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ABSTRACT

Most metazoans are associated with symbionts.
Characterizing the effect of a particular symbiont of-
ten requires getting access to its genome, which is
usually done by sequencing the whole community.
We present MinYS, a targeted assembly approach to
assemble a particular genome of interest from such
metagenomic data. First, taking advantage of a ref-
erence genome, a subset of the reads is assembled
into a set of backbone contigs. Then, this draft as-
sembly is completed using the whole metagenomic
readset in a de novo manner. The resulting assem-
bly is output as a genome graph, enabling different
strains with potential structural variants coexisting in
the sample to be distinguished. MinYS was applied to
50 pea aphid resequencing samples, with variable di-
versity in symbiont communities, in order to recover
the genome sequence of its obligatory bacterial sym-
biont, Buchnera aphidicola. It was able to return high-
quality assemblies (one contig assembly in 90% of
the samples), even when using increasingly distant
reference genomes, and to retrieve large structural
variations in the samples. Because of its targeted
essence, it outperformed standard metagenomic as-
semblers in terms of both time and assembly quality.

INTRODUCTION

Advances of molecular techniques have greatly contributed
to the recognition of the importance of microorganisms in
every ecosystem. In particular, it is now well established
that most metazoans are associated with microbes, forming
complex entities referred to as holobionts. In these systems,
microbes are interacting together as well as with their host,
and host–microbe interactions can have significant effects
on the host phenotype (1). Many animals have microbial as-
sociations with one or a few specific symbionts. This is, for

example, the case for corals associated with the algal sym-
biont Symbiodinium (2), squids with Vibrio (3), woodlice
with Wolbachia (4) or hemipteran insects with specific oblig-
atory and facultative bacterial symbionts (5). As symbionts
are generally not cultivable outside the host, the whole com-
munity is usually sequenced, resulting in a metagenomic
dataset mixing host and symbiont reads. These datasets are
unbalanced: the great majority of the reads often originate
from the host genome, but since the genomes of the sym-
bionts are often several orders of magnitude smaller than
that of the eukaryotic host, symbiont genomes can have
large read depth in such samples. This enables the extrac-
tion of relevant information about the symbionts, but re-
quires significant effort, since the host reads are a computa-
tional burden for most analyses. In this context, providing
bioinformatic tools that enable the assembly of a particular
genome of interest from a metagenomic sample, ignoring
the overwhelming amount of reads from other organisms,
would greatly accelerate the characterization of symbiont
genomes, and therefore decipher particular host–symbiont
relationships.

In many cases, some knowledge and genomic resources
about the symbiont of interest are already available. A com-
mon problem is to recover the full genomic sequence of the
particular symbiont present in the metagenomic dataset, us-
ing available genomic resources. The way we address this
problem depends on the availability of a reference genome
and its closeness to the considered species. In the easiest but
rarest case, a reference genome of good quality is available
for the considered species, and a mapping-based approach is
classically performed. Reads from the whole metagenomic
datasets are mapped on this reference genome and small
variants are called to characterize the strain at play. This
approach does not output per se a genome sequence but
rather a list of punctual variants with respect to a reference
genome, without any evidence that this list is exhaustive and
ignoring potential structural differences, such as large novel
insertions or deletions. This approach may therefore miss
crucial genomic information even when a very close refer-
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ence genome is available, since it is well known that bacterial
strains can have highly variable accessory genomes, poten-
tially responsible for pathogenicity or other phenotypic ef-
fects (6).

To circumvent these drawbacks, a more classical ap-
proach relies on de novo genome assembly to obtain full ge-
nomic sequences. In this metagenomic context, the whole
community is assembled and available genomic resources
are used afterward to select among the assembled contigs
the ones originating from the species of interest. Contig bin-
ning tools have been designed specifically for the separa-
tion of host and symbiont contigs, such as BlobTools (7)
and Autometa (8). They are based on different signals com-
puted on the contigs, including similarity with available ge-
nomic resources, but also nucleotide composition and read
depth. However, their performances depend on the quality
of the initial whole metagenomic assembly. Genome assem-
bly from metagenomic data is a challenging task, because
of both the many species coexisting in the samples and the
polymorphism within these species. Although many recent
software are devoted to this task (9–11), metagenomic as-
semblies are often very fragmented and come with a high
computational cost (12). In the particular case where reads
originating from the targeted organism are a minority in the
whole metagenomic readset, this computational cost could
be reduced. In addition, one would expect that focusing on
a subsample of reads would lead to less fragmented assem-
blies.

Therefore, combining mapping-based and assembly-
based approaches in a so-called targeted genome assem-
bly seems a promising way to facilitate the characteriza-
tion of specific symbionts in metagenomic datasets. In such
approaches, a subset of the metagenomic reads is first re-
cruited by mapping to a reference genome and then de novo
assembled. The relative proximity between the targeted and
the reference genomes is a key parameter of the approach,
and the methods must be able to incorporate non-recruited
reads in the assembly, in order not to miss divergent or
strain-specific regions.

Several tools, such as MITObim (13), NOVOPlasty (14),
LOCAS (15), Pilon (16) or IMR/DENOM (17), were de-
signed following the idea of combining mapping to a ref-
erence and de novo assembly. However, they all have limi-
tations that make them unsuitable to handle metagenomic
data. Primarily, except for NOVOPlasty, these methods rely
on the assumption of genomic homogeneity (no polymor-
phism), which is very rarely met in a metagenomic con-
text. Therefore, they are not suited to detect and character-
ize coexisting strains in metagenomic datasets. Moreover,
these methods generally use the architecture of the refer-
ence genome as a starting point for the assembly, and are
therefore unable to deal with large structural variants that
differ from the reference genome (IMR/DENOM, Pilon,
LOCAS). Finally, some tools are designed either for short
organelle genomes (MITObim, NOVOPlasty) or for small
resequencing datasets (LOCAS) and they are not scaling up
to the size of metagenomic datasets.

To our knowledge, a single tool has been designed to
guide the assembly by a reference genome in a metagenomic
context. MetaCompass is a pipeline described in a pre-print
(18) that (i) recruits a subset of reads by mapping on a ref-

erence genome, (ii) assembles them into contigs and (iii) as-
sembles all the remaining non-recruited reads to recover the
regions potentially missing in the reference genome. This
last step ultimately amounts to assemble the whole commu-
nity instead of one single genome of interest, making it a
reference-guided rather than a targeted approach.

In this work, we present MinYS, a novel method for the
assembly of a microbial genome of interest from metage-
nomic data that does not require assembling the full readset.
This method can recover large regions absent from the ref-
erence genome, makes no assumption about the order and
orientation of the regions homologous to the reference and
is capable of returning several different solutions associated
with the strain diversity within the sample. It is based on
two main steps, a reference-based recruitment and assembly
of reads, followed by a targeted assembly using the whole
readset, filling in the gaps between the previously assembled
contigs.

We applied this method to reconstruct genomes from
50 metagenomic samples of the pea aphid Acyrthosiphon
pisum. Focusing on this aphid’s primary endosymbiont,
Buchnera aphidicola, we demonstrated the ability of MinYS
to assemble complete bacterial genomes in a single contig
using a remote reference genome as a primer.

MATERIALS AND METHODS

A novel method for targeted genome assembly with metage-
nomic data

Approach overview. The method described in this work re-
lies on a two-step pipeline, described in Figure 1.

The first step uses a given reference genome to build an
incomplete but trustworthy assembly from a subset of the
input metagenomic reads. The result of this step is here-
after referred to as the backbone contigs. The second step
uses the whole set of metagenomic reads to extend the pre-
viously assembled contigs and to form a complete assembly,
without a priori on the order and orientation of the back-
bone contigs. The result of the pipeline is a genome graph
encompassing the structural diversity detected among the
assembled genome. This graph can be exploited by extract-
ing contigs, or paths of the graph that represent different
strains of the targeted genome.

Assembly of backbone contigs. The first step requires a
metagenomic readset and a reference genome, and re-
turns contigs that are de novo assembled using only reads
mapped on the reference genome. All metagenomic reads
are mapped against the reference genome using BWA MEM
(19), and the mapped reads are kept and de novo assembled
using the Minia (20) assembler. Although any assembler can
be used in this step, we used Minia for its low memory foot-
print, and its assembly algorithm similar to the one used
in the second step of the method. The amount of mapped
reads and the size and contiguity of the resulting assem-
bly depend on the sequence similarity between the refer-
ence genome and the targeted genome. However, the goal
of this step is not to produce a complete assembly of the
targeted genome but rather to generate high-quality con-
tigs that can reliably be used for the upcoming gap-filling
step. To achieve this, we set up Minia with more stringent
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Figure 1. Overview of MinYS approach, for targeted genome assembly. MinYS takes as input a reference genome and a set of metagenomic reads, and
outputs the targeted genome assembly as a genome graph encompassing the potential strain diversity contained in the sample.

parameters than for a usual assembly task (i.e. with a higher
k-mer size and a higher minimal abundance threshold). For
the same reasons, only contigs larger than a user-defined
threshold (400 bp by default) were kept for the second step.

Gap filling between backbone contigs. The essential step
of the pipeline is the gap filling between backbone con-
tigs, which enables the assembly of regions of the targeted
genome that are absent or too much divergent in the refer-
ence genome. This is made possible by a targeted assembly
of the whole readset using the backbone contigs as primers.
This step does not require any relative ordering or orien-
tation of contigs, since all possible combinations are tested
during gap filling. As a result, structural variants can be de-
tected, either with respect to the reference genome or within
the sample.

This step is based on a module of the software MindThe-
Gap, originally developed for the detection and assembly
of long insertion variants (21). MindTheGap is built upon
the GATB library (22), which offers memory- and time-
efficient data structures for de Bruijn graphs. The ‘fill’ mod-
ule of MindTheGap builds a de Bruijn graph of the entire
input readset, and performs a local assembly between the
left and the right k-mers of each insertion site, by looking
for all the paths in the de Bruijn graph starting from the
left (source) k-mer and ending in the right (target) k-mer. In
this work, we took advantage of this module of MindThe-
Gap and adapted it to the problem of simultaneous gap fill-
ing between multiple contigs. It has been modified to make
possible the gap filling between a source k-mer and multiple
target k-mers, enabling the ‘all versus all’ gap filling within
a set of contigs with a linear time increase. The improve-
ments that have been made to MindTheGap in the context
of MinYS are available as a new option of MindTheGap

(named contig mode) and are presented in Section S1 and
Supplementary Figure S1 in the Supplementary Data.

MindTheGap gap-filling results are output as a sequence
graph in the GFA (graphical fragment assembly) format,
containing all input contigs and their successful gap-filling
sequences as nodes, together with their overlap relation-
ships as edges.

Graph simplification. By construction, the raw sequence
graph output by MindTheGap is likely to contain redun-
dant sequence information. A graph simplification step has
been therefore developed to remove uninformative sequence
redundancy and hence ease the analysis and usage of such
a genome graph. The different steps of this process are rep-
resented in Supplementary Figure S2.

First, it is likely that two contigs are linked in the graph
by two gap-fillings with reverse-complement sequences, one
starting from the left contig and the other one starting from
the right contig in the reverse orientation. Such reciprocal
links are removed when their sequence identity is over a 95%
identity threshold.

Second, when several gap-filling sequences start (or end)
from the same source contig, it is possible that a subset of
them has an identical prefix (suffix) and starts to diverge
only after a potential large distance from the source (tar-
get) contig. This results in redundant sequence information
in the final sequence set. A node merging algorithm is ap-
plied in order to return a final set of sequences (nodes of
the graph) that do not share large identical subsequences as
prefix or suffix. Sets of sequences sharing the same prefix of
size l are built (l equals 100 by default). Within each set, the
sequences are then compared to find the first divergence be-
tween all sequences. A new node is added to the graph, con-
taining the repeated portion of the sequences, and repeated
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Table 1. Description of the different reference genomes of B. aphidicola used in this study and their levels of divergence with the targeted genome

Name Host Accession
Length

(bp)
Proportion of
mapped reads ANI

Closest B. aphidicola str. LSR1 A. pisum NC 002528.1 642 011 100% 100%
Incomplete B. aphidicola str. LSR1 A. pisum 525 611 81% 100%
Distant B. aphidicola str. G002 M. persicae NZ CP002701.1 643 517 48% 81%
Most distant B. aphidicola str. Sg S. graminum NC 004061.1 641 454 30% 78%

ANI stands for average nucleotide identity and is computed on the aligned portions of the genome.

nodes are shortened accordingly. This process is applied it-
eratively to every node, including the newly created nodes,
for which a subset of neighbors may still show identical se-
quences.

Finally, simple linear paths, with no branching nodes, are
merged into a single node.

After the simplification process, the resulting graph may
not be a linear sequence because of intrasample polymor-
phism or assembly uncertainties. Although the genome
graph is the main output of MinYS, it may be necessary to
analyze it further to get conventional linear assemblies. This
can be done either by manual inspection using interactive
tools such as Bandage (23) or by enumerating all possible
paths within the graph.

Implementation and availability. MinYS is implemented
as a python3 program and available at https://github.com/
cguyomar/MinYS and as a conda package in the Bio-
conda repository. Notably, it relies on the local assem-
bly tool MindTheGap, starting from version 2.1 that en-
ables the so-called contig mode (https://github.com/GATB/
MindTheGap). The whole pipeline presented in Figure 1
can be run in a single command line with few parameters to
tune and is implemented in a modular way enabling to start
or resume the analysis at intermediary steps. The most in-
fluential parameters concern the two de novo assembly steps
(backbone and gap filling). They are standard parameters
of de Bruijn graph-based assemblers that depend mainly on
the expected read depth of the targeted genome in the sam-
ple, namely the size of k-mers and the k-mer minimal abun-
dance used to filter out sequencing errors.

Application to pea aphid metagenomic datasets

In this study, we applied MinYS to the assembly of the
pea aphid obligatory symbiont, B. aphidicola. We consid-
ered 50 pea aphid resequencing samples of Illumina 100-bp
paired-end reads (24). Thirty-two samples contain each the
sequences from a single aphid clone. In addition, 18 sam-
ples sequenced from pooling 14–35 genetically distinct pea
aphid individuals were also analyzed. These samples are
more challenging for metagenomic assembly due to their
richer symbiotic composition and strain diversity (24).

Scripts and commands used to perform all the analy-
ses and create tables and figures are available and docu-
mented on the following GitHub repository: https://github.
com/cguyomar/MinYS paper reproducibility.

Reference genomes with increasing levels of divergence.
Reference-guided assembly was performed with four dis-
tinct reference genomes of B. aphidicola with increasing lev-

els of divergence: (i) B. aphidicola from A. pisum (LSR1
accession), hereafter called closest, which is the closest
available assembled genome; (ii) B. aphidicola strain G002,
which was isolated from a different aphid host, Myzus persi-
cae, hereafter called distant; (iii) B. aphidicola strain Sg, iso-
lated from an even more distant aphid host, namely Schiza-
phis graminum, the most divergent reference analyzed and
hereafter called most distant; and (iv) a synthetic genome
obtained by deleting 116.4 kb of sequences from the clos-
est reference genome (B. aphidicola LSR1) and referred to
as incomplete. This synthetic genome was generated by ap-
plying 20 deletions, whose size ranged from 300 bp to 20 kb.
The levels of divergence of these different reference genomes
are supported by phylogenetic studies (25), whole genome
alignments [average nucleotide identity (ANI)] and relative
amounts of mapped reads from the real sequencing samples,
compared to the closest reference genome (see Table 1).

Dataset with simulated structural variations. To assess the
ability of MinYS to recover structural variations in samples
with strain diversity, we created a synthetic pea aphid sam-
ple by adding to a real sample a subset of simulated reads
from the previously described incomplete genome (with 20
deletions). A 50× coverage of 100-bp reads was simulated
with wgsim of the SAMtools suite (26), using the parame-
ters ‘-1 100 -2 100 -N 131400’.

MinYS parameters. MinYS was used in version 1.1, as
available on Bioconda. Two sets of parameters were used to
run MinYS, depending on the sample coverage. Since the
coverage of pooled samples was greater than that of the in-
dividual ones, more stringent settings were chosen. For in-
dividual samples (pooled samples), a k-mer size of 61 (81)
was chosen for the assembly step, along with a k-mer mini-
mal abundance threshold of 10 (20) and a minimum contig
length of 400 bp. The gap-filling step was performed with a
k value of 51 (71) and a k-mer minimal abundance thresh-
old of 5 (10), and the arguments max-length and max-nodes
were set to 50 000 and 300 (1000).

Path enumeration in genome graphs. Genome graphs in-
corporate the genomic diversity present in a sample and
therefore can often not be simply converted in a single
genomic sequence. In order to provide standard assembly
metrics and to allow comparisons with other assembly ap-
proaches, genome graphs were analyzed to recover a sin-
gle genome sequence when only punctual polymorphism
or small assembly uncertainties distinguished the different
paths in the graph, or otherwise a set of genome sequences
that were representative of the different genome structures.
For each connected component of the graph, all possible
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paths were enumerated. A clustering of those paths was per-
formed in order to output a subset of substantially differ-
ent sequences. Paths were compared using the ANI met-
ric, as implemented in pyani (27). Two paths were consid-
ered identical if an alignment with >99% of sequence cov-
erage and >99% of nucleotide identity could be obtained.
After all the paths have been enumerated and compared, the
longest resulting sequence was arbitrary chosen and con-
sidered as the representative genome sequence, for calculat-
ing assembly metrics and making comparisons with other
approaches.

Comparison with other approaches. Alternative usual ap-
proaches to assemble a particular genome from metage-
nomic data were applied on the 50 pea aphid samples using
the distant reference genome.

Three reference-guided assembly tools were used: MITO-
bim (13), NOVOPlasty (14) and MetaCompass (18), which
is based on Pilon (16). MITObim was run with the ‘-quick’
parameter allowing the user to supply a reference genome
for read baiting, and a maximal number of iterations of 31.
NOVOPlasty was run using the mitochondrial genome as-
sembly mode and recommended parameters, with a k-mer
size of 39. MetaCompass was used in its reference-guided
mode with default parameters. Alongside reference polish-
ing using Pilon, MetaCompass also uses MEGAHIT (11)
to assemble all unmapped reads. As such, the assembly re-
turned by MetaCompass is not targeted and contains con-
tigs representing all the sequenced genomes. In order to ex-
tract only the contigs associated with B. aphidicola, we per-
formed a BLAST alignment against the chosen reference
genome and retained the contigs with at least 50% of their
length covered by BLAST hits with e-values <10−5. The fi-
nal MetaCompass assembly therefore includes the Pilon-
corrected sequences and the BLAST-filtered MEGAHIT
contigs.

Alternatively, two assembly-first approaches were used
for comparison. A complete de novo assembly was per-
formed for each sample using MEGAHIT (11) and B.
aphidicola contigs were selected by a BLAST alignment
against the chosen reference genome, as in the case of Meta-
Compass (at least 50% of sequence coverage and e-value
<10−5). As in the case of MinYS, we did not include contigs
<1 kb, mainly associated with plasmid sequences. Alterna-
tively, Autometa (8), a reference-free binning approach, was
also used to bin Buchnera contigs from the metagenomic as-
sembly for one particular pool sample.

All tools were run with 8 CPU cores, with the exception
of Autometa that was run with 32 cores to achieve a shorter
runtime. The quality of each assembly was assessed using
QUAST (28) and the closest reference genome (B. aphidi-
cola str. LSR1 from A. pisum). Several assembly metrics
were compared such as their length relative to the targeted
genome size, the number of contigs and the length of the
largest contig. Those metrics were also computed for the
backbone assembly performed at the first step of MinYS,
mainly as a way to measure the relative contributions of
reference-based assembly and gap filling to the final assem-
bly.

RESULTS

In this study, we applied MinYS to assemble genomes of B.
aphidicola (∼640 kb), the obligatory bacterial symbiont of
the pea aphid. We considered a large set of pea aphid re-
sequencing samples of Illumina 100-bp paired-end reads,
which have already been studied in a previous work, in
which the microbiota of each aphid sample was detailed
(24). Among the 50 datasets, 32 resulted from the sequenc-
ing of individual clones and 18 from the sequencing of
pools of individuals from the same population. The num-
ber of reads is on average 84 (198) million for individ-
ual (pool) sequencing datasets, with an average coverage
of 628× (3694×) for the B. aphidicola genome. In these
datasets, >90% of the reads originate from the insect host
and are not useful when focusing on symbiont genomes.
This dominance of host reads in our metagenomic datasets
justifies the choice of a targeted assembly approach, which
does not require assembling pea aphid reads.

Single contig assembly of the targeted genome using increas-
ingly distant reference genomes

MinYS was first applied to the set of 32 resequenced aphid
clones using several reference genomes. Assembly statistics
are shown in Table 3. Overall, the B. aphidicola genome
was very well assembled in most cases: for all samples but
one, the targeted genome is assembled in one single contig,
whose size is comparable to the expected genome size. Over-
all, the sequence accuracy was satisfying for all the assessed
methods and within the range of the expected divergence to
the closest reference genome.

As MinYS relies on a reference genome to perform the
assembly, we compared the assembly results using increas-
ingly distant reference genomes (Table 1). Figure 2 presents
the results obtained with the different genomes and shows
the contributions of the first (reference-based mapping and
assembly) and second (gap filling) steps of MinYS. The
main result is that using an incomplete or distant genome
did not affect the assembly quality: both assembly length
and contiguity are similar to those obtained using the clos-
est genome. Using the incomplete genome, which includes
20 deletions between 300 bp and 20 kb, did not impede
the assembly since all missing regions from the reference
genome were well assembled, highlighting the power of
MinYS to recover large previously unknown regions of the
genome. Only the use of the most distant genome (B. aphidi-
cola from S. graminum) decreased the completeness and
contiguity of some assemblies. In this extreme case, still 88%
of samples were assembled in a single contig, and 90% of the
assemblies had their length >98% of the targeted genome
length.

However, using more distant reference genomes affected
the intermediate results of the MinYS pipeline. Using more
distant reference genomes resulted in fewer reads mapped
and assembled during the first step of the pipeline, and
therefore in a more partial initial backbone assembly. The
fraction of the genome assembled during the first mapping
and assembly step was 99% for the closest, 47% for the dis-
tant and 24% for the most distant reference genome. As
a consequence, the gap-filling step is essential when using
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Figure 2. Effect of the level of divergence of the reference genome on MinYS assembly statistics (assembly contiguity in the top plot, assembly completeness
in the bottom left plot and running time in the bottom right plot) and on the relative contribution of the first backbone assembly step (in red) and of the
gap-filling step (blue). The plots show the average values for the 32 individual samples.

Table 2. Graph complexity metrics of the genome graphs output by MinYS for individual (top) and pooled (bottom) samples with several reference
genomes used as a guide

Reference genome

Closest Incomplete Distant Most distant Average

Individual samples
Assembly in a single connected component 93.75% 93.75% 96.88% 87.50% 92.97%
Assembly in a single path (before comparison) 71.88% 71.88% 81.25% 81.25% 76.57%
Assembly in a single path (after comparison) 96.88% 96.88% 96.88% 93.75% 96.10%
Pooled samples
Assembly in a single connected component 100.00% 100.00% 100.00% 88.89% 97.22%
Assembly in a single path (before comparison) 11.11% 5.56% 5.56% 0.00% 5.56%
Assembly in a single path (after comparison) 55.56% 61.11% 88.89% 27.78% 58.34%

Values indicate the percentage of samples with the given graph characteristics.

more distant genomes. Since final assembly results are com-
parable, this shows that this step successfully recovers the
genome portions highly divergent or missing from the refer-
ence genome. Accordingly, the running time increases when
a remote reference is used, mainly due to the increase of time
devoted to gap filling.

Assembly of pooled samples with a higher strain diversity

MinYS was then applied to an additional set of 18 se-
quencing samples of pooled aphids (with 15–34 individu-
als per pool). An important feature of MinYS is to output
a genome graph that can represent several putative assem-
blies. In the case of pooled samples, the genome graph out-
put by MinYS encompasses more diversity than in individ-

ual samples, as shown by the higher number of enumerable
paths in these graphs (see Table 2). While 77% of the individ-
ual samples were assembled in a single path, it was the case
for only 6% of the pooled samples. This shows that MinYS
is able to recover the higher level of strain diversity present
in pooled samples. Interestingly, most alternative paths in
these pooled samples differed only by punctual polymor-
phisms and did not encompass large structural variations.
Clustering the enumerated paths for each sample with a 99%
sequence identity threshold resulted in one single represen-
tative sequence for 58% of the pooled samples. Notewor-
thy, using the most distant reference genome as a primer
resulted in more complex graphs and pushed to its limits
this post-processing step of path clustering. In this case, four
samples were not considered due to excessively high compu-
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Table 3. Assembly metrics of different assembly approaches using the distant reference genome

Tool Assembly/target length (%) No. contigs Largest contig (kb) Runtime (h)

Indiv. Pool Worst Indiv. Pool Worst Indiv. Pool Worst Indiv. Pool Worst

MinYS 100 101 114 1.0 1.0 2 642 646 437 0.64 2.34 4.51
NOVOPlasty 100 100 0 1.0 1.0 9 642 642 0.1 0.66 3.10 8.67
MetaCompass 116 124 138 54.5 90.0 148 642 310 117 6.69 29.16 104.87
MEGAHIT 100 102 104 1.5 11.5 30 642 366 86 5.00 15.98 34.44

For each metric, the median values obtained over all individual (Indiv.) or pooled (Pool) samples are given, as well as the worst value obtained over all
the samples (Worst). Extended statistics are available in Supplementary Table S1.

Figure 3. View of the genome graph generated by MinYS with a sample containing two coexisting strains of B. aphidicola differing by 20 structural variants.
The graphical representation was obtained with the assembly graph visualization tool, Bandage, where each node is represented by a colored rectangle
whose size is related to the node sequence size.

tational time for the comparison of sequence paths. When
more than one representative sequence was generated, the
longest path was arbitrary selected, explaining why the as-
sembled length is slightly higher in pooled samples (see Ta-
ble 3).

Assembly of coexisting structural variants

MinYS was applied to a pea aphid sample in which sim-
ulated reads from a rearranged B. aphidicola genome were
added to a real pea aphid resequencing sample, simulating
the coexistence in a metagenomic dataset of two strains with
structural differences (here 20 deletions whose sizes ranged
from 300 bp to 20 kb). In the resulting genome graph, 17 out
of the 20 simulated deletions were fully recovered, with both
the deleted and complete versions of the genome assembled

(Figure 3). Extracting the longest path from the graph re-
sulted in a single contig of 641.5 kb, compared to the 642
kb of the closest reference genome. Similarly, the shortest
path extracted from the graph was 526.4 kb long, compared
to 525.6 kb for the simulated deleted genome. The longest
structural variants (up to 20 kb) were all successfully recov-
ered. Only two small variants, of 300 and 500 bp, were miss-
ing from the graph.

Comparison with other approaches for targeted genome as-
sembly

MinYS assemblies were compared to the results of other
reference-based approaches [MITObim (13), NOVOPlasty
(14), MetaCompass (18)] and a de novo metagenomic as-
sembly [MEGAHIT (11)] followed by BLAST-based con-
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tig filtering. Results using the distant reference genome are
shown in Table 3.

MITObim was designed for reference-guided assembly
of mitochondrial genomes by iterative read baiting and
mapping (13). MITObim was stopped after 51 h of run-
time, reaching eight iterations. It returned an incomplete
assembly, with 221 kb missing (33% of the genome). As
such, it does not scale up to genomes larger than mitochon-
drial genomes, and was not considered as an alternative to
MinYS in the present work.

NOVOPlasty is another organelle assembly tool that can
be used to assemble other circular genomes. Similarly to
MinYS, it may output several paths within a contig graph,
with the additional constraint that only cyclic graphs can
be analyzed. Out of the 50 metagenomic samples, 31 were
assembled as a single path. After selecting one represen-
tative path for the other samples, overall 44 samples were
assembled in a single contig whose size is close to the tar-
get genome size of 642 kb (compared to 47 samples for
MinYS). For the remaining six samples, the assembly sizes
deviated substantially from the target genome size, rang-
ing from 100 bp (no assembly was performed) to 1.06 Mb
(see the extended assembly statistics in Supplementary Ta-
ble S1).

MetaCompass first polishes the supplied reference
genome sequence with mapped reads using Pilon (16) and
then assembles de novo the remaining unmapped reads us-
ing MEGAHIT. To recover, among the MEGAHIT con-
tigs, only the ones originating from the genome of interest,
an additional step of mapping to the reference genome is
therefore necessary and was performed here with BLAST.
The first step was insufficient to return satisfying assem-
blies in this situation where we are using a distant refer-
ence genome. Considering only the polished sequences re-
turned by Pilon resulted in far from complete assemblies,
with an average length of 6% of the targeted length for in-
dividual samples. Therefore, the assemblies described in Ta-
ble 3 were dominated by de novo assembled contigs, mitigat-
ing the referenced-based approach of MetaCompass. Over-
all, obtained assemblies were more fragmented and longer
than expected, due to potential redundancy between pol-
ished and de novo contigs.

Finally, we compared MinYS to a full metagenomic as-
sembly approach with MEGAHIT, followed by BLAST-
based contig filtering. On individual clone samples,
MEGAHIT performs on par with MinYS, resulting in com-
plete one-contig assemblies in most cases. However, when
applied to samples of pooled individuals with more poly-
morphism, MEGAHIT does not perform as well, with more
and shorter contigs (the median size for the largest contig
is 57% of the expected genome length, compared to 101%
with MinYS). An explanation for this lower performance
could be that highly polymorphic regions may be assembled
by MEGAHIT into distinct contigs that break the contigu-
ity, while MinYS often represents them as bubbles in the
genome graph.

Notably, the metagenomic assembly approach with
MEGAHIT performed poorly compared to MinYS on the
metagenomic dataset simulating the co-existence of struc-
tural variants. It resulted in a 38-contig assembly, with a
total length of 646 kb and an N50 of 44.5 kb, whereas sev-

eral structurally different strains can be extracted from the
genome graph output by MinYS in a single contig each.
This highlights the difficulty of de novo assembly to deal
with structural diversity in metagenomic samples.

An alternative approach to select Buchnera contigs from
the whole MEGAHIT assembly was tested. Autometa is
a binning method dedicated to extract microbial genomes
from a single sample of a eukaryotic host. It was used on a
particular sample for which the BLAST-based filtering per-
formed poorly compared to MinYS: 24 contigs with a total
size exceeding the expected size by 20 kb. On this sample,
Autometa reduced the number of contigs to 8 but did not
reduce the genome size; on the contrary, the latter increased
with 34 kb in excess. Importantly, this approach required
a substantial increase of running time of 20 h with respect
to the BLAST-based filtering, using 32 CPU cores instead
of 8 for the other approaches. Assembly and contig binning
took overall 40 h, whereas MinYS assembled a single contig
genome in 4.5 h for this sample. This large increase in run-
ning time led us to leave this strategy behind for the other
samples.

Importantly, MinYS was substantially faster than all
other tested tools (Table 3). Being designed for smaller or-
ganelle genomes, NOVOPlasty struggled to scale up to bac-
terial genomes. The runtime for pooled samples was 33%
greater for NOVOPlasty compared to MinYS, and the me-
dian peak memory usage reached 42 GB for individual sam-
ples (6.7 GB for MinYS) and 187 GB for pooled samples
(9.1 GB for MinYS). The average runtime of MinYS was
38 min for individual samples and 6.5 h for pooled sam-
ples, which was, respectively, 10 and 12 times smaller than
MEGAHIT runtimes. Indeed, MEGAHIT produces con-
tigs not only for the targeted organism, but in this case for
the insect host A. pisum and all its secondary symbionts.
This highlights the importance of a tool such as MinYS to
efficiently recover specific genomes of interest from metage-
nomic data.

DISCUSSION AND CONCLUSION

De novo and reference guided assembly: the best of both
worlds?

When working on microbial communities, focusing on the
genome assembly and characterization of a particular or-
ganism can be especially relevant. For biologists, under-
standing these communities can be achieved by focusing on
some key players with particular functional effects or eco-
logical impacts. For bioinformaticians, assembling a single
genome can be significantly less challenging than a whole
community, especially in the context of symbiotic associa-
tions where reads originating from the organism of interest
are a minority within host-dominated sequence data. Yet,
existing tools for targeted assembly are usually not suited
for metagenomic data, or rely on reference sequence cor-
rection, which is unable to capture novel sequences absent
from the reference genome.

MinYS is a novel method leveraging the benefits of both
reference-based and de novo assembly. By using a refer-
ence genome as a primer for the assembly, MinYS signifi-
cantly reduces the computational burden of genome assem-
bly from a metagenomic sample. In the first step, the assem-
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bly is restricted to a subset of the reads, and is therefore usu-
ally straightforward. During gap filling, although the whole
readset is used, performing local assembly between specific
source and target k-mers is also less demanding than com-
plete metagenomic assembly. In addition, as long as trust-
worthy contigs are assembled in the first place, this local
gap filling is less prone to include contaminant sequences.
This makes the assembly both more reliable and faster. In
this context of mining a particular symbiont genome out
of a host-dominated sequencing dataset, MinYS was up to
12 times faster than a full metagenomic assembly.

MinYS obtained also better contiguity statistics, with the
genome of B. aphidicola being assembled in one circular se-
quence in most cases. Admittedly, this organism has a small
and simple genome containing few repeated sequences, en-
abling to obtain full-length assemblies with short read data.
Although microbial communities associated with a host
could include more complex genomes, symbiont genomes
have generally small sizes (5), making our approach appli-
cable to many other host–symbiont interactions. Moreover,
although apparently simple, our analyses have shown that
depending on the sequencing context, the assembly task
may not be so straightforward, as highlighted by the lower
contiguity of MEGAHIT assemblies when strain diversity
was present in the sample. In this context, MinYS showed
significant improvements in assembly contiguity with re-
spect to other approaches. Although full metagenomic as-
sembly also delivers contigs for the other organisms of the
community, we consider that the speed increase along with
the contiguity improvement makes MinYS a worthy alter-
native to analyze particular components of microbial com-
munities.

Dedicated host–symbiont contig binning approaches,
such as BlobTools and Autometa, rely heavily on the qual-
ity of the initial full metagenomic assembly. Bypassing this
full assembly also makes MinYS a more generalizable ap-
proach to a variety of situations where de novo assembly is
difficult, such as low-coverage host genome resequencing,
pooled sequencing or more complex metagenomic datasets.

MinYS performs reference-based assembly, but not
reference-dependent assembly

Alternative reference-based approaches usually rely on read
mapping followed by a correction of the existing refer-
ence genome. On the contrary, every sequence returned by
MinYS has been assembled from the metagenomic reads.
This reduces the bias due to the choice of a reference
genome. Thanks to the gap-filling step, it is also possible to
assemble de novo regions too distant or absent in the refer-
ence genome to be captured by reference-based approaches.
These regions represented up to 80% of the targeted genome
in the most extreme case considered here.

Remarkably, MinYS proved to be particularly robust
with respect to the level of divergence with the chosen ref-
erence genome. Thanks to its two-step approach, MinYS
can adapt to different divergence levels. When using a close
reference genome, the first mapping-based step is predomi-
nant, and the assembly is fast. On the contrary, when using
more distant reference genomes, the gap-filling step is essen-
tial to recover regions missing or too divergent compared to
the reference. MinYS can deal with both a high level of di-

vergence and the presence of large novel inserted sequences.
When based on an incomplete reference genome, it was able
to recover all the missing sequences (including up to 20 kb
contiguous missing parts).

In this work, a single set of parameters was chosen for all
samples, regardless of divergence or sample coverage. How-
ever, MinYS is flexible and also allows more or less con-
servative parameters to be used to adapt to particular use
cases, for instance to accommodate with higher levels of
divergence. Overall, although MinYS relies on a reference
genome as a primer for the assembly, its hybrid approach
enables the use of distant reference genomes, while still be-
ing able to return full-length assemblies.

MinYS assembles and allows visualization of genomic diver-
sity

Species in metagenomic samples may not be homogeneous
populations sharing the same genome. As highlighted by
the results of MEGAHIT on pooled samples, a high level
of polymorphism within a sample affects the contiguity of
the assembly. Genomic loci showing significant nucleotide
diversity are assembled in separate contigs instead of sin-
gle consensus contigs and they fragment the assembly. In
MinYS, such loci are deliberately represented as distinct
nodes in the genome graph, but are still connected together.
As such, the genome graph encompasses different assem-
blies and its complexity reflects the genomic diversity in the
sample. Accordingly, pool sequencing samples, which in-
clude a greater microbial diversity (24), were assembled into
more complex graphs. These graphs contain biologically
meaningful information that surpasses the ‘one species–
one genome’ paradigm, which has been strongly criticized
(29,30). As a consequence, many novel tools are being devel-
oped to use such genome graphs as a reference rather than a
conventional linear sequence, for instance for read mapping
or variant genotyping (31,32).

Genome graph representation is also a powerful way to
represent structural variations in metagenomic samples. In
the context of two coexisting strains differing by large struc-
tural variants, MinYS was able to reconstruct both strains
as alternative paths in the genome graph, while MEGAHIT
yielded a fragmented assembly.

Genome graphs offer the opportunity to better represent
and explore the genomic diversity in metagenomic samples,
but they are also challenging objects to study. The main out-
put of MinYS is a genome graph that may require some
post-processing to output one or several representative se-
quences. Here, all possible paths in the graphs were enu-
merated and compared to each other to choose a single
representative genome. Additionally to the computational
burden of such an enumeration, many of these paths may
not represent actual strains. Therefore, an interesting but
far from trivial perspective of this work would be to map
back the paired-end reads on the graph in an attempt to
phase the different variants, and then to provide a more
accurate representation of the genomes of the strains ac-
tually present in the sample. Furthermore, long-range in-
formation provided by long-read or linked-read sequencing
technologies could help not only to disentangle the differ-
ent strains at play but also to simplify the genome graph for
genomes containing many repeated sequences. As a matter
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of fact, several software exist to map noisy long reads to
genome graphs in the GFA format, such as GraphAligner
(32) and vg-map from the vg toolkit (31). Thanks to its stan-
dard GFA format output, it would be relatively straightfor-
ward to pipeline such tools to the MinYS output. As the
high throughput of short-read technologies remains an im-
portant asset for studying strain diversity within microbial
communities, we anticipate that MinYS will remain a valu-
able tool that evolves over the advance of sequencing tech-
nologies.

SUPPLEMENTARY DATA
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