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Tripartite motif containing-21 (TRIM21), an E3 ubiquitin ligase, was initially

found to be involved in antiviral responses and autoimmune diseases.

Recently studies have reported that TRIM21 plays a dual role in cancer

promoting and suppressing in the occurrence and development of various

cancers. Despite the fact that TRIM21 has effects on multiple metabolic

processes, inflammatory responses and the efficacy of tumor therapy, there

has been no systematic review of these topics. Herein, we discuss the emerging

role and function of TRIM21 in cancer metabolism, immunity, especially the

immune response to inflammation associated with tumorigenesis, and also the

cancer treatment, hoping to shine a light on the great potential of targeting

TRIM21 as a therapeutic target.
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Introduction

Tripartite motif-containing (TRIM) family members consists of a Really Interesting

New Gene (RING) motif, one or two zinc-finger domains called B-boxes and a coiled-coil

(CC) domain. TRIM21 belongs to the TRIM family and is structurally characterized by a

RING domain for the E3 ubiquitin ligase (1, 2).

Cancer cells often show high demand of nutrient metabolism to provide energy and

biomass for cellular function and proliferation (3, 4). It is increasing recognized that

cancer metabolism can not only modulate tumorigenesis and survival (5), but also hider

immune cell function by releasing metabolites and affecting the expression of immune

molecules (6). The strength of immune function then determines the fate of cancer cells
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(7). Some studies have shown that a persistent activation of

immune system, such as chronic inflammation can activate

oncogenic signaling and promote tumorigenesis (8, 9),

especially in liver cancer, cervical cancer and colon cancer

(10–12). Accumulating evidence shows that cellular and

acellular components in tumor microenvironment (TME) can

reprogram tumor initiation, growth, invasion, metastasis, and

response to therapies (13).

TRIM21 is mainly considered to be related to antiviral

responses and autoimmune diseases (14, 15). Recent studies

suggest that TRIM21can alter the context in which cancer

evolution occurs, promoting or suppressing the development of

various cancers (16, 17). Multiple key molecules involved in

cancer metabolism, immunity, especially in inflammation-

associated tumorigenesis and cancer treatment have been

identified as ubiquitination substrates of TRIM21, unfortunately

without a systematic review of these topics yet.

Therefore, we systematically outline the role and function of

TRIM21 in cancer metabolism, immunity and cancer treatment,

and discuss the possible function of TRIM21 in inflammation-

associated tumorigenesis, hoping to shine a light on the great

potential for targeting TRIM21 as a therapeutic target (Figure 1).
Expression and regulatory
mechanism of TRIM21

TRIM21 is differentially expressed in various organs and

cells, and can be detected in the cytoplasm and nucleus (1, 18).

Among immune cells, T cells, macrophages and dendritic cells
Frontiers in Immunology 02
have the highest TRIM21 expression, which is further enhanced

by stimulation via interferons (IFNs) and TLR ligation (19, 20).

TRIM21 expression can be induced via transcriptional

mechanisms (Figure 2). TRIM21 has been implicated in the

negative regulation of Toll-like receptor-3 (TLR-3)-mediated

inflammation by promoting proteasomal degradation of

interferon regulatory factors (IRFs) 3, 5, 7 and 8 (21, 22).

Conversely, IFNs which are produced upon TLR-3 ligation,

have been shown to upregulate TRIM21 expression (18, 23, 24).

Propofol, a type-A g-aminobutyric receptor (GABAAR) agonist

can also downregulate TRIM21 but not at the transcriptional level

(25), and the detailed mechanism needs to be explored.

Several signaling pathways are also involved in regulating

TRIM21 expression. PI3K/AKT activity is negatively correlated

with TRIM21 expression (26), while the JAK/STAT signaling

pathway can significantly induce TRIM21 expression (27).

Post-translational modification is an important biological

event in tumor progression, regulating the conformation and

functions of numerous proteins (28). The expression of TRIM21

can be induced via post-transcriptional mechanisms. PRMT5-

induced arginine methylation has been reported to inhibit

TRIM21 function (29). Histone deacetylase 6 (HDAC6) can

interact with TRIM21 through its PRYSPRY motif and

deacetylates TRIM21 at Lysine 385 and Lysine 387, thus

promoting its homodimerization and binding to the substrate

(30). Furthermore, the Lys260 and Lys279 residues of TRIM21

can be ISGylated by HECT and RLD domain containing E3

ubiquitin protein ligase 5 (HERC5), an interferon-stimulated

gene 15 (ISG15) E3 ligase, resulting in enhanced TRIM21 E3

ligase activity (31).
FIGURE 1

The emerging roles TRIM21 in coordinating cancer metabolism, immunity and cancer treatment. TRIM21 acts at multiple nodes to control
cancer metabolic reprogramming inhibiting the increased metabolic demands of malignancy including glycolysis, fatty acids metabolism and
branched-chain amino acid metabolism. TRIM21-mediated metabolic regulation not only indirectly effects immune cell infiltration, but also
cross-talks innate immunity and adaptive immune directly, takes part in balancing immune response. TRIM21 also has indispensable roles in
mediating cancer therapeutic effects, playing a decisive role in the fate of cancer.TRIM21 has tremendous application potential in cancer
diagnosis, treatment and prognosis.
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Role of TRIM21 in cancer
metabolism

Metabolic pathways provide the fuel, including glucose,

lipids and amino acids, that powers cellular activities (32).

More and more studies have focused on the regulatory role of

TRIM21 in cancer metabolism (Figure 3).

Regardless of oxygen content, glycolysis occurs to provides the

high energy and biosynthetic materials required for cancer cell

growth, which is known as the Warburg effect (33, 34). This

process is controlled by the expression of glycolytic enzymes (35).

Phosphofructokinase 1 (PFK1) catalyzes one of the key

regulatory and rate-limiting steps in glycolysis by converting

fructose 6-phosphate and ATP to fructose 1,6-bisphosphate and

ADP in the glycolytic pathway (36). PFK1 platelet isoform (PFKP)

is the predominant PFK1 isoform and is overexpressed in

glioblastoma specimens. TRIM21 has been reported to regulate

PFKP degradation through K48-dependent ubiquitination,

thereby decreasing the stability of PFKP and inhibiting aerobic

glycolysis (37). The interaction between PFK1 and TRIM21 might

be interfered by Mmitofusin2 (MFN2), a mechanoresponsive

protein that binds with PFK1 through its C-terminus. MFN2

knockdown has been found to promote the stabilization of PFK1,

likely through decreasing the ubiquitin-protease-dependent PFK1

degradation (38, 39). Similarly,TRIM21 can mediate GLUT1

ubiquitination and degradation, while protein phosphatase

2Aca (PP2Aca) dephosphorylates p-GLUT1 (Thr478) and

suppresses this process, leading to the promotion of glucose

intake and glycolysis (40, 41).

The pentose phosphate pathway (PPP), a critical pathway

for nucleotide and NADPH production, is of importance for cell
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proliferation and redox state maintenance (42). G6PD, the rate-

limiting enzyme in the PPP, can be degraded by TRIM21-

mediated ubiquitination, and the effect can be revised by AKT

activation (26). Meanwhile, the SPRY domain of TRIM21 can

interact with HIF-1a, the master transcription factor involved in

glycolysis (43), for the subsequent proteasomal degradation (44).

Consequently, the reduced glycolysis suppresses tumorigenesis

and metastasis of renal carcinoma.

Compared with normal tissues, cancer cells have a higher

demand for fatty acids (FAs) to generate lipid membranes and

precursors for signaling molecules (45). Some key molecules in

the lipid metabolism pathway have also been defined as

substrates of TRIM21. Fatty acid synthase (FASN) is a key

lipogenic enzyme, and increased FASN activity leads to

elevated de novo FA synthesis to support tumorigenesis (45).

FASN has been found to favor the interaction with TRIM21 for

degradation upon glucose deprivation (46). On the other hand,

TRIM21-mediated FASN degradation can be competitively

repressed by glyceronephosphate O-acyltransferase (GNPAT)

(47), which is a critical rate-limiting enzyme in the biosynthesis

of plasmalogens (48). TRIM21 also mediates GNPAT

ubiquitination and degradation through K27, K33, and K48-

ubiquitin at K113, K146, and K312.

TRIM21 is also involved in amino acid metabolism. Branched-

chain amino acid transaminase 2 (BCAT2) enhances branched-

chain amino acid (BCAA) uptake to sustain BCAA catabolism and

mitochondrial respiration. TRIM21 targets BCAT2 for

degradation to inhibit pancreatic ductal adenocarcinoma

development (49). Serine hydroxymethyltransferase 2 (SHMT2),

which regulates the conversion of serine and glycine in

mitochondria, is important for cell proliferation (50). The
FIGURE 2

Model shows the regulatory mechanism of TRIM21. Multiple mechanisms are involved in the regulation of TRIM21 expression. TRIM21
expression is augmented by stimulation with IFNs induced by IRFs. There is a feedback mechanism to inhibit IFN production by promoting the
ubiquitination and subsequent proteasomal degradation of IRFs. PRMT5-induced arginine methylation inhibits TRIM21 function, while HDAC6
deacetylates TRIM21 to promote its homodimerization and stabilizes its ubiquitination function. ISGylated by HERC5 also leads to enhanced
TRIM21 E3 ligase activity. JAK/STAT signaling pathway induces the expression of TRIM21, while PI3K/AKT pathway activity is negatively
correlated with TRIM21 expression. Propofol downregulates TRIM21 expression without detailed mechanism.
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activity of SHMT2 can be inhibited by K95 acetylation. Then,

TRIM21 binds to acetylated SHMT2 and mediates K63-ubiquitin

lysosome degradation, thereby reducing the production of

NADPH and suppressing colorectal cancer tumorigenesis (51).

What’s more, conversion from glutamine to glutamate and

nitrogen by glutaminase (GAC) converts is the first step

in catalyzing glutaminolysis. Therefore, inhibiting GAC is

a promising strategy to disrupt tumor progression (52).

Lys311 acetylation on GAC strengthens the interaction between

GAC and TRIM21, therefore promoting GAC K63-linked

ubiquitination mediated by TRIM21 and inhibiting GAC

activity in non-small cell lung cancer (53).

Theoretically, TRIM21 directly mediate the ubiquitination

and degradation of HIF-1a and FASN, thereby attenuating

glucolipid metabolism. However, the TRIM21-mediated

degradation of HIF-1a may also increase FA oxidation (FAO)

indirectly. Carnitine palmitoyltransferase 1A (CPT1A), the rate-

limiting enzyme of mitochondrial FA transport, is responsible

for FAO (54). The expression of CPT1A can be repressed by
Frontiers in Immunology 04
HIF-1a, which leads to a decrease in FAO, and forces FAs to be

stored in lipid droplets (55). The detailed mechanisms of

TRIM21 in maintaining the balance of tumor metabolism,

especially in lipid metabolism, and the cross-talk between

metabolic activities merit further research.

Metabolism is a complex process that includes many enzymes,

and provides energy for cellular function and proliferation (56).

The studies mentioned above indicate that TRIM21 functions at

multiples steps to control cancer metabolic reprogramming and

inhibit the increased metabolic demands in malignancies, whether

other metabolic enzymes in different tumors are also substrates of

TRIM21 still needs to be confirmed. Furthermore, current studies

mostly addressed cancer metabolism in vitro level, whether the

effect of TRIM21 on metabolism can be replicated in vivo is of

great significance. Considering that TRIM21 is also highly

expressed in immune cells, whether the different expression

levels of TRIM21 in immune cells contribute to different

metabolic phenotypes or immune functions still needs to

be explored.
FIGURE 3

Model shows the regulatory mechanism of TRIM21 in cancer metabolism. Multiple metabolic enzymes have been identified as ubiquitination
substrates of TRIM21. The glycolysis is attenuated by the ubiquitination degradation of GLUT1, PFKP, G6PD and HIF1-a. De novo fatty acid
synthesis and FA oxidation are also reduced by the ubiquitination degradation of FASN, GNPAT and HIF1-a. TRIM21 targets BCAT2, SHMT2 and
GAC for degradation to weaken mitochondrial respiration and catalyze glutaminolysis. TRIM21 acts at multiple steps to control cancer metabolic
reprogramming and reduce the increased metabolic demands in malignancies.
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Role of TRIM21 in immunity

It has been reported that elevated tumor glycolysis and

lactate production are robust suppressors of antitumor

immunity in multiple cancer subtypes (57). Interestingly,

TRIM21-mediated metabolic regulation also has influence on

immune cell infiltration.

SGLT2 (sodium-glucose cotransporter 2) is an important

mediator of epithelial glucose transport, drive glucose and other

nutrients into cells (58). SGLT2 can be degraded by TRIM21,

leading to the increased immune cells infiltration in

osteosarcoma (59). Whereas, the influence of metabolic

product accumulation in the TME caused by TRIM21 on non-

malignant cells, especially on immune cell function, needs to be

further confirmed.

Estimated by Tumor Immune Estimation Resource

(TIMER) (60) database, TRIM21 expression is positively

related with immune infiltrates, such as B cells, CD4+ T cells,

macrophages, neutrophils, and dendritic cells (61), which are

also enriched in the TME. The other stromal cells such as

fibroblasts, vascular endothelial cells, are parts of TME, and

also responsible for the characters of heterogeneous and

inflammatory (62–64). It is worth noting that inflammation

increases the risk of cancers and cancers trigger an inflammatory

response in turn, which is related to the involvement of various

immune cells. The role of inflammation in cancer progression

may vary according to the balance of immune cell types and

signals with the TME (65–67). The function of TRIM21 in

regulating inflammation has until now remained controversial.

Some viral infections can induce inflammation, are corrected

with tumorigenesis, especially in liver cancer, cervical cancer.

Generally speaking, TRIM21 is mainly involved in the antiviral

response, during the infection, TRIM21 intercepts a virus by

linking antigens that recognized by Fc-mediated antibody

recognition to the ubiquitin, proteasome, and autophagy

clearance mechanisms (68, 69). TRIM21 activates innate

immune signaling pathways, including NF-kB and IRFs in a

K63-linked ubiquitin chain-dependent manner. The synthesis of

K63-linked ubiquitin depends on sequential recruitment of the E2

enzymes Ube2W and Ube2N/Ube2V2 and the deubiquitinase

Poh1 (14, 70).

Hepatitis B virus (HBV) infection is frequently linked to the

development of hepatocellular carcinoma (71). TRIM21 interacts

with HBx protein for ubiquitination degradation, which leads to

impaired HBx-mediated degradation of structural maintenance of

chromosomes 6 (Smc6) and suppression of HBV replication in

hepatoma cell lines (72). However, the function of TRIM21 on

HPV is opposite. In cervical cancer, HPV E7 recruits TRIM21.

The PRY/SPRY domain of TRIM21 interacts with g-interferon-
inducible protein-16 (IFI16) and mediates the degradation of

IFI16 in a K33-linked manner, leading to the inhibition of cell

pyroptosis and self-escape from immune surveillance, which may

account for the occurrence of cervical cancer (73, 74). Notably,
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IFI16, as a key DNA sensor, triggers downstream STING-

dependent type I interferon (IFN-I) production. TRIM21

directly interacts with STING to mediate IFI16 degradation via

the ubiquitin-proteasome pathway to avoid excessive IFN-I

production and unwarranted inflammation (73). It should be

noticed that studies on viral infection or inflammation associated

tumors require a long-term observation and appropriate animal

models. Hence, the application of TRIM21 gene mice to simulate

the occurrence and progression of chronic infection-related

tumorigenesis is worth exploring.

Fortunately, TRIM21-/- mice are now available to explore

the specific role of TRIM21 in inflammation and tumorigenesis.

Severe colon inflammation has been shown to promote the

development of colon cancer (75). Previous studies showed

that genetic ablation of TRIM21 in mice conferred protection

from Lipopolysaccharide (LPS)-induced inflammation and

dextran sulfate sodium (DSS)-induced inflammatory bowel

diseases (IBD) model.

SIRT5, a mitochondria NAD+-dependent lysine deacetylase,

is functionally involved in IL-1b production in LPS-activated

macrophages by desuccinylating and activating pyruvate kinase

M2 (PKM2) and thereby preventing DSS-induced colitis (76).

LPS challenge enhances the interaction between TRIM21 and

SIRT5 to promote SIRT5 ubiquitination and degradation (77),

SIRT5 degradation sustains the acetylation of TRIM21 at

Lys351, thereby increasing its E3 ligase activity in LPS-

activated macrophages further. Similarly, Prohibitin (PHB)1 is

a mitochondrial inner-membrane protein maintaining

mitochondrial homeostasis and involved in cell apoptosis

mediated by the mitochondrial pathway (78, 79). TRIM21

induces the ubiquitination and degradation of PHB1, resulting

in the decline of goblet cell apoptosis. This process can be

competitively inhibited by estrogen receptor b (ERb) (80).

What’s more, TRIM21 may be involved in pyroptotic cell

death by interacting with Gasdermin-D (GSDMD), the

executor of pyroptosis cleaved by inflammatory caspases (81,

82). Via the PRY-SPRY domain, TRIM21 binds with GSDMD to

maintain the stable expression of GSDMD in resting cells and

induce the N-terminus of GSDMD (GSDMD-N) aggregation

during pyroptosis, which acts as a positive regulator of GSDMD-

dependent pyroptosis (83).

Intriguingly, the results from clinical patient samples and in

the trinitrobenzene sulfonic acid (TNBS)-induced IBD model,

are controversial. TRIM21 expression is decreased in inflamed

intestinal mucosa of patients with IBDs, and it suppresses CD4+

T cells to differentiate into TH1 and TH17 cells and negatively

regulates IBD pathogenesis in TNBS-induced IBD model (84).

Different experimental results may be caused by different

experimental modeling methods. Further studies need to focus

on the clinical samples to define the exact role TRIM21 in colitis,

inflammatory-carcinoma transformation and colon cancer.

In addition to inflammation-related tumors, some studies

have also reported the regulatory mechanism of TRIM21 on
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immune cells by directly interacting with numerous proteins

involved in both innate and adaptive immunity (7, 85, 86).

Macrophages and CD16+ monocyte subset participate in a

proinflammatory response, which is consistent with the finding

that TRIM21 mRNA expression is significantly higher in CD16+

monocytes, monocyte-derived macrophages (MDMs) and

dendritic cells (DCs) (87). TRIM21 has been reported to

regulate the release of Th17-promoting cytokines (IL-1b and

IL-6) from LPS-activated monocytes for the enhanced secretion

of inflammatory cytokines (88). But in an LPS-induced lung

endothelial dysfunction model, TRIM21 exhibits an anti-

inflammatory property by decreasing activation of the NF-kB
pathway and monocyte adhesion to endothelial cells. TRIM21 is

then predominantly degraded by mono-ubiquitination and

lysosomal degradation (89). The phenotypes of the regulation

of TRIM21 on macrophages may vary depending on triggers,

tissue sites and inflammation levels.

B cells are the second large population of adaptive immune

cells in the TME (90). TRIM21 deficiency enhances B-cell

proliferation, differentiation into plasmablasts and the ability

to produce antibodies (91, 92). and the presence of B cells also

has been associated with better outcomes in cancer patients (93).

Activated fibroblasts in TME produce and remodel much of

the extracellular matrix, leading to elevated levels of tissue

stiffness in cancers (94, 95). TRIM21 deficiency in fibroblasts

has been found to augment T-helper cell type 17 differentiation,

which promotes a highly fibrotic and high collagen content

phenotype by promoting production via IL-17 and modulating

collagen turnover (96).

Recent researches have shown that antibodies can mediate

virus control indirectly by promoting major histocompatibility

complex (MHC) class I presentation, thereby increasing CD8 T cell

response (97). TRIM21 function as a cytosolic immunoglobulin

receptor that mediates antibody-dependent intracellular

neutralization (ADIN). By binding to IgG, IgM and IgA,

TRIM21 can target a pathogen regardless of the site of infection

and local distribution of antibody isotypes (16, 98–100). Antibody-

dependent cellular cytotoxicity (ADCC) and antibody-dependent

cellular phagocytosis (ADCP), which are mainly mediated by

natural killer (NK) cells and macrophages, respectively, can

eliminate tumor cells via the interaction between antibodies and

immune cells (101, 102). TRIM21 can be made cell-permeant and

subsequently serve as a potential bio-adaptor for efficient cytosolic

delivery of functional antibodies (103), making it possible to kill

tumors by enhancing ADCC or ADCP activity.

It is noteworthy that more studies are urgent to explore the

role of TRIM21 in balancing inflammatory response, and in the

crosstalk between innate and adaptive immunity. As metabolic

reprogramming in TME is a key contributor to immune evasion

(104), whether the changes of TRIM21 in immune cells affect the

transformation of metabolic phenotypes and immune function

also need to be investigated.
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Role of TRIM21 in cancer treatment

TRIM21 regulates not only the strength of immune function,

but also has indispensable roles in mediating cancer therapeutic

effects, playing a decisive role in the fate of cancers.

The cancer treatment approaches generally include surgery,

radiation, chemotherapy and immunotherapy (105). One of the

primary mechanisms of chemoradiotherapy is the inducement

of DNA damage leading to cell death (63). The accumulation of

DNA damage stalls the progression of replication forks (106).

Then, ATR-CHK1 checkpoint signaling is efficiently activated to

stabilize stalled forks and halt cell cycle progression, assuring

accurate duplication and passage of genomic information (107).

CLASPIN, a mediator for ATR-dependent CHK1 activation, can

be degraded by TRIM21 via K63-linked ubiquitination, leading

to replication fork instability and tumorigenesis (108).

Therefore, selectively inhibiting TRIM21 may improve anti-

cancer treatment efficacy and reduce toxic side effects. Prostate

apoptosis response protein 4 (Par-4) is a tumor-suppressor

sensitizing cancer cells to chemotherapeutic agents (109).

Ubiquitination-mediated degradation of Par-4 by TRIM21

contributes to increased cisplatin resistance in both pancreatic

cancer and colon cancer cells (110, 111). Further studies are

required to explore whether the expression of TRIM21 can be

affected during the therapy.

TRIM21 reveals a central role for this RING finger protein in

the degradation of Thr187-phosphorylated p27, which leads to

the S-phase progression and radio-resistance in mammalian

cells (112). TP53 mutation or repression has been identified to

account for the radio-resistance of tumor cells (113). TRIM21 is

highly expressed and can repress TP53 expression by promoting

guanine monophosphate synthase (GMPS) ubiquitination and

degradation (114, 115). Similarly, (DExD/H)-box polypeptide 41

(DDX41), identified as a DNA sensor, is responsible for the

recognition of cytosolic double-stranded DNA (dsDNA) and

can recruit stimulator of interferon genes (STING) to activate

IRF3 and NF-kB in myeloid dendritic cells (116). TRIM21

induces the K48-linked ubiquitination of DDX41, negatively

regulating the innate immune response to intracellular

dsDNA (117).

p21 functions as a cell cycle inhibitor and anti-proliferation

effector (118). A consensus on the role of TRIM21 in p21

regulation has not yet been reached. The underlying regulatory

mechanisms may vary determined in different cancer types.

TRIM21 induces the accumulation of p21 in ovarian carcinoma

(105), but directly induce the ubiquitination of p21 in

neuroblastoma (119). TRIM21 can also decrease p21 expression

in an indirect manner via post-translational regulation of

thioredoxin-interacting protein (TXNIP) in osteosarcoma (120).

Studies have also suggested that TRIM21 enhances the

sensitivity of cancer cells to chemoradiotherapy. Octamer-

binding transcription factor 1 (Oct-1) is a transcription factor
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that mediates the expression of ALDH1A1, which is important

in cancer stem cells maintenance and self-renewal (121).

TRIM21 controls the degradation of Oct-1, and sensitizes

cancer stem cells to chemoradiation (122). Moreover,

Dihydroartemisinin (DHA) was found to activate TRIM21 and

regulate EMT-related proteins by inhibiting PD-L1 to enhance

radiation sensitivity in non-small-cell lung cancer (123). In

addition, Pregnane X receptor (PXR) is involved in governing

the expression of drug-metabolizing enzymes and transporters

(124). TRIM21 inhibits the activity of PXR by mediating PXR

ubiquitination and degradation (125). Similarly, Cyclin-

dependent kinase 2 (CDK2) complex is hyper activated in

most cancers (126, 127), TRIM21 mediates the autophagic

degradation of CDK2 induced by homoharringtonine limiting

the progression of leukemia (128).

Cellular redox regulation plays an important role in the

maintenance of homeostasis. The Keap1 (Kelch-like ECH-

associated protein1)-Nrf2 (nuclear factor erythroid 2-related

factor 2) pathway is a major mechanism involved in cell redox

homeostasis regulation (129). TRIM21 directly interacts with

and ubiquitinates p62 at the K7 residue to abolish Keap1

sequestration, downregulating the Nrf2 redox pathway to

induce cell death in response to oxidative stress (130). In line

with this, TRIM21-deficient heart tissues and cells enhance p62-

mediated sequestration of Keap1 to protect themselves from

doxorubicin-induced ferroptosis (130–132). Phosphatase and

tensin homologue (PTEN), a tumor suppressor protein that

regulates Nrf2 expression in a Keap1-independent manner

(133), can be upregulated by nuclear Prothymosin-a (PTMA)

at the transcriptional level. TRIM21 can bind with PTMA for

ubiquitination, leading to downregulation of p62 and Nrf2

expression in human bladder cancer (134).
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Moreover, p62 is also an autophagy receptor (135), TRIM21-

mediated K63-linkage-specific ubiquitination of which leads to a

decrease in autophagosomes (31). Meanwhile, TRIM21

competitively binds to ANXA2 and thus facilitating the

translocation of ANXA2 towards the plasma membrane. Then,

the transcription factor EB (TFEB, a master regulator of

autophagy) is released from the ANXA2-TFEB complex and

shuttles to the nucleus to inhibit OS differentiation (135).

As a double-edged sword in anti-cancer treatment, TRIM21

perform dual function in cancer recurrence and metastasis,

which may be partially related to cancer heterogeneity

(Table 1). It has been reported that TRIM21 binds to the C-

terminal region of small G protein signaling modulator 1

(SGSM1) and ubiquitinates it at Lys349 and Lys352,

decreasing protein stability, activating the MAPK pathway,

and promoting nasopharyngeal carcinoma metastasis (136).

On the contrary, TRIM21 also has been reported to play a

role in inhibiting metastasis. In breast cancer cells, Sal-like 4

(SALL4) and lysine methyltransferase (su(var)-3–9, enhancer-

of-zeste, trithorax) domain-containing protein 7/9 (SET7/9) are

important for cell proliferation and migration. TRIM21

mediates the degradation of SET7/9 and SALL4 by targeting

Lys-190 in SALL4 to inhibit tumor progression (137, 138).

Meanwhile, arginine 64 in TRIM21 is critical for mediating

Snail ubiquitination and degradation, which attenuates the

process of epithelial to mesenchymal transition in breast

cancer cells (139). Src is also required for cell extension, which

promotes tumor metastasis (143). Activation of GABAAR was

found to decrease the expression of TRIM21, leading to

upregulation of Src and lung metastasis in mice. However,

there is no evidence of the direct interaction between TRIM21

and Src (25). Likewise, TRIM21 can inhibit triple-negative breast
TABLE 1 Substrates of TRIM21 involved in cancer treatments.

Model Substrate Function Manner Reference

Hepatoma cell lines HBx protein HBV replication suppression (72)

Cervical cancer cells IFI16 Cell pyroptosis inhibition and self-escape from immune surveillance K33-linked (73, 74)

HCT116 and U87 cells CLASPIN Replication fork instability and tumorigenesis K63-linked (108)

Pancreatic and colon cancer cells Par-4 Increased cisplatin resistance (110)

Osteosarcoma cells TXNIP Decreased p21 expression (105)

Colorectal cancer cells Oct-1 Sensitive to chemoradiation (122)

Primary mouse hepatocytes, hepatoma cells PXR Impaired drug–drug interactions (125)

293T cells p62 Nrf2 redox pathway inhibition the cell death induction K63-linked (130)

Bladder cancer cells PTMA p62 and Nrf2 expression inhibition (134)

Nasopharyngeal carcinoma SGSM1 MAPK pathway activation and metastasis Lys349 Lys352 (136)

Breast cancer cells SET7/9, SALL4 Tumorigenesis inhibition Lys190 in SALL4 (137, 138)

Breast cancer cells Snail EMT inhibition (139)

Breast cancer cells TbRII TGF-b signaling pathway inhibition (140)

Lung cancer cells C/EBPa Cells proliferation inhibition (141)

Glioma cancer cells CREB Tumorigenesis inhibition (142)
fro
Multiple ubiquitination substrates of TRIM21 have been identified involved in cancer treatments.
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cancer metastasis by ubiquitin-proteasome degradation of

TbRII, impeding the TGF-b signaling pathway (140). These

controversial results suggest that using TRIM21 transgenic mice

to observe tumorigenesis and progression may be

more instructive.
Conclusion

TRIM21 has been used as a diagnostic marker in

autoimmune diseases for decades (144). TRIM21 can not only

regulate tumor metabolic process, immune function and tumor

treatment, it is also a useful cancer prognostic indicator, but the

cancer type needs to be defined. TRIM21 expression is

downregulated and correlated with shorter overall survival in

patients with hepatocellular carcinoma (145) and diffuse large B

cell lymphoma (19), while high expression of TRIM21 is

correlated with poorer clinical outcomes in glioma (119),

pancreatic cancer (110, 146), soft tissue sarcoma (147) and

esophageal squamous cell carcinoma (148).
Prospects

Although TRIM21 is increasingly important in tumor

progression, there are several issues that require attentions.

TRIM21 inhibits cancer progression generally through

metabolic reprogramming of cancer cells in vitro. Due to the

complexity of the TME in vivo, the function of TRIM21 varies

according to the carcinogenic effectors and the cancer types.

TRIM21 mediates the degradation of the tumor suppressor,

CCAAT/enhancer-binding protein alpha (C/EBPa), leading to

lung cancer proliferation (141). Glial cell line-derived

neurotrophic factor (GDNF) promotes glioma development

and progression, and TRIM21-mediated cAMP response

element-binding protein (CREB) ubiquitination decreases the

transcription of GDNF and inhibits glioma genesis and

development (142).

What’s more, the crosstalk of TRIM21 in immunity and

cancer therapy needs more research to be clarified. The T cell-

based immune system is indispensable in recognizing and killing

pathogen-infected cells and cancer cells (149).The PD-L1

expression of NSCLC was positively related to radiation

resistance (123), and binding of PD-L1 to PD-1 inhibits anti-

tumor immunity by counteracting T cell-activating signals (150).

TRIM21 induces cell death in a Keap1-Nrf2-dependent manner

by ubiquitylating p62. By direct binding to an enhancer in the

PD-L1 regulatory region, Nrf2 can activate PD-L1 expression

and consequently attenuate anti-tumor effect (151). The HIF-1/

2a pathway can also promote PD-L1 expression by binding to a

hypoxia-response element in the PD-L1 proximal promoter in

human and mouse cell lines of various cancer types, including
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renal cell carcinoma (152). The ubiquitination-mediated

degradation of HIF-1a undoubtedly decreases the expression

of PD-L1. Whereas, it is still uncertain how to maintain the

balance of PD-L1 expression and which mechanism is

dominant. An instructive hint is that the role of TRIM21 in

tumors is complex and depends on the cell type and the nature

of the stimulatory signal, the expression level of TRIM21 in each

cancer types may require more studies to focus on the upstream

signal of TRIM21 and explain how TRIM21 is regulated.
Key questions to be solved

In summary, the possible commonalities of TRIM21 in

different cancers were summarized and discussed in a different

perspective, such as the function of TRIM21 in cancer

metabolism, cancer treatment, and immunity especially in

inflammation-associated diseases, which may provide an

insight of tremendous application potential of TRIM21 as a

therapeutic target in cancers. There are remains some keys

questions need to be solved.

As we have discussed above, not only the role of TRIM21 in

cross-talk between metabolic activities, but also whether the

different expression levels of TRIM21 in immune cells contribute

to different metabolic phenotypes or immune functions still

merit further research. What’s more, there is only a clinical

trial related to TRIM21 as” Prognostic Value of Anti-Ro52

Antibodies in Connective Tissue Diseases (a-Ro52) (a-Ro5)”

(ClinicalTrials.gov Identifier: NCT03565601), it is of great

potential and need to develop agonists or inhibitors targeting

TRIM21 for cancer treatments.
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