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Abstract: Prediction of post-stroke functional outcomes is crucial for allocating medical resources.
In this study, a total of 577 patients were enrolled in the Post-Acute Care-Cerebrovascular Disease
(PAC-CVD) program, and 77 predictors were collected at admission. The outcome was whether
a patient could achieve a Barthel Index (BI) score of >60 upon discharge. Eight machine-learning
(ML) methods were applied, and their results were integrated by stacking method. The area under
the curve (AUC) of the eight ML models ranged from 0.83 to 0.887, with random forest, stacking,
logistic regression, and support vector machine demonstrating superior performance. The feature
importance analysis indicated that the initial Berg Balance Test (BBS-I), initial BI (BI-I), and initial
Concise Chinese Aphasia Test (CCAT-I) were the top three predictors of BI scores at discharge. The
partial dependence plot (PDP) and individual conditional expectation (ICE) plot indicated that the
predictors’ ability to predict outcomes was the most pronounced within a specific value range (e.g.,
BBS-I < 40 and BI-I < 60). BI at discharge could be predicted by information collected at admission
with the aid of various ML models, and the PDP and ICE plots indicated that the predictors could
predict outcomes at a certain value range.

Keywords: machine learning; stroke; rehabilitation; post-acute care; functional recovery; activities of
daily living

1. Introduction

Stroke is a major cause of disability and thus imposes substantial social and eco-
nomic burdens [1,2]. Post-stroke rehabilitation is pivotal for managing disability and
improving quality of life [3]. Because of the high diversity of stroke-induced disabilities,
predicting their functional outcomes is difficult. Numerous factors may affect post-stroke
functional outcomes, including age [4], cognition [5,6], comorbidities [7], post-stroke in-
tervention [8,9], and stroke characteristics, such as severity [10], type [11], location [12,13],
and volume [14]. Therefore, medical resources must be allocated to patients with a more
favorable rehabilitation potential to help them achieve their rehabilitation goals.

Approximately 795,000 patients globally were newly diagnosed as having stroke in
2020 [15], and the cost of post-stroke care is expected to triple by 2035 [16]. Studies have
mainly used regression models to define predictors for post-stroke functional outcomes.
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However, collinearity is a fundamental problem in this type of analysis because some
variables might be excluded if they correlate with included predictors. To overcome
this problem, novel prediction methods, such as machine learning (ML), that depend on
advances in computational power have been developed.

An increasing number of ML models have been applied in the medical field. Un-
like statistical models, which are used to determine the relationship between variables,
ML models can be employed to make predictions using algorithms that can learn from
data [17]. Several ML methods, such as support vector machine (SVM) [18], logistic regres-
sion [19], and decision trees [20], have been proposed to predict the prognostic outcomes
of stroke. However, the method that yields the most satisfactory performance remains
to be determined. Furthermore, to achieve superior predictive performance, ML models
can be stacked using a meta-learning algorithm to combine predictions from multiple ML
models [21]. Stroke is a complicated disease, and multiple factors can interfere with its
outcomes. Therefore, a stacked ML model that incorporates the advantages of multiple ML
models can yield a more favorable post-stroke outcome prediction.

The performance of an ML model largely depends on comprehensive variables. Data
on patients enrolled in the Post-Acute Care-Cerebrovascular Disease (PAC-CVD) reha-
bilitation program, which was launched by Taiwan’s National Health Insurance (NHI)
Administration in 2014, can be used to conduct ML model training. These data can be used
to predict patients’ functional outcomes and allocate medical resources accordingly [22].
All eligible patients enrolled in the program under the NHI policy are transferred to ac-
credited post-acute care (PAC) hospitals and receive an in-depth functional assessment
at admission, interim, and discharge. The PAC program involves daily physical therapy
(movement, balance, and ambulation), occupational therapy (activities of daily living),
and speech and language therapy (communication and swallowing function) interven-
tions for up to 12 weeks, which is nearly triple the rehabilitation period of a non-PAC
program [22–24]. Thus, the data on patients enrolled in the PAC-CVD program are suitable
for ML model training for post-stroke outcome prediction because of the high insurance
coverage, in-depth functional assessment, and longer hospital stay.

Although ML models have been applied to predict post-stroke outcomes [18–20], the
ML method that yields the most favorable performance remains to be determined. The
number of predictors enrolled for model construction in these studies was limited and
the relationship between predictors and predictive outcomes, such as feature importance,
dependence, and heterogeneity, was not fully interpreted. In addition, studies have re-
ported highly inconsistent results regarding post-stroke outcome prediction. Therefore, this
study collected data regarding numerous predictors and applied multiple ML models to
determine the model that demonstrates the most favorable predictive performance, identify
predictors that are crucial for predicting post-stroke functional outcomes, and explore their
performance in predicting functional outcomes.

2. Materials and Methods
2.1. Patients and Data Collection

Patients eligible for the PAC-CVD program conducted in Taoyuan Chang Gung Memo-
rial Hospital were enrolled from March 2014 to December 2019. Information regarding
77 predictors was collected during acute ward stay and upon admission at a PAC hospital.
The functional outcome was whether a patient could achieve a Barthel Index (BI) score
of >60 upon discharge.

Upon admission to a PAC hospital, the patients’ demographic data, namely age and
sex, were collected. In addition, patients were administered the following functional as-
sessments (the “-I” represents the initial functional assessments): (1) the BI-I to examine
functional independence; (2) the Lawton–Brody Instrumental Activities of Daily Living
Scale (IADL-I) [25], modified Rankin Scale (mRS-I) [26], and European Quality of Life
Five-Dimension Questionnaire to evaluate general disability; (4) the Berg Balance Scale
(BBS-I) [27], Gait Speed-I [28], 6 min walk test (6-MWT-I) [29], Fugl–Meyer Upper Ex-
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tremity Assessment (FuglUE-I), and modified Fugl–Meyer Sensory Assessment [30] to
evaluate motor and sensory function; (5) the Functional Oral Intake Scale (FOIS-I) [31] to
examine eating ability; (6) the Concise Chinese Aphasia Test (CCAT-I) to evaluate cognition
and language function; and (7) the Mini-Nutritional Assessment (MNA-I) to evaluate
nutritional status.

We retrospectively reviewed patients’ medical records in the acute management ward
and collected the following data: (1) stroke characteristics, namely the subtype (hemorrhage
vs infarction), territory (anterior cerebral artery or not), location (cortical, subcortical, or
infratentorial), side (left, right, or bilateral), dissection, large-vessel stenosis, large-vessel
occlusion, and undetermined; (2) post-stroke intervention, namely recombinant tissue
plasminogen activator and intra-arterial thrombectomy; (3) the National Institute of Health
Stroke Scale (NIHSS, comprising 15 subscales) score on admission and discharge in the
acute ward [32]; (4) rehabilitation timing (the interval between the acute ward admission
and commencement of rehabilitation); (5) comorbidities, namely hypertension, diabetes
mellitus, dyslipidemia, atrial fibrillation, cardiovascular disease, chronic kidney disease,
pulmonary disease, liver cirrhosis, hepatitis, malignancy, gout, parkinsonism, dementia,
previous stroke, and psychiatric disorder; and (6) complications, namely pneumonia,
urinary tract infection, stroke-in-evolution, gastrointestinal bleeding, and cellulitis. The
length of stay (LOS, from admission to discharge in the acute ward) was recorded; however,
this parameter was not included as a predictor.

The outcome was the BI at discharge (BI-F). The BI-F was further classified into
BI-F > 60 and BI-F ≤ 60, which represented better and poorer outcomes, respectively.

2.2. The PAC-CVD Program

The patients were first evaluated by the case manager and enrolled in the PAC-
CVD program if they met the following criteria: (1) enrollment within 1 month post-
stroke, (2) stable hemodynamic parameters in the 72 h prior, (3) absence of neurological
deterioration in the 72 h prior, and (4) adequate cognitive function and ability to participate
in the rehabilitation program, with an mRS score of 2 to 4 (from 3 to 4 since July 2017
because of a change in the policy) [23,33]. Eligible patients were transferred to the PAC
hospital and administered hospital-based multidisciplinary rehabilitation consisting of
physical, occupational, and speech and language therapies. The patients underwent several
functional assessments that were conducted by physiatrists and therapists at the beginning,
interim, and end of the program. The team discussed the medical and functional progress,
treatment plan, and rehabilitation goal on a regular basis [22].

The patients underwent three sessions (1 h per session) of tailored hospital-based
multidisciplinary rehabilitation every weekday, comprising physical therapy (balance, gait,
and robotic-assisted training) [34], occupational therapy (posture training, transfers, activity
of daily living [ADL], cognitive training, and constraint-induced movement therapy) [35],
and speech and language therapy (language and swallowing training).

Patients who possessed one or more of the following criteria were discharged from
PAC-CVD hospital: (1) the ability to receive community-based rehabilitation for func-
tional improvement, (2) absence of interval improvement on the basis of two consecutive
functional evaluations, (3) absence of potential for functional recovery according to the
evaluation of the care team, (4) a length of admission of more than 12 weeks, (5) a decision
to terminate, and (6) death [22].

2.3. Ethics

The protocol of this study followed the Declaration of Helsinki and was approved
by the Institutional Review Board (IRB) of Chang Gung Memorial Hospital (IRB No.
202101399B0, approved on 18 August 2021).
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2.4. Eight ML Methods

A total of 77 candidate predictors were included. The outcome measurement of the
ML models was BI-F > 60 (n = 397) or BI-F ≤ 60 (n = 180). The following eight ML methods
were used: decision trees, Naïve Bayes, k-nearest neighbor (kNN), linear discriminant
analysis, AdaBoost, SVM, logistic regression, and random forest (ensemble of bagged trees).
The multilayer perceptron was not applied because a preliminary analysis indicated that its
performance was inferior to those of other methods and that it was prone to being affected
by hyperparameters (e.g., number of hidden layers and units and learning strategies); in
addition, a proper architecture requires numerous computing resources [36]. To achieve
superior predictive performance, we combined the results of each of the ML models using
the stacking method to obtain an integrated result. The stacking method is an ensemble
learning method that employs logistic regression to learn the ground truth from predicted
scores generated by the eight ML models.

The models were constructed, and the analysis was performed using MATLAB’s
Machine-Learning Toolbox and Statistics Toolbox (2021a release, MathWorks, Inc., Natick,
MA, United States). Variable normalization techniques, such as the min–max normalization
and standardization (except for Naïve Bayes, which requires the z-score transformation
of data), and data reduction techniques, such as principal component analysis, were not
applied because preliminary tests indicated that the use of these methods did not improve
modeling performance.

2.5. Training and Validation

We applied the five-fold cross-validation method to develop the ML models. Fol-
lowing the five-fold cross-validation training procedure, before each training for each
ML model, the 577 patients were randomly divided into two groups, the training and
validation groups. Specifically, the training group that consisted of 80% (462 patients) of
the dataset was applied for training the ML model while the remaining 20% (115 patients)
for validating the trained ML model, an approach that could prevent overfitting. The
aforementioned training procedure was repeated for 100 iterations. For each iteration, the
patients in the dataset were randomly assigned into groups to avoid selection bias. After
the completion of all the iterations, the performance of the ML model (e.g., AUC) was
calculated over the 577 patients. Each type of ML model was constructed for 100 times and
the performance of the 100 ML models were averaged to yield a summary of performance
for each type of ML model.

During ML mode training, the tuning of hyperparameters was performed using
Bayesian optimization with five-fold cross-validation. No data augmentation method
was employed because the data were not heavily imbalanced (ratio of BI-F ≤ 60 to BI-F >
60 = 0.45:1).

2.6. Feature Importance Analysis

To compare the performance among the ML models, the entire procedure was repeated
20 times using randomly created five-fold datasets. To estimate the importance of each
predictor [37], we used the permutation technique for the random forest model for the
testing dataset. Using the permutation technique, we identified important features because
the permutation of their values in the dataset would increase the model’s prediction error.

After defining the most important features, we constructed the individual conditional
expectation (ICE) [38] plot and the partial dependent plot (PDP) [39] to characterize the
contribution of each factor to the outcome measurement, namely the classification score.
Each line of the ICE plot indicates the dependence of prediction on a specific predictor for
each patient. By keeping the other predictors the same, the degree to which the prediction
is affected by replacing the value of a predictor variable (shown on the x-axis) can be
evaluated based on the changes in prediction values shown on the y-axis. The PDP plot is
a summary of all lines in the ICE plot and represents the mean of prediction values (on the
y-axis).
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2.7. Statistical Analysis

Based on the receiver operating characteristic (ROC) curve of each ML model, the
optimal cutoff point of the model output value for classification was determined by identi-
fying the maximum of the Youden index (Youden index = sensitivity + specificity − 1). The
performance of the ML models was evaluated by calculating the following indicators: area
under the curve (AUC), accuracy = TP+TN

P+N , speci f icity = TN
FP+TN , and sensitivity = TP

TP+FN .
A one-way analysis of variance (ANOVA) was performed to compare the difference in
indicators among the ML models, and Tukey’s honestly significant difference (HSD) test
was used for post hoc analysis. Pearson’s chi square test and the Wilcoxon rank-sum test
were used to compare differences in demographic parameters, functional assessments,
comorbidities, and complications between the BI-F > 60 and BI-F ≤ 60 groups. A p value
of <0.05 was considered statistically significant.

3. Results
3.1. Patient Characteristics

A total of 577 patients were included in this analysis after 56 patients who did not
undergo the assessment at the termination of the PAC-CVD program were excluded
(acute ward readmission or against advice discharge). Post-stroke interventions were
administered in 25 (4.3%) patients (intravenous thrombolysis, n = 16, and endovascular
thrombectomy, n = 9). The mean rehabilitation timing, i.e., the interval from the stroke
onset to the commencement of rehabilitation, was 13.2 ± 5.3 (mean ± standard deviation)
days, and the LOS in the PAC-CVD ward was 52.3 ± 23.7 days. The mean BI scores upon
admission to the PAC-CVD hospital and at discharge were 48.34 ± 16.9 and 71.2 ± 18.3,
respectively.

In terms of demographic characteristics, all predictors exhibited no significant differ-
ences between the BI-F > 60 and BI-F ≤ 60 groups (all p > 0.05) except for age, rehabilitation
timing, dyslipidemia, atrial fibrillation, hepatitis, malignancy, gout, previous stroke, and
pneumonia. In terms of functional assessments, all predictors significantly differed between
the BI-F > 60 and BI-F ≤ 60 groups (all p < 0.05) except for MNA-I (Table 1) and several
NIHSS subscales.

Table 1. Patients’ demographic parameters.

Parameters All
Group

Final BI > 60 Final BI ≤ 60 p Value

Patient number 577 397 180
Age (year) 64.6 ± 12.6 62.4 ± 12.3 69.4 ± 11.8 <0.001 ***

Male/Female 381/196 271 (71)/126 (64) 110 (29)/70 (36) 0.093
Hemorrhagic stroke 84 61 (73) 23 (27) 0.414

Rehabilitation timing (day) 13.2 ± 5.3 12.6 ± 5.1 14.5 ± 5.7 <0.001 ***
BI-I 48.3 ± 16.9 54.7 ± 14.6 34.4 ± 12.6 <0.001 ***
BI-F 71.2 ± 18.3 81.1 ± 10.5 49.3 ± 11.4 <0.001 ***
∆BI 22.9 ± 14.8 26.4 ± 14.9 15.0 ± 10.9 <0.001 ***

mRS-I 3.5 ± 0.6 3.4 ± 0.6 3.9 ± 0.4 <0.001 ***
FOIS-I 5.7 ± 1.9 6 ± 1.6 5.0 ± 2.2 <0.001 ***
MNA-I 16.5 ± 5.3 16.6 ± 5.5 16.3 ± 4.7 0.263

Euro-QoL-5D-I 9.8 ± 1.6 9.5 ± 1.5 10.4 ± 1.6 <0.001 ***
IADL-I 1.7 ± 1.2 1.9 ± 1.2 1.1 ± 1.1 <0.001 ***
BBS-I 29.3 ± 17.4 36 ± 14.4 14.5 ± 13.8 <0.001 ***

Gait speed-I (s) 6.6 ± 9.6 7.8 ± 9.4 4.0 ± 9.4 <0.001 ***
6-MWT-I (m) 115.1 ± 148.9 153.4 ± 157.0 30.6 ± 79.4 <0.001 ***

FuglUE-I 42.4 ± 20.0 47.2 ± 17.5 31.7 ± 20.8 <0.001 ***
FuglSEN-I 34.1 ±13.5 37.0 ± 10.7 27.9 ± 16.6 <0.001 ***

CCAT-I 10.7 ± 1.9 11.0 ± 1.49 9.9 ± 2.4 <0.001 ***
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Table 1. Cont.

Parameters All
Group

Final BI > 60 Final BI ≤ 60 p Value

Comorbidities
Hypertension 477 (77.5) 305 (76.8) 142 (78.9) 0.583

Diabetes mellitus 220 (38.1) 150 (37.8) 70 (38.9) 0.8
Dyslipidemia 271 (47.0) 199 (50.1) 72 (40.0) 0.024 *

Atrial fibrillation 54 (9.4) 28 (7.1) 26 (14.4) 0.005 **
Coronary arterial disease 49 (8.5) 31 (7.8) 18 (10.0) 0.382
Chronic kidney disease 25 (4.3) 13 (3.3) 12 (6.7) 0.064

Pulmonary disease 17 (2.9) 10 (2.5) 7 (3.9) 0.367
Liver cirrhosis 4 (0.7) 2 (0.5) 2 (1.1) 0.415

Hepatitis 15 (2.6) 14 (3.5) 1 (0.6) 0.038 *
Malignancy 26 (4.5) 13 (3.2) 13 (7.2) 0.034 *

Gout 38 (6.6) 33 (8.3) 5 (2.8) 0.013 *
Parkinsonism 8 (1.4) 4 (1.0) 4 (2.2) 0.248

Dementia 15 (2.6) 8 (2.0) 7 (3.9) 0.19
Old stroke 124 (21.5) 69 (17.4) 55 (30.6) <0.001 ***

Psychiatric disorder 16 (2.8) 13 (3.3) 3 (1.7) 0.276
Complications

Pneumonia 29 (5.0) 14 (3.5) 15 (8.3) 0.014 *
Urinary tract infection 36 (6.2) 20 (5.0) 16 (8.9) 0.076

Stroke-in-evolution 14 (2.4) 7 (1.8) 7 (3.9) 0.124
Gastrointestinal bleeding 16 (2.8) 10 (2.5) 6 (3.3) 0.581

Cellulitis 10 (1.7) 7 (1.8) 3 (1.7) 0.934

Values are expressed as means ± standard deviations or counts (percentages). The “-I” and “-F” represent the initial and final functional
assessments at the PAC-CVD hospital. The “-In” and “-Out” represent the initial and final National Institute of Health Stroke Scale at the
acute management ward. PAC-CVD: Post-Acute Care-Cerebrovascular Disease; BI: Barthel Index; BBS: Berg Balance Test; ∆BI: change
from the initial BI to the final BI; CCAT: Concise Chinese Aphasia Test; mRS: modified Rankin Scale; IADL: Lawton–Brody Instrumental
Activities of Daily Living Scale; Euro-QoL-5D: European Quality of Life Five-Dimension Questionnaire; 6-MWT: 6-Minute Walk Test;
FuglUE: Fugl–Meyer Upper Extremity Assessment; FuglSEN: modified Fugl–Meyer Sensory Assessment; FOIS: Functional Oral Intake
Scale; MNA: Mini-Nutritional Assessment. * p < 0.05; ** p < 0.01; *** p < 0.001.

After the completion of the PAC-CVD program, most (556, 96%) patients were dis-
charged home, 2 (0.3%) developed acute conditions during PAC and were thus trans-
ferred to the acute ward, 2 (0.3%) were discharged against advice, 4 (0.6%) were trans-
ferred to a nursing home, and the remaining patients (13, 2.2%) were transferred to other
rehabilitation facilities.

3.2. Performance of Post-Stroke Outcome Classification Models

The following eight ML models were trained: decision tree, Naïve Bayes, kNN,
AdaBoost, linear discriminant analysis, SVM, logistic regression, and random forest. The
stacking model was trained by applying the results of these eight models. The performance
of the ML models was evaluated using ROC curves (Figure 1A). The AUC of these models
ranged from 0.83 to 0.887, and the performance significantly differed among the ML
models (one-way ANOVA, p < 0.001; Table 2). The results of the post hoc Tukey’s HSD test
revealed that random forest, stacking, logistic regression, and SVM had comparable AUCs,
indicating that the performance of these four models was equally superior to those of other
ML models (Figure 1B).

3.3. Feature Importance for the Prognosis of BI at Discharge

The feature importance analysis of the 77 predictors indicated that BBS-I, BI-I, and
CCAT-I were among the top three predictors (importance > 1 × 10−3). These predictors
had lower values in the final BI ≤ 60 group, indicating that patients with lower BBS, BI,
and CCAT scores at admission were more likely to experience difficulties in performing
ADLs at discharge (Table 3). Figure 2 displays 20 of the predictors.
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Table 2. Performance of machine-learning models.

Model AUC ACC Spe † Sen †

Decision Tree (a) 0.83 ± 0.048 0.817 ± 0.009 0.749 ± 0.067 0.828 ± 0.056
Naïve Bayes (b) 0.849 ± 0.008 0.786 ± 0.005 0.811 ± 0.074 0.744 ± 0.075

kNN (c) 0.856 ± 0.006 0.828 ± 0.006 0.709 ± 0.042 0.866 ± 0.041
AdaBoost (d) 0.871 ± 0.025 0.827 ± 0.011 0.792 ± 0.042 0.83 ± 0.04

Linear Discriminant (e) 0.876 ± 0.008 0.819 ± 0.009 0.785 ± 0.045 0.813 ± 0.046
SVM (f) 0.884 ± 0.003 0.831 ± 0.005 0.791 ± 0.022 0.841 ± 0.024

Logistic Regression (g) 0.886 ± 0.003 0.833 ± 0.005 0.794 ± 0.015 0.85 ± 0.041
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Values are expressed as means ± standard deviations. kNN: K-nearest neighbor; SVM: support vector machine; AUC: area under the curve;
ACC: accuracy; Spe: specificity; Sen: sensitivity. † Sensitivity and specificity were computed using the maximum of Youden’s Index as the
cutoff value. ***: p < 0.001.

Table 3. The top three importance predictors in the random forest machine-learning model to predict
BI-F.

Parameter Final BI > 60 Final BI ≤ 60 p Value

BBS-I 36.0 ± 14.4 14.5 ± 13.8 <0.001 **
BI-I 54.7 ± 14.6 34.4 ± 12.6 <0.001 **

CCAT-I 11.0 ± 1.49 9.9 ± 2.4 <0.001 **
Values are expressed as means ± standard deviations. The “-I” represents the initial functional assessments at
the PAC-CVD hospital. PAC-CVD: Post-Acute Care-Cerebrovascular Disease; BBS: Berg Balance Test; BI: Barthel
Index; CCAT: Concise Chinese Aphasia Test. ** p < 0.001.

3.4. Dependence and Heterogeneity of Predictors

The dependence and heterogeneity of the top eight predictors were determined by
creating the PDP and ICE plots (Figure 3). In the figures, the gray lines represent the
ICE plot, indicating the functional relationship between the score of BI-F > 60 and the
predictors, and the red line represents the PDP, indicating the mean of the lines in the ICE



Diagnostics 2021, 11, 1784 8 of 13

plot. Evaluating the PDP and ICE plots is crucial because heterogeneous effects might
occur because of PDPs exhibiting only the average effects of ICE plots. For example, the
PDP would be a horizontal line if half of the predictors had a positive association with
the predictive outcome and the other half had a negative association. In this scenario,
researchers might incorrectly conclude that the predictors did not affect the predictive
outcome. Thus, by constructing the ICE plot, the heterogeneity can be evaluated.
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Figure 2. Feature importance of the random forest machine-learning model, indicating the 20 most
important predictors. The “-I” represents the initial functional assessments at the PAC-CVD hospital.
The “-In” and “-Out” represent the initial and final National Institute of Health Stroke Scale at the
acute management ward. Error bars indicate the mean ± standard error. PAC-CVD: Post-Acute
Care-Cerebrovascular Disease; BBS: Berg Balance Test; BI: Barthel Index; CCAT: Concise Chinese
Aphasia Test; 6-MWT: 6-Minute Walk Test; FuglUE: Fugl–Meyer Upper Extremity Assessment; mRS:
modified Rankin Scale; IADL: Lawton–Brody Instrumental Activities of Daily Living Scale; FuglSEN:
modified Fugl–Meyer Sensory Assessment; Euro-QoL-5D: European Quality of Life Five-Dimension
Questionnaire; MNA: Mini-Nutritional Assessment; FOIS: Functional Oral Intake Scale; LU: motor of
the left arm; RU: motor of the right arm; LL: motor of the left Leg; RL: motor of the right Leg; Face:
facial palsy.

These plots revealed that changes in the predictor value did not exhibit a linear
relationship with changes in the predicted outcome (BI-F > 60). In the example of BBS-I
(Figure 3A), the PDP (red line) and ICE (gray lines) plots sharply increased when the BBS-I
value increased from 0 to 40, indicating that changes in the predicted outcome were mostly
associated with BBS-I values ranging from 0 to approximately 40. Using the same rule, we
discovered that BBS-I < 40, BI-I < 60, CCAT-I > 10, 6-MWT-I < 200 m, gait speed-I < 20 s,
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FuglUE-I < 60, mRS-I between 3 and 4, and IADL-I < 2 were more prone to yielding a
change in the predicted outcome. These findings indicated that changes in predictor values
at these ranges could account for the variability in ADL at discharge.
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of BBS-I (A), BI-I (B), CCAT-I (C), 6-MWT-I (D), Gait Speed-I (E), FuglUE-I (F), mRS-I (G), and IADL-I (H). Gray lines
represent the functional relationship between the score of BI-F > 60 and the predictors, and the red line represents the
PDP and the mean of the ICE lines. A BI-F score of >60 is affected by the value of the above-mentioned parameters.
The “-I” and “-F” represent the initial and final functional assessments at the PAC-CVD hospital. PAC-CVD: Post-Acute
Care-Cerebrovascular Disease; BBS: Berg Balance Test; BI: Barthel Index; CCAT: Concise Chinese Aphasia Test; 6-MWT:
6-Minute Walk Test; FuglUE: Fugl–Meyer Upper Extremity Assessment; mRS: modified Rankin Scale; IADL: Lawton–Brody
Instrumental Activities of Daily Living Scale.

4. Discussion

The selection of appropriate ML models for disease prediction is crucial to optimize
performance. The findings of this study indicated that the performance of random forest,
stacking, logistic regression, and SVM models was superior to that of other ML methods.
The stacking ML model, which combined the predictions of multiple ML models, did not
demonstrate superior predictive performance, suggesting that any of the above-mentioned
models exhibited the optimal performance in predicting post-stroke functional outcomes.
Our study is unique in several ways. First, a total of 77 predictors were explored, includ-
ing demographic parameters, functional assessments, comorbidities, and complications.
Second, the PAC program enabled us to collect comprehensive and in-depth functional as-
sessment data throughout the program. Third, the PAC program enabled patients to receive
rehabilitation for up to 12 weeks, which is nearly triple the length of a non-PAC program.

The dependence and heterogeneity of the predictors were visually evaluated by
constructing PDP and ICE plots. The ICE plot demonstrated the functional relationship
between the outcome measurement (BI-F) and predictors, whereas the PDP represents
the average of the lines of an ICE plot. Both plots enable investigators to determine
the relationship between predictors and outcome measurements in a nonlinear manner.
According to the PDP and ICE plots constructed in our study, changes in the outcome
measurement were mostly associated with segmental changes in predictor values. These
results can be explained by several aspects: (1) BBS-I < 40, BI-I < 60, 6-MWT-I < 200 m,
and IADL-I < 2 were associated with changes in the BI-F, indicating that patients with
poorer initial functional status tended to have more improvement and that the PAC-CVD
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program facilitated post-stroke functional improvement and (2) patients with CCAT-I > 10,
gait speed-I < 20 s, FuglUE-I < 60, and mRS-I between 3 and 4 demonstrated considerable
changes in BI-F scores possibly because of selection bias due to the stringent PAC-CVD
inclusion criteria. This information provides valuable details for clinicians to assess patients
and predict functional outcomes.

The results of the feature importance analysis revealed that the BBS-I, BI-I, and CCAT-I
were the top three predictors. Patients with stroke often have impaired balance. One
study reported a strong correlation between post-stroke functional abilities and initial
balance function [40]. In addition, balance function is a prognostic factor for post-stroke
recovery [41,42]. A study using data from Taiwan’s PAC-CVD database indicated that
balance was the most significantly improved domain in stroke recovery [43]. Both static
and dynamic balance are included in the BBS, thus representing the condition of trunk
control and locomotion [27].

The BI-I is a strong prognostic factor for post-stroke recovery [44] and is considered
the best predictor of the BI at discharge [45]. One study indicated that the BI-I and six other
factors, namely age, diabetes, myocardial infarction, Brunnstrom motor recovery stages
and motor control, time from stroke onset to acute care hospital admission, and time from
admission to the commencement of rehabilitation, could explain up to 61% of the variance
in discharge BI [45]. Thus, the BI-I can be used to predict post-stroke functional outcomes
with simplicity and reliability.

Language function is crucial for rehabilitation and interpersonal relationships during
recovery. Although gradual spontaneous recovery was observed in patients with aphasia
in the first few months, a lifelong deficit remained in most patients [46–48]. Patients with
aphasia are more likely to encounter difficulties in returning to work or participating in
social activities, thus reducing their health-related quality of life [49]. Long-term recovery
from aphasia can be predicted by the initial severity, size, and site of stroke [50]. Early
identification of patients with aphasia and early intervention with speech and language
therapy are crucial for increasing post-stroke independence.

Sex, comorbidities, and stroke-related complications were not identified as predictors
in our ML models. However, this finding differs from those of other studies. Studies
have reported that older women had a higher rate of stroke and poorer recovery [51], and
poor recovery was independent of older age and other clinical or demographic characteris-
tics [52]. Comorbidities, measured using the comorbidity index or weighted comorbidity
index reported by Liu et al. [53], contributed 3% to the post-stroke functional outcome in
one study [54]. The comorbidity index reported by Liu et al. comprises 41 conditions in
the 13 main diagnostic categories (cardiovascular, pulmonary, orthopedics, metabolic and
endocrine, gastrointestinal, neurologic and psychiatric, audiovisual, urologic, hematologic,
infectious, neoplastic, dermatologic, and dental system) and has been widely used in
studies on post-stroke outcome. These discrepancies in the findings may be related to the
following aspects of this study: (1) selection bias caused by the strict admission criteria
of the PAC-CVD program, (2) early timing of the outcome measurement, and (3) a small
sample size.

This study demonstrated the power of ML methods that are less affected by the
problem of collinearity [55] because the predictors were determined by performing a feature
importance analysis. The PDP and ICE plots provided detailed information regarding the
predictive values of the predictors for post-stroke functional outcome.

This study has several limitations. First, the participants were from northern Taiwan
because they were enrolled from a PAC hospital in northern Taiwan. Second, patients
who were considered to have poor potential for rehabilitation were excluded from the
program because of the strict admission criteria of the PAC-CVD program. These factors
may have caused selection bias. Third, the subtypes in ischemic strokes, such as lacunar
infarction and cardioembolic stroke, were not further labelled in the present study. Among
subtypes of ischemic stroke, lacunar infarction has the best functional prognosis [56], while
patients with cardioembolic stroke have the poorest short-term prognosis [57]. Last, several
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factors, such as enriched environment [58], financial status [59], and nutritional status [60],
were shown to affect the outcome of post-stroke rehabilitation. The data in the present
study reflects the outcome of a hospital-based standard-of-care rehabilitation program that
provides a comprehensive team care, including physical therapy, occupational therapy,
speech therapy, and inpatient medical care. The knowledge in the present study can thus be
applied as long as the hospitals or countries can provide a hospital-based standard-of-care
rehabilitation program.

5. Conclusions

Information collected at admission could be used to predict patients’ ADL at dis-
charge, measured by the BI, through various ML models. Random forest, stacking, logistic
regression, and SVM demonstrated superior performance. The feature importance analysis
identified the BBS-I, BI-I, and CCAT-I as the top three predictors. The PDP and ICE plots
indicated that changes in the BI at discharge were mostly associated with a specific value
of the predictors, indicating that these predictors were predictive at certain value ranges.
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