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Abstract: Boswellic acids (BAs), as the main components of frankincense, exhibit notable anti-inflammatory
properties. However, their pharmaceutical development has been severely limited by their poor
oral bioavailability. Traditional Chinese medicinal processing, called Pao Zhi, is believed to improve
bioavailability, yet the mechanism is still completely unclear. Previous research suggested that the
bioavailability of a drug can be influenced by physical properties. This paper was designed to
investigate the physical properties of frankincense and processed frankincense, including the surface
morphology, particle size, polydispersity index (PDI), zeta potential (ZP), specific surface area, porosity,
and viscosity. The differences in the intestinal absorption characteristics and equilibrium solubilities
between frankincense and processed frankincense were determined by an ultra-high-performance
liquid chromatography coupled with a triple quadrupole electrospray tandem mass spectrometry
(UHPLC-TQ-MS) analysis method. The results showed that vinegar processing can alter the surface
morphology, decrease the particle size and PDI, raise the absolute values of the ZP, specific surface
area and porosity, and drop the viscosity of frankincense. Meanwhile, the rates of absorption and
dissolution of the main BAs were increased after the processing of frankincense. The present study
proves that the physical properties were changed after processing, in which case the bioavailability of
frankincense was enhanced.

Keywords: frankincense; vinegar-processed; changes in the physical properties; intestinal
absorption effects

1. Introduction

Frankincense is the oleo gum-resin obtained from trees of the genus Boswellia (family Burseraceae)
native to the Arabian Peninsula (Boswellia sacra), Africa (Boswellia carteri, Boswellia frereana), and India
(Boswellia serrata) [1,2]. As an essential drug in traditional Chinese medicine (TCM), frankincense is
widely used for the treatment of inflammatory diseases such as rheumatism, rheumatoid arthritis [3],
and osteoarthritis [4,5]. The main constituents of frankincense are monoterpenes, diterpenes, lipophilic
pentacyclic triterpene acids, polysaccharides, and volatile oil [6]. The presence of pentacyclic triterpene
acids, such 11-keto-β-boswellic acid (KBA), 3-acetyl-11-keto-β-boswellic acid (AKBA), α-boswellic
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acid (α-BA), β-boswellic acid (β-BA), 3-acetyl-α-boswellic acid (α-ABA), and 3-acetyl-β-boswellic acid
(β-ABA) was proven to mainly contribute to the anti-inflammatory activity [7,8].

However, the main boswellic acids (BAs) of frankincense showed low bioavailability, which has
been a challenge in the successful formulation of therapeutic products [9]. The low brain availability
in rats and serum levels in humans of six major BAs were determined [10]. Buchele B et al.
analyzed 12 different pentacyclic triterpenic acids in human plasma [11], which have demonstrated
the low bioavailability of BAs, particularly KBA and AKBA, in animals and human. Nowadays,
many bio-derivatization and chemical modification approaches have been performed to make better
use of different BAs, such as applying new formula compatibilities or administering them with anionic
drugs and standardized meals [9]. However, the results of previous research are still not satisfactory.

Chinese medicinal processing, called Pao Zhi, is a pharmaceutical technique for different
therapeutic uses. According to TCM theory, various processing procedures, such as stir-frying,
soaking with water, heating with vinegar, or steaming with alcohol, were used on most Chinese
medicinal herbs [12]. In recent decades, appropriate processing approaches have been used to reduce
the toxicity and exert a large maximal therapeutic efficacy, such as vinegar stir-frying and wine
stir-frying [13]. Moreover, their effects on improving the bioavailability cannot be ignored either.
Results indicate that the salt-processing of scurfpea fruit can significantly increase the distribution of
psoralen and isopsoralen to generative organs [14]. Wine processing was proven to exert effects on the
absorptions of most of the flavonoids, according to the the results of a comparative pharmacokinetic
study of crude and wine-processed Radix Scutellariae [15]. Similarly, vinegar processing altered the
AUC and Cmax parameters of the saikosaponin b1, b2, a, c, and d in Bupleuri Radix (BR, Chaihu in
Chinese) [13]. Treatment with the processed frankincense significantly increased the levels of AUC,
Cmax, T1/2 and MRT of KBA and AKBA in rats compared with the crude sample [12]. However,
the mechanism of the bioavailability enhancement effect of processing is still completely unclear.

Drugs with low oral bioavailability have been an ongoing challenge in the successful formulation
of therapeutic products [16]. Bioavailability is influenced by the formulation, physicochemical
properties, excipients, and preparation technology of drugs [17]. It has been proven that when the
surface area becomes larger, the dissolution rate of the drug is promoted, and thus, the bioavailability
is improved [18,19]. Another physical factor responsible for poor bioavailability is the viscosity.
In addition, a decrease in viscosity leads to an increase in the rates of drug dissolution and diffusion
and tends to enhance the absorption [20,21]. Reducing the agglomeration of powders is also generally
regarded as an important factor for increasing the particle size and surface area, which can promote
the absorption of the drug [22].

Moreover, the solubility, stability, dissolution rate, and absorption of drugs in the gastrointestinal
tract are the key parameters affecting the bioavailability [23,24]. Recently, a variety of strategies have
been explored to overcome the low oral bioavailability of Chinese medicinal herbs [25–27]. However,
little is known about the enhancement of the bioavailability of the drug after processing and changing
the physical properties.

In this paper, the differences between the physical properties of frankincense and processed
frankincense were compared by evaluating various parameters, including the surface morphology,
particle size, polydispersity index (PDI), zeta potential (ZP), specific surface area, porosity, and viscosity.
The absorption characteristics in rat intestinal segments and the differences in the equilibrium solubility
(pH = 2.0, 7.0, 7.8–8.0) between frankincense and processed frankincense were observed as well.
This study is helpful to define and understand the mechanism for the bioavailability enhancement
after vinegar processing.
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2. Results and Discussion

2.1. Differences in Physical Property Indices Between Frankincense and Processed Frankincense

2.1.1. Surface Morphology by Scanning Electron Microscopy (SEM)

The absorption and metabolism of drugs in vivo are extremely complicated processes.
The pharmacological effects depend not only on the chemical compositions or structures of the
drug but also on its physical properties [21]. This measurement aimed to compare the surface
morphologies of frankincense and processed frankincense. SEM has become an indispensable tool and
was used for topography imaging of powder samples in this study [28,29]. SEM images of frankincense
and processed frankincense exhibited a significantly different status of the powder sample (Figure 1A,B).
The results showed the images of frankincense with a smooth surface, while the processed frankincense
exhibited folds full of holes with a rough surface. Additionally, porous particles have a larger surface
area than non-porous particles [30]. Thus, processed frankincense was believed to lead to an increase
in the surface area. According to the Noyes–Whitney equation (Noyes and Whitney, 1897), the surface
area determined the dissolution rate [18]. Furthermore, a high dissolution rate can promote drug
absorption [19]. There are many Chinese traditional patent medicines containing vinegar-processed
frankincense as a main ingredient smashed medicine for use, such as Qili san and Shixiangzhitong
wan [31]. Therefore, it is possible to enhance the absorption performance and bioavailability by
increasing the surface area of the powder after the processing of frankincense.
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Figure 1. Physical property indices of frankincense and processed frankincense: (A) SEM image of
frankincense; (B) SEM image of processed frankincense; (C) particle size distribution of frankincense;
(D) particle size distribution of processed frankincense; (E) particle size and PDI of frankincense and
processed frankincense; and (F) radar plots of five physical property indices (ZP, specific surface,
porosity and flow times of intestinal and gastric fluid).
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2.1.2. Particle Size, PDI, and ZP

The particle size, PDI, and ZP are the most important characteristics of drugs. The following
characteristics of drugs are closely related to the particle size: 1) drug saturation solubility, 2) physical
stability, 3) dissolution rate, and 4) bioavailability [32]. The physical stability of drug solutions can also
be indicated by PDI and ZP values [33,34]. In this work, particle size, PDI and ZP measurements are
used to compare the frankincense and processed frankincense. The average particle size of processed
frankincense was 409.300 ± 0.002 nm (Figure 1C–E) with a narrow size distribution and a PDI = 0.987
(Figure 1E). Meanwhile, the particle size of frankincense was 543.833 ± 0.071 nm (Figure 1C–E) with
a PDI = 3.489 (Figure 1E). The results all suggested the statistically extreme significant differences
between frankincense and processed frankincense (p < 0.01, p < 0.05). Vinegar processing mainly
contributes to the crushing process of frankincense, thereby resulting in the decrease of the particle
size. As clearly observed in Figure 1F, the ZP values of frankincense and processed frankincense were
measured as −6.500 mV and −10.643 mV respectively (p < 0.01). In general, the low values of particle
size, PDI, and high absolute values of the ZP are preferably desired for achieving a good stability [32,35].
On the other hand, a decrease in the particle size leads to an increase in the particle dissolution rate by
the modified Noyes–Whitney law (Noyes and Whitney, 1897) [36]. A reduction in the particle size
can result in an increase of the saturation solubility based on the Ostwald–Freundlich equation [37].
Furthermore, a high dissolution rate and solubility of the drug can improve its absorption performance
and bioavailability [38]. As the results showed, it is not hard to observe that the values of the particle
size and PDI decreased and the absolute values of the ZP increased, respectively, after stir-baking with
vinegar. Therefore, the high stability and bioavailability of frankincense were anticipated from its
lower particle size and PDI as well as higher ZP value obtained after processing.

2.1.3. Specific Surface Area and Porosity

The specific surface area is defined by the International Union of Pure and Applied Chemistry
(IUPAC). When the area of the interface between two phases is proportional to the mass of one of the
phases, such as a solid adsorbent, an aerosol or an emulsion, the specific surface area is defined as the
surface area divided by the mass of the relevant phase [39]. To detect the specific surface area of a
particle, usually the inner and outer surface areas of a given sample are measured. Dividing this by the
mass of the measured sample gives the specific surface area in m2/g [39]. Additionally, the porosity
is defined as a parameter that has a great influence on the processing properties of the powder and
the quality of its preparation [40]. As is shown in Figure 1 F, the surface area increased from 0.054 ±
0.01 to 25.738 ± 0.494 m2/g, while the porosity increased from 3.142 ± 0.054 to 12.348 ± 0.314% after
the processing of frankincense. The results all showed the statistically extreme significant differences
between frankincense and processed frankincense (p < 0.01). Vinegar processing mainly contributes
to the crushing process of frankincense, thereby resulting in an increase of the specific surface area.
The specific surface area can contribute to the improvement of drug solubility and dissolution behavior
because a higher surface area could give rise to a higher dissolution rate [37]. Meanwhile, the high
porosity also makes a contribution to dissolution enhancement and the consequently increased
bioavailability of the drug [37,41]. The results indicated that the value of the specific surface area of the
frankincense was increased and the porosity was decreased after processing. Therefore, all of these
may improve the bioavailability of the BAs in the powder of processed frankincense compared to that
in frankincense.

2.1.4. Viscosity of the Simulated Gastrointestinal Fluid

The biopharmaceutical properties as well as physicochemical properties of the drug and its
inter-relationship with the gastrointestinal tract contribute to the influence of the oral drug absorption
process. The drug dissolution, solubility, and permeability across gastric and intestinal barriers are the
key parameters controlling absorption [17]. Viscosity is an important physical and chemical feature.
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It is defined as the ability of the fluid to resist the flow [42]. This paper determined the difference in
viscosity between frankincense and processed frankincense by measuring the flow time of simulated
gastric fluid and intestinal fluid. As observed in Figure 1F, the flow times of simulated gastric fluid
and intestinal fluid of processed frankincense were 13.23 ± 0.28 and 10.66 ± 0.49 min, while those of
frankincense were 16.47 ± 0.24 and 14.48 ± 0.22 min. The results all indicated statistically significant
differences between frankincense and processed frankincense (p < 0.05). A decrease in viscosity leads
to increases in the rates of drug dissolution and diffusion [20]. In addition, the viscosity tends to affect
the absorption [21]. According to the results of the flow time, that of the processed sample is shortened,
which indicated a decrease in viscosity after processing. Thus, processing will increase the rates of
drug dissolution and diffusion as well as improve the drug absorption [20,43].

2.2. Establishment of the Content Determination Method of the Six Main BAs

2.2.1. Optimization of Sample Preparation

To optimize and validate our previous extraction protocol for frankincense, processed frankincense
and intestinal absorption solution, we optimized the different extraction methods for frankincense and
processed frankincense, such as ethanol extraction, water extraction, and steam distillation-ethanol
continuous extraction. The optimum ethanol extraction process was as follows: 100 g of sample
was extracted with 30 times the amount of ethanol and sonicated for 30 min. In the same extraction
conditions, ethanol extraction is superior to the other extraction methods. Moreover, compared to
traditional extraction methods, the ultrasonic method requires no heating. Therefore, the ultrasonic
method could avoid the influence of heating and improve the extraction rates for frankincense and
processed frankincense.

We also optimized the extraction solvent, evaluating chloroform, ether, and ethyl acetate for the
intestinal absorption solution. The results showed that ethyl acetate could be applied for an excellent
extraction rate and good separation effect for intestinal absorption.

2.2.2. Optimization of the LC Conditions

To achieve efficient and rapid analysis, different mobile phases (including methanol–water,
acetonitrile–water, methanol–formic acid solution, and acetonitrile–formic acid solution), column
temperatures (25, 30, and 35 ◦C), mobile phase compositions (MeOH-H2O, MeCN-H2O, MeOH-H2O
(containing 0.2% formic acid and 5mM ammonium formate)) and flow rates (0.4, 0.5, and 0.6 mL/min)
were examined and compared. Because of the limit of mass spectrometry in the separation of isomers,
the isomers such as α-BA/β-BA and α-ABA/β-ABA can just be separated by the chromatography
behavior. As a result, excellent separation was achieved in the shortest analysis time when
methanol-water was used at a flow rate of 0.5 mL/min with a column temperature of 30 ◦C. The addition
of 0.2% formic acid and 5 mM ammonium formate was proved to improve the sensitivity and the peak
shape obviously.

2.2.3. Optimization of the MS Conditions

The MS/MS fragmentation patterns were investigated to develop an accurate and sensitive
quantitative method. All factors related to MS performance have been optimized, including the
ionization mode, capillary voltage, fragmentor voltage, collision energy, gas flow, and desolvation
temperature. MS spectra were investigated in both the positive and negative modes at first.
The results showed maximum sensitivity when operating in the negative ion mode. Moreover,
multiple reaction monitoring (MRM) was performed to increase the specificity and sensitivity of
quantification. The retention time (RT) and MS information for each component including [M + H]+,
daughter ion, fragmentor, and CE are shown in Table 1. Meanwhile, the ultra-high-performance
liquid chromatography coupled with a triple quadrupole electrospray tandem mass spectrometry
(UHPLC-TQ-MS) chromatography of frankincense, processed frankincense and blank Tyrode′s solution
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of the intestine sack as well as the standards are shown in Figure 2. The results indicated that all
compounds were specific to their corresponding MRM transitions.

Table 1. RT, related MS data of the six BAs.

No. Compound RT (min) [M + H]+

(m/z)
Daughter
Ion (m/z) Fragmentor (V) CE (eV)

Time segments: 0–7 min

1 KBA 5.522 469.4 391.5 *
407.4 160 30

Time segments: 7–17 min
2 AKBA 9.292 511 255.4 * 115 11

3 α-BA 10.372 455 437.5 *
372.4 250 37

4 β-BA 15.589 455 377.4 *
437.4 110 35

Time segments: 17–30 min

5 α-ABA 25.6 497 437.5 *
361.1 120 12

6 β-ABA 27.598 497 437.5 * 120 13

* Quantitative ions.
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Figure 2. UHPLC-TQ-MS chromatography of an ethanol solution, ethanol extracts of frankincense and
processed frankincense, frankincense solution, processed frankincense solution, and blank Tyrode′s
solution of the intestine sack, as well as standard solutions: (A) ethanol extracts of processed frankincense;
(B) ethanol extracts of frankincense; (C) ethanol solution; (D) processed frankincense solution of the
intestine sack; (E) frankincense solution of the intestine sack; (F) blank Tyrode′s solution of the intestine
sack; (G) KBA; (H) AKBA; (I) α-BA; (J) β-BA; (K) α-ABA; and (L) β-ABA.
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2.3. Method Validation

2.3.1. Specificity

Under the conditions described above, the UHPLC-TQ-MS chromatography of ethanol solution,
ethanol extracts of frankincense and processed frankincense, frankincense solution, processed
frankincense solution, and blank Tyrode′s solution of the intestine sack, as well as standard solutions
of KBA, AKBA, α-BA, β-BA, α-ABA, and β-ABA are shown in Figure 2. No significant interferences
were observed during the UHPLC-TQ-MS chromatography of analytes, suggesting the acceptable
specificity of the proposed method.

2.3.2. Linearity, Limit of Detection (LOD), and Lower Limit of Quantitation (LLOQ)

The detailed information regarding calibration curves, linear ranges, LOD and LLOQ is presented
in Table 2. The regression equations of KBA, AKBA, α-BA, β-BA, α-ABA, and β-ABA were Y = 2145.1X
− 25.865, Y = 19549X − 151.53, Y = 1169.3X − 7.466, Y = 170852X + 4894.1, Y = 300.64X − 46.221, and Y
= 98.805X − 29.213, respectively. The calibration curves exhibited good linearity (r > 0.9925) within the
test range. The values of the LOD were 0.021, 0.014, 0.032, 0.011, 0.33, and 0.28 mg/mL, respectively.
The values of the LLOQ were 0.054, 0.039, 0.087, 0.035, 0.79, and 0.59 mg/mL, respectively. The LOD
ranged from 0.011 to 0.33 mg/mL, and the LLOQs ranged from 0.035 to 0.79 mg/mL, respectively.
The values could meet the requirements of the determination of the six BAs.

Table 2. Calibration curves, linear ranges, LOD, and LLOQ of six BAs.

No. Compounds Regression Equation r Linear Range
(mg/mL)

LLOQ
(mg/mL)

LOD
(mg/mL)

1 KBA Y = 2145.1X − 25.865 0.9960 0.104~1.04 0.054 0.021
2 AKBA Y = 19549X − 151.53 0.9925 0.102~1.02 0.039 0.014
3 α-BA Y = 1169.3X − 7.466 0.9997 0.106~1.06 0.087 0.032
4 β-BA Y = 170852X + 4894.1 0.9957 0.101~1.01 0.035 0.011
5 α-ABA Y = 300.64X − 46.221 0.9987 0.98~9.8 0.79 0.33
6 β-ABA Y = 98.805X − 29.213 0.9986 0.98~9.8 0.59 0.28

2.3.3. Precision and Accuracy

The results for the intra-day and inter-day precision and accuracy in samples are summarized
in Table 3. The intra-day and inter-day precision in the standard mixture ranged from 0.92 to 5.01%.
The values were presented as relative standard deviation (RSD). The accuracy values presented as
coefficient of variation (CV) were in the range from 0.59 to 3.85% for the extraction of frankincense and
0.64 to 54.66% for quality control (QC) samples at low, middle and high QC levels. According to the
Food and Drug Administration (FDA) guidelines, the intra-day and inter-day precision and accuracy
values measured at low, middle, and high concentration levels should not exceed 15%, whereas they
should not exceed 20% for the LLOQ. The results revealed good precision and accuracy.

2.3.4. Matrix Effect

Undetected substances that coelute with the analyte may influence the signal intensity
corresponding to the mass transition of that analyte, thus affecting the linearity and precision
of the method. This is an influence called the matrix effect. The matrix effects at the low quality control
(LQC), middle quality control (MQC) and high quality control (HQC) levels were (94.6 ± 1.7)%, (92.9 ±
5.2)%, and (97.0 ± 4.1)% for KBA; (98.2 ± 4.5)%, (97.3 ± 1.1)%, and (95.5 ± 2.7)% for AKBA; and (96.3 ±
2.5)%, (98.6 ± 3.1)%, and (97.7 ± 4.6)% for α-BA. The matrix effects of β-BA, α-ABA and β-ABA were
(96.8 ± 2.5)%, (94.1 ± 1.6) %, and (98.9 ± 2.1)%; (95.0 ± 3.7)%, (94.3 ± 1.9)%, and (95.8 ± 2.0)%; and (97.1
± 3.4)%, (93.4 ± 2.2)% and (96.9 ± 4.0)% at the LQC, MQC, and HQC levels, respectively These results
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showed no obvious influence of the matrix effect for each analyte at three concentration levels (low,
middle, and high).

Table 3. Precision and accuracy of six BAs.

Compounds
Precision (RSD%) Accuracy (CV%)

Concentration
Levels

Standards Mixture Extraction of
Frankincense

QC Samples
Intra-Day (n = 6) Inter-Day (n = 6)

KBA
L 2.96 2.67 2.46 3.04
M 1.24 3.21 2.11 0.64
H 2.46 4.03 1.68 1.05

AKBA
L 5.01 4.96 3.77 2.13
M 3.84 4.18 3.26 0.78
H 1.99 1.05 2.55 0.89

α-BA
L 2.80 2.54 0.59 4.66
M 2.47 3.22 1.21 2.40
H 4.90 2.01 0.97 2.85

β-BA
L 1.09 3.49 1.91 4.13
M 3.56 4.54 0.68 3.56
H 1.43 2.08 2.34 1.19

α-ABA
L 3.88 1.52 3.85 2.34
M 2.54 2.73 2.44 2.90
H 4.13 3.05 1.23 3.55

β-ABA
L 3.29 4.00 2.70 3.30
M 1.17 2.27 2.79 4.01
H 0.92 2.02 3.43 2.72

2.3.5. Recovery

The recoveries of extraction samples of frankincense and processed frankincense varied between
96.71 and 101.01% with RSD less than 4.86%, and those of the QC samples varied between 91.68 and
106.44% with RSD less than 4.48%. The details for the recoveries are shown in Table 4. These results
showed that the assay is a useful and reliable method for determining the contents of six analytes in
extraction samples and QC samples at low, middle, and high levels.

Table 4. Recovery of six BAs.

Extraction Samples QC Samples

Compounds
Original
Amounts

(g)

Spiked
Amounts

(mg)

Detected
Amounts

(mg)

Recovery
(%)

Mean
Recovery

(%)

RSD
(%)

QC
Levels

Mean
Recovery

(%)

RSD
(%)

KBA

0.04918 0.750 1.521 102.60

98.44 4.78

L 104.75 1.930.04726 0.750 1.423 93.45
0.05012 0.750 1.556 105.36

M 101.63 2.210.05035 0.750 1.498 97.15
0.04509 0.750 1.395 94.14

H 104.38 1.050.04728 0.750 1.457 97.94

AKBA

0.04918 1.235 2.511 105.76

101.01 4.26

L 97.67 3.760.04726 1.235 1.376 98.63
0.05012 1.235 2.492 102.35

M 103.40 4.090.05035 1.235 2.390 93.64
0.04509 1.235 2.385 103.67

H 96.71 1.980.04728 1.235 2.418 102.00

α-BA

0.04918 0.920 1.807 97.95

99.12 1.73

L 101.24 2.640.04726 0.920 1.772 97.99
0.05012 0.920 1.841 99.76

M 91.68 3.010.05035 0.920 1.820 97.02
0.04509 0.920 1.762 101.24

H 105.11 2.470.04728 0.920 1.798 100.77



Molecules 2019, 24, 3453 9 of 20

Table 4. Cont.

Extraction Samples QC Samples

Compounds
Original
Amounts

(g)

Spiked
Amounts

(mg)

Detected
Amounts

(mg)

Recovery
(%)

Mean
Recovery

(%)

RSD
(%)

QC
Levels

Mean
Recovery

(%)

RSD
(%)

β-BA

0.04918 2.40 4.729 99.44

97.97 3.13

L 102.90 4.480.04726 2.40 4.598 97.79
0.05012 2.40 4.869 103.41

M 99.53 1.550.05035 2.40 4.704 96.08
0.04509 2.40 4.436 95.35

H 106.39 2.200.04728 2.40 4.550 102.60

α-ABA

0.04918 0.318 0.607 92.54

97.88 4.86

L 102.35 3.140.04726 0.318 0.635 105.18
0.05012 0.318 0.641 101.35

M 98.17 1.580.05035 0.318 0.621 94.60
0.04509 0.318 0.589 95.05

H 101.04 4.220.04728 0.318 0.614 98.54

β-ABA

0.04918 2.10 4.080 95.62

96.71 3.72

L 103.82 3.230.04726 2.10 3.891 90.47
0.05012 2.10 4.135 96.35

M 106.44 1.790.05035 2.10 4.202 99.08
0.04509 2.10 3.956 97.92

H 100.01 2.800.04728 2.10 4.11 100.86

L: LQC levels, M: MQC levels, H: HQC levels.

2.3.6. Stability

The stabilities of QC samples were evaluated at the low, medium and high levels under different
storage conditions. The results for samples of QC samples as well as extracts of frankincense and
processed frankincense are listed in Table 5. The RSD% were within 15% for all stability tests. The
stabilities (RSD) of QC samples varied between 1.08% and 4.87%, and the stabilities of extraction
samples were less than 4.39%. The results were considered to be satisfactory and within the acceptable
limits, thus making the method applicable for routine analysis.

Table 5. Stability of six BAs.

QC Samples Extraction Samples

Storage Condition/Temperature Storage Condition/Period QC Levels RSD% RSD%

KBA

6 h
L 1.52

2.53

M 3.40
H 3.11

4 ◦C 9 h
L 2.59
M 4.37
H 4.05

−80 ◦C 12–16 h
L 1.08
M 2.76
H 4.43

4 ◦C 30 days
L 3.92
M 2.44
H 1.67

AKBA

25 ◦C 6 h
L 3.03

3.46

M 3.52
H 4.56

4 ◦C 9 h
L 1.91
M 2.33
H 2.53

−80 ◦C 12–16 h
L 4.78
M 3.42
H 2.03
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Table 5. Cont.

QC Samples Extraction Samples

Storage Condition/Temperature Storage Condition/Period QC Levels RSD% RSD%

4 ◦C 30 days
L 2.72
M 3.30
H 4.17

α-BA

25 ◦C 6 h
L 3.00

2.72

M 1.35
H 4.02

4 ◦C 9 h
L 2.31
M 4.28
H 3.96

−80 ◦C 12–16 h
L 4.39
M 2.88
H 2.05

4 ◦C 30 days
L 1.22
M 3.64
H 3.35

β-BA

25 ◦C 6 h
L 2.92

4.39

M 1.69
H 4.87

4 ◦C 9 h
L 1.32
M 3.77
H 2.33

−80 ◦C 12–16 h
L 2.10
M 3.81
H 1.54

4 ◦C 30 days
L 4.00
M 1.79
H 2.85

α-ABA

25 ◦C 6 h
L 2.66

2.10

M 4.23
H 2.05

4 ◦C 9 h
L 3.48
M 1.77
H 2.91

−80 ◦C 12–16 h
L 3.08
M 4.33
H 1.59

4 ◦C 30 days
L 2.70
M 4.40
H 3.81

β-ABA

25 ◦C 6 h
L 4.74

4.21

M 2.90
H 3.21

4 ◦C 9 h
L 1.68
M 2.03
H 2.47

−80 ◦C 12–16 h
L 3.88
M 1.96
H 4.07

4 ◦C 30 days
L 2.85
M 2.72
H 1.29

L: LQC levels, M: MQC levels, H: HQC levels.

2.3.7. Carryover

The chromatogram following the upper limit of quantification suggested no peak interference in an
analytical run, near the RT of each analyte. The results showed that carryover met the acceptance criteria.
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2.4. Determination of the Intestinal Absorption Rate

Drugs are absorbed into the blood-stream mainly in the intestine [44]. The everted intestine sac
was first described by Wilson and Wisemans and used to study drug absorption and metabolism [45,46].
Therefore, everted rat gut sacs were studied to determine the intestinal absorption rates of frankincense
and processed frankincense both in powders and ethanol extracts. In the present study, we observed
that there were differences in the absorptions of four BAs before and after processing. It can be seen
from Figure 3 that the absorption rates of KBA, AKBA, α-BA, and β-BA in frankincense are 5.14 ±
0.88, 7.41 ± 0.42, 8.93.12 ± 0.41, and 2.06 ± 0.07 in powders and 20.37 ± 0.56, 28.89 ± 0.72, 31.21 ± 1.33,
and 17.80 ± 0.66 in ethanol extracts. The absorption rates of processed frankincense are 48.47 ± 0.51,
54.72 ± 2.46, 30.64 ± 0.52, and 39.26 ± 0.22 in powders and 72.80 ± 0.78, 82.17 ± 4.12, 61.32 ± 1.29,
and 69.10 ± 0.81 in ethanol extracts, respectively. The absorption rates of α-ABA and β-ABA were not
detected. The findings demonstrate that the absorption rates of the main BAs in processed frankincense
are higher than in frankincense (p < 0.01, p < 0.05). In addition, the intestinal absorption rates of
frankincense and processed frankincense in powders are both lower than those in ethanol extracts
(Figure 3). However, by comparing the difference values, the values of powders are higher than those
of ethanol extracts (Figure 3), i.e., the powders of frankincense are believed to produce much greater
change after processing. The difference is statistically significant (p < 0.01, p < 0.05). The explanation for
this is that several physical properties of frankincense—such as the particle size, specific surface area,
and so on—were changed after processing. Therefore, the increase in intestinal absorption rates reveals
that the drug absorption and bioavailability can be improved after the processing of frankincense and
the absorption rate is affected by the physical properties of frankincense and processed frankincense to
the greatest degree.
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2.5. Measurement of the Equilibrium Solubility

Equilibrium solubility is an important physicochemical parameter affecting the efficacy and
absorption of drugs in the gastrointestinal tract [47]. A high equilibrium solubility contributes to
the drug absorption performance and bioavailability [21]. Therefore, it is necessary to study the
equilibrium solubility of frankincense and processed frankincense to address the differences in drug
absorption between them. Dissolution of the sample is a critical part in the determination of the
equilibrium solubility [48]. According to the methods for the measurement of equilibrium solubility in
many studies, shaking for 24 h is a good method to dissolve and avoid degradation of the sample.
Thus, the method of shaking for 24 h was applied in this paper. As shown in Figure 4, the equilibrium
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solubilities of processed frankincense in buffer solutions with different pH values are higher than those
of frankincense, and the differences are all significant between them. The results suggested that the
drug absorption and bioavailability could be increased after the processing of frankincense.Molecules 2019, 24, x FOR PEER REVIEW 12 of 20 
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Figure 4. Equilibrium solubilities of six BAs in buffer solutions with different pH values: (A) pH = 2.0;
(B) pH = 7.0; and (C) pH = 7.8–8.0. * indicates a statistically significant difference between frankincense
and processed frankincense (p < 0.05). ** indicates a statistically highly significant difference between
frankincense and processed frankincense (p < 0.01).

3. Materials and Methods

3.1. Instruments, Chemicals and Animals

The Ostwald-type viscosimeter was supplied by the Malvern Co., Ltd. (Malvern, UK).
The HITACHI E-1010 ion sputtering instrument and SEM were procured by the Hitachi Co., Ltd.
(Tokyo, Japan). An Auto Pore IV 9500 mercury porosimeter was purchased from the Micromeritics Co.,
Ltd. (Atlanta, GA, USA). The Zetasizer Nano ZS980 laser particle size analyzer (LPSA) was provided
by the Malvern Co., Ltd. (Malvern, Worcestershire, UK). The Empower 2 data processing system was
obtained from the Waters Co., Ltd. (Milford, MA, USA). A HSS-1 B digital thermostat bath from the
Chengdu Instruments Factory (Chengdu, Sichuan, China) and a SorvallsuperT21 high-speed centrifuge
from the DuPont Co., Ltd. (Wilmington, DE, USA) were used. The AL-F211AE ASD electromagnetic
furnace was provided by the ASD Electric Appliance Co., Ltd. (Taizhou, Zhejiang, China). The 1260
high performance liquid chromatograph (HPLC, G1322A degasser, G1311A quaternary pump, G1313A
automatic sampler, G1316A incubator, and HP chem-station) and 6410ATQ mass spectrometer were
supplied by the Agilent Co., Ltd. (Santa Clara, CA, USA). The TCQ-250 ultrasonic cleaner was from
the Beijing Medical Equipment Factory (Beijing, China). A CP225D 1/10 million electronic balance was
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obtained from the Sartorius Co., Ltd. (Göttingen, Germany). The Titramax 100 oscillator was from the
Heidolph Co., Ltd. (Schwabach, Germany).

The standards of KBA and AKBA were from the National Institutes for Food and Drug Control
of China (Beijing, China). The α-BA, β-BA, α-ABA, and β-ABA were from the ChromaDex Co., Ltd.
(Irvine, CA, USA). LongMen rice vinegar was obtained from the Beijing Ershang Longhe Food Co.,
Ltd. (Beijing, China). Sodium carboxymethyl cellulose (C8H16NaO8, CMC-Na) was obtained from
the Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Analytical-grade methanol, ethanol,
and ethyl acetate produced by the Beijing Factory of Chemical Technology (Beijing, China) were used.
Other analytical-grade reagents, such as formic acid, ammonium formate, acetic acid, acetonitrile,
phosphoric acid, sodium dihydrogen phosphate, magnesium chloride, potassium chloride, sodium
hydrogen carbonate, sodium chloride, and glucose were supplied by the Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China). Five batches of frankincense were procured from the Beijing Tongrentang
Co., Ltd. (Beijing, China) and the plant species were identified to belong to Boswellia papyrifera according
to the literature [9]. The processed sample was prepared in the lab using the established method [49].
Briefly, 200 g frankincense was put into a heated pot stir-fried quickly and sprayed rice vinegar until
the surface is glossy. The frankincense and processed frankincense were crushed under the same
conditions and passed through a 100~120 mesh sieve to obtain their powder samples.

Male Wister rats aged 10 weeks with a mean weight of 280–300 g were purchased from the
Research Institute of Experimental Animals, Chinese Academy of Medical Science. The rats were fed
with food and water ad libitum and then were allowed to acclimatize themselves for 1 week before
the initiation of the experiment. The rats were housed in a temperature of 20–26 ◦C, humidity of
40–70%, and light-controlled environment. The light–dark cycle was 12 h, with the light phase being
set from 6:00 am. to 6:00 pm. The rodent license of the laboratory (no. SYXK 11-00-0039) was issued by
the National Science and Technology Ministry of China. This study was approved by the Research
Ethics Committee of the Institute of Basic Theory of Chinese Medicine, China Academy of Chinese
Medical Sciences.

3.2. Measurement of the Physical Property Indices of Frankincense and Processed Frankincense

3.2.1. Measurement of the Surface Morphology

One gram of powdered sample was sputter-coated with gold under vacuum, and then, the surface
morphology was evaluated by SEM.

3.2.2. Measurement of the Particle Size, PDI, and ZP

A mixture of 1.0 g of powdered sample and 10.0 mL distilled water was sonicated at 20 ± 2 ◦C and
250 W for 20 min in a conical flask with a cover. The samples were stored at 4 ◦C and mixed before use.
The particle size, PDI, and ZP of the obtained solution were measured by a laser particle size analyzer.
Each experiment was repeated three times, and the presented data represent the means ± SD.

3.2.3. Measurement of the Specific Surface Area and Porosity

The specific surface area and porosity of samples were determined by a mercury intrusion
porosimeter (AutoPore IV 9500, Micromeritics, Norcross, GA, USA) with the pressure ranging from 0.10
psi to 60000.00 psi. Before the determination, the low-pressure, pressure, and high-pressure parameter
ranges were set from 10 kPa to 228 kPa, 0 kPa to 228 kPa, and 0.1 MPa to 228.0 MPa, respectively. Each
experiment was repeated three times, and the presented data represent the means ± SD.

3.2.4. Measurement of the Viscosity [31]

One gram of powdered sample was dispersed in 10.0 mL of simulated gastric fluid or intestinal
fluid, respectively. The Ostwald-type viscosimeter was used to measure the flow time, and each
experiment was repeated three times. The presented data represent the means ± SD. The accuracy
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of measurement was evaluated by the time required for a given volume of the reference liquid.
The precision of the measurement was evaluated by the SD value of repeated trials.

3.3. UHPLC-TQ-MS Conditions

The UHPLC-TQ-MS analyses were carried out on a reversed-phase Agilent XDB C18 column
(4.6× 100 mm, 1.8 µm) (Agilent, Santa Clara, USA). The mobile phase consisted of (A) water (containing
0.2% formic acid and 5 mM ammonium formate) and (B) methanol. The flow rate was 0.5 mL/min.
The column temperature was 30 ◦C. The gradient program was used for rapid separation as follows:
85–85% B (0–20 min), 85–98% B (20–35 min), and 98%–98% B (35–40 min). The wavelengths were
210 nm, 250 nm, and 280 nm. The conditions of MS analysis were as follows: drying gas temperature,
300 ◦C, gas flow rate, 10 L/min, and nebulizer pressure, 45 psi. ESI in the negative ionization mode
was used, and the capillary voltage was set to 4000 V. The MRM mode was employed to quantify the
six BAs.

3.4. Preparation of Standard Solutions

Certain amounts of KBA, AKBA, α-BA, β-BA, α-ABA, and β-ABA were dissolved in methanol,
respectively, to obtain standard stock solutions, and they were stored below 4 ◦C.

The mixed standard solutions of KBA, AKBA, α-BA, β-BA, α-ABA, and β-ABA at concentrations
of 1.04, 1.02, 1.06, 1.01, 0.98, and 0.98 mg/mL respectively were obtained by dilution of the stock
solution in different solvents. For the quantitative assay of the frankincense extraction assay, the serial
dilutions of mixed standard solutions were prepared using methanol. For the intestinal absorption
experiment, the serial dilutions were performed using blank Tyrode′s solution of the intestine sack.

3.5. Preparation of QC Samples

An equal volume of intestinal absorption solution in all sac groups was collected. To improve
the reliability of statistical data and correct for signal drift during sample runs, the mixed standard
solution was spiked in the homogenized biological matrices of intestinal absorption solution to obtain
QC samples. QC samples were prepared at low, middle, and high concentration levels for use in the
further method validation experiments.

3.6. Method Validation

3.6.1. Specificity

For the specificity assessment, ethanol solution, ethanol extracts of frankincense and processed
frankincense, frankincense solution, processed frankincense solution, and blank Tyrode′s solution
of the intestine sack as well as standard solutions were examined by the proposed method to test
for endogenous interference around the RT of the components. The peak areas of the endogenous
components which co-eluted with the compound of interest should be less than 20% of the peak area
of the LLOQ.

3.6.2. Linearity, LOD, and LLOQ

The quantitative analysis used an external calibration method, and the linear calibration
curves were constructed by six different concentrations of the mixed solution of standard samples.
Each concentration was analyzed in triplicate, and the calibration curves were established by plotting
the peak areas versus the concentrations of each solution. The LOD and LLOQ were measured at
signal-to-noise ratios (S/N) of 3 and 10, respectively, as per criteria from [50].

3.6.3. Precision and Accuracy

The intra-day precisions for samples were evaluated by measuring the mixed solution of standard
samples in low, middle, and high concentration levels six times a day, while inter-day precisions were
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assessed twice a day on three consecutive days. The intra-day or inter-day precision was expressed as
the RSD.The accuracy was assessed using the extracts of frankincense as well as QC samples. It was
calculated on the basis of the given formula (mean concentration found/concentration taken) × 100.
The accuracy was expressed as the CV.

3.6.4. Matrix Effect

The matrix effect was determined by comparing the peak area ratios of analytes in the spiked
post-extraction QC samples (A) with the peak area ratios of neat standard solutions (B) at the equivalent
concentration with three replicates each at LQC, MQC, and HQC levels.

3.6.5. Recovery

The standard addition method was conducted to measure the analyte recoveries in the extracts of
frankincense and processed frankincense as well as in QC samples.

The recoveries for biological samples were performed by comparing the peak areas of QC samples
with the peak area of spiked QC samples (known amounts of mixed standard solution spiked in QC
samples).

Known amounts of mixed standard solution were added to known amounts of six independent
solutions including the extracts of frankincense and processed frankincense.

3.6.6. Stability

Stability tests were performed to measure the analyte stability in the extracts of frankincense and
processed frankincense as well as in QC samples under different conditions.

As for the stabilities of the extracts of frankincense and processed frankincense, the extraction
solutions of samples were analyzed at 0, 2, 4, 6, 8, 10, 12, and 24 h with three replicates each at low,
middle, and high level. The analytes were considered to be stable for 24 h when the RSD was within
5% of the theoretical concentration.

For QC samples, the bench top stability (25 ◦C, 6 h), autosampler stability (4 ◦C, 9 h), freeze-thaw
stability (−80 ◦C, 12–16 h) and long-term stability (4 ◦C, 30 days) were measured with three replicates
each at LQC, MQC, and HQC levels. QC samples were considered to be stable when values of the
assay were within the acceptable limits of precision (≤15% RSD) and accuracy (± 15% SD).

3.6.7. Carryover

Carryover may be reflected in subsequent runs. As a result, a test was conducted to verify any
carryover of analytes. Carryover was assessed by injecting the biological samples at the highest
standard concentration of the calibration curve followed by the lowest standard concentration and a
series of blank injections. The carryover was considered to be acceptable when the carryover was at
20% corresponding to the peak area of the LLOQ level according to the EMA guidelines for bioanalysis.

3.7. Procedure of Intestinal Absorption

3.7.1. Preparation of Frankincense and Processed Frankincense Solutions

CMC-Na was diluted with Tyrode′s solution (in g/L, 8.0 NaCl, 0.28 KCl, 0.05 NaH2PO4,
1.0 NaHCO3, 0.1 MgCl2, 1 H2O, 0.2 CaCl2, and 1.0 glucose) to a concentration of 1%.

Three grams of frankincense or processed frankincense powder was dispersed separately in
500 mL of CMC-Na (1%) to obtain a suspension of the powder sample.

The frankincense (100 g) and processed frankincense powders (100 g) were extracted with 3 L
of ethanol under sonication for 30 min. After filtration and evaporation, the ethanol extracts of
frankincense (69.38 g) and processed frankincense (54.05 g) were obtained with yields of 69.38% and
54.05%. frankincense extract (2.08 g) and 1.62 g of the processed frankincense extract were dispersed
separately in 10 mL of ethanol. Then, the above ethanol solutions of frankincense and processed
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frankincense were dissolved in 500 mL of CMC-Na (1%) by vortex mixing to obtain the sample solution
of ethanol extracts.

3.7.2. Preparation of the Everted Rat Gut Sacs and Intestinal Absorption Solution

All of the rats were starved for 12 h, and standard water was provided before the experiments.
The rats were sacrificed by decapitation. After a laparotomy, 11 cm of the upper end of the duodenum,
jejunum, ileum, and colon was excised and washed with Tyrode′s solution at 0 ◦C.The clean intestinal
tract was prepared into sacs with 2 mL of Tyrode′s solution in the blank group by ligation via a blunt
needle and the other end tied. Each sac was placed in a bath that contained 25 mL of Tyrode′s solution
maintained at 37 ◦C and constantly gassed with O2 for 5 min (95% O2/5% CO2). Then, 25 mL of the
sample solution of ethanol extract and CMC-Na suspension of powdered sample were prepared in
the bath. Two hours later, the intestinal absorption solution in the sacs was collected to accurately
calculate the volume, and each sac was accurately weighed before and after being cut open. All of the
samples were stored at −20 ◦C.

3.7.3. Sample Preparation

Three milliliters of the above intestinal absorption solution was placed into a 50 mL polyethylene
centrifugal tube, then, 10 mL of ethyl acetate was added and vortex mixed. The process was repeated
three times. After that, the supernatants were combined and reduced to dryness in a gentle nitrogen
stream, and added into 100 µL of methanol for dissolution. The mixture was filtered into HPLC vials
through a Millipore filter (0.22 µm).

3.7.4. Measurement of the Rate of Intestinal Absorption

All solutions of the four intestinal segments were analyzed using the UHPLC-TQ-MS method.
After analysis, the amounts (ng/mm2) of the six main BAs components of frankincense and processed
frankincense and the rate of intestinal absorption were calculated. The presented data represent the
means ± SD.

3.8. Measurement of the Equilibrium Solubility

3.8.1. Preparation of Samples

Accurately weighed powder (2 g) samples of frankincense and processed frankincense were
dispersed in 10 mL of distilled water, phosphate buffer solution (PBS) at a pH of 2.0 or PBS at a pH of
7.8~8.0 separately and then sonicated at 20 ± 2 ◦C and 250 W for 30 min in 50 mL conical flasks with
covers. The flasks were continuously shaken horizontally at (37 ± 1) ◦C and (100 ± 1) r/min for 24 h
(Heidolph Titramax 100, Schwabach, Germany) until the equilibrium plateau was reached to obtain
the solution.

Five milliliters of the above solution was extracted three times with the ethyl acetate (3 × 10 mL)
to ensure complete extraction. All three extracts were pooled and concentrated in a rotary evaporator
under vacuum to be completely dried and dissolved in 5 mL of methanol. The concentrated extract
was filtered through a 0.22 µm filter before analysis.

3.8.2. Determination of the Equilibrium Solubility

The established UHPLC-TQ-MS/MS method was used to determine the equilibrium solubilities
of samples.

The equilibrium solubilities of the samples were determined by the shake-flask method [50].
Briefly, the accurately weighed solid sample was carefully added to 10 mL of the aqueous buffer
in a glass vial and stirred at (37 ± 1) ◦C for 24 h. The aliquots of supernatant were taken out and
diluted with solvent if necessary, and the concentration of sample in each aliquot was measured by
UHPLC-TQ-MS. The injection volume was 2~50 µL, respectively.
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4. Conclusions

The paper proved that the physical properties—including the surface morphology, particle size,
PDI, ZP, specific surface area, porosity, and viscosity—were changed after processing, in which case the
bioavailability of BAs in frankincense was improved. The results showed that SEM images of processed
frankincense exhibited folds full of holes with a rough surface. Vinegar processing mainly contributes
to the crushing process of frankincense, thereby resulting in a decrease of the particle size and an
increase of the specific surface area. In addition, the absolute values of the ZP and porosity increased,
while the values of the PDI and flow time of simulated gastrointestinal fluid decreased for processed
frankincense. Thus, the rates of absorption increased after processing, and processed frankincense
provided improved dissolution at different pH values in comparison to frankincense. This study is
designed to define and understand the mechanism for the enhancement of bioavailability after vinegar
processing, which broadens the horizon of the mechanism of the investigation of processing for TCM.
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