alternative to existing
glaucoma eye drops in clinical practice.

Lastly, it is important to use a suitable methodology to address the objectives of a
study. Numerous studies used the Bcl-2/Bax ratio to imply that the therapeutic substance
influences the activation of the intrinsic apoptotic pathway in RGCs, as shown by the
numerous studies which have been reviewed here. However, the concept that both Bcl-2
and Bax expressions are in a stoichiometric 1:1 balance in cells reflects the old ‘rheostat’
model of the Bcl-2 family’s protein function, a hypothetical model that was debunked over
two decades ago when it was shown that a 1:1 interaction of these proteins was a laboratory
artifact [273,274]. Additionally, the predominant anti-apoptotic protein expressed in the
retinal cells, including the GCL, is the long form of Bcl-X (Bcl-XL), which was found to be
16 times more abundant than Bcl-2 [275]. Furthermore, it is even questionable whether Bcl-2
is expressed in adult RGCs and may, in fact, be limited to Müller cells in the retina [276].
Therefore, the reporting of the Bcl-2/Bax ratio may not be a suitable marker to imply
apoptosis in RGCs, and instead, the changes in Bcl-XL expression may correlate better with
RGC apoptosis.

6. Conclusions

One of the most common causes of vision loss is glaucoma. Recent data have gained
insight into glaucoma pathogenesis, which involves a complex interaction of LC cupping,
insufficient ocular blood supply, oxidative stress and neuroinflammation. The use of
natural products with antioxidant, anti-inflammatory and anti-apoptotic properties may
prove to be beneficial in the treatment of glaucoma. Furthermore, natural products are
easily available and are cost effective. Natural products have been shown to protect
against RGC loss in in vitro and in vivo preclinical studies, as well as in clinical trials. The
present review highlighted various natural products such as GBE, L. barbarum, D. kaki,
T. wilfordii, saffron, curcumin, anthocyanin, caffeine, coenzyme Q10 and vitamins B3, D and
E that confer neuroprotective effects on RGCs. Additionally, IOP has been shown to be
reduced by treatment with marijuana, baicalein, forskolin, ginsenoside, resveratrol and
hesperidin. GB, ginseng, anthocyanins and L. barbarum were reported to increase ocular
blood flow in glaucoma. Additionally, caffeine administration has been shown to reduce
IOP through its adenosine receptor antagonist properties. Although these may serve as
alternative targets for glaucoma treatment other than IOP-lowering drugs, more evidence
is required to warrant the recommendation of these novel targets. Admittedly, a few of
these natural products have had no or limited clinical testing, restricting their potential use
in the treatment of glaucoma. Nevertheless, it is important to ensure that the bioavailability
and safety of these natural products are checked in well-designed randomized clinical trials
to further determine their therapeutic potential in glaucoma.
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