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Abstract: Aspergillus section Candidi historically included a single white-spored species, A. candidus. Later studies clarified that other species may also belong to this section. 
In this study, we examined isolates of species tentatively assigned to section Candidi using a polyphasic approach. The characters examined include sequence analysis of 
partial β-tubulin, calmodulin and ITS sequences of the isolates, morphological and physiological tests, and examination of the extrolite profiles. Our data indicate that the 
revised section Candidi includes 4 species: A. candidus, A. campestris, A. taichungensis and A. tritici. This is strongly supported by all the morphological characteristics that 
are characteristic of section Candidi: slow growing colonies with globose conidial heads having white to yellowish conidia, conidiophores smooth, small conidiophores common, 
metulae present and covering the entire vesicle, some large Aspergillus heads with large metulae, presence of diminutive heads in all species, conidia smooth or nearly so 
with a subglobose to ovoid shape, and the presence of sclerotia in three species (A. candidus, A. taichungensis and A. tritici). Aspergillus tritici has been suggested to be the 
synonym of A. candidus previously, however, sequence data indicate that this is a valid species and includes isolates came from soil, wheat grain, flour and drums from India, 
Ghana, Sweden, The Netherlands and Hungary, making it a relatively widespread species. All species produce terphenyllins and candidusins and three species (A. candidus, 
A. campestris and A. tritici) produce chlorflavonins. Xanthoascins have only been found in A. candidus. Each of the species in section Candidi produce several other species 
specific extrolites, and none of these have been found in any other Aspergillus species. A. candidus has often been listed as a human pathogenic species, but this is unlikely 
as this species cannot grow at 37 °C. The pathogenic species may be A. tritici or white mutants of Aspergillus flavus.

Taxonomic novelty: revalidation of Aspergillus tritici Mehrotra & Basu.
Key words: Ascomycetes, Aspergillus section Candidi, β-tubulin, calmodulin, Eurotiales, extrolites, ITS, polyphasic taxonomy.

Studies in Mycology 59: 75–88. 2007.
doi:10.3114/sim.2007.59.10

Introduction

Aspergillus section Candidi (Gams et al. 1995; A. candidus species 
group according to Raper & Fennell 1965) was established by Thom 
& Raper (1945) to accomodate a single white-spored species, A. 
candidus Link. This species frequently contaminates stored food 
and feeding stuff (Kozakiewicz 1989; Park et al. 2005). A. candidus 
is moderately xerophilic, and able to grow on stored grains with 15 % 
moisture content (Lacey & Magan 1991), raising the moisture level 
of the infested grain to 18 percent or higher, and the temperature to 
up to 55 ºC. This species is one of the most frequently encountered 
mould in cereal grains and flour (Rabie et al. 1997; Weidenbörner 
et al. 2000; Ismail et al. 2004; Hocking 2003). A. candidus causes 
loss of viability and germ discolouration in cereals (Papavizas & 
Christensen 1960; Battacharya & Raha 2002; Lugauskas et al. 
2006). It also occurs in soil, usually on seeds or in the rhizosphere, 
and also in milk (Raper & Fennell 1965; Kozakiewicz 1989; Moreau 
1976). 

A. candidus enzymes has also been used in the fermentation 
industry for the production of galacto-oligosaccharides (Zheng 
et al. 2006), and D-mannitol (Smiley et al. 1969), while some A. 
candidus metabolites including terphenyllins has antioxidant and 
anti-inflammatory activities (Yen et al. 2001, 2003). A. candidus is 
also used in the meat industry for spontaneous sausage ripening 
(Gracia et al. 1986; Sunesen & Stahnke 2003).

A. candidus is claimed to be involved in a wide range of human 
infections including invasive aspergillosis (Rippon 1988; Ribeiro 
et al. 2005), otomycosis (Yasin et al. 1978; Falser 1983), brain 

granuloma (Linares et al. 1971) and onychomycosis (Schonborn & 
Schmoranzer 1970; Zaror & Moreno 1980; Piraccini et al. 2002). A. 
candidus has also caused various disorders in pigs (Moreau 1979) 
and was found to be the second most prevalent Aspergillus species 
in a hospital surveillance project in the U.S.A. (Curtis et al. 2005). 
Concentration of A. candidus conidia can reach alarming levels in 
grain dust and was suggested to contribute to the development 
of the so-called organic dust toxic syndrome (Weber et al. 1993; 
Krysinska-Traczyk & Dutkiewicz 2000). A. candidus is able to 
induce both cellular and humoral response in animals (Krysinska-
Traczyk & Dutkiewicz 2000). A. candidus metabolites including 
terphenyl compounds and terprenins exhibit immunomodulating 
capabilities and are highly cytotoxic (Shanan et al. 1998; Krysinka 
& Dutkiewicz 2000). There is some evidence that A. candidus might 
be toxic to chickens and rats (Marasas & Smalley 1972) and has 
also been isolated from birds (Saez 1970, Sharma et al. 1971). 
A. candidus has been reported to produce several secondary 
metabolites including candidusins (Kobayashi et al. 1982; Rahbaek 
et al. 2000), terprenins (Kamigauchi et al. 1998), chlorflavonin (Bird 
& Marshall 1969), dechlorochlorflavonin (Marchelli & Vining 1973), 
xanthoascin (Takahashi et al. 1976b), kojic acid (Kinosita & Shikata 
1969, Saruno et al. 1979, Cole & Cox 1981), 3-nitro-propionic acid 
(Kinosita et al. 1968), and 6-sulfoaminopenicillanic acid (Yamashita 
et al. 1983). A. candidus is reported to produce citrinin but the first 
report of citrinin production by an Aspergillus confused A. niveus 
with A. candidus (Timonin & Rouatt 1944; Raper & Fennell 1965). 
However, some later reports indicate that some isolates may 
produce citrinin (Kinosita & Shikata 1969; Cole & Cox 1981).
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The description of A. candidus is admittedly broad,  
encompassing considerable variability among the isolates (Raper 
& Fennell 1965, Kozakiewicz 1989). A. candidus is characterised 
by white conidial heads, globose to subglobose vesicles, biseriate 
large and uniseriate small conidial heads, and smooth conidiophores 
and conidia (Raper & Fennell 1965, Kozakiewicz 1989). Several 
white-spored Aspergillus species described in the past have been 
synonymised with A. candidus, including A. albus, A. okazakii, or 
A. dubius (Raper & Fennell 1965). Raper & Fennell (1965) also 
stated that “it is possible that our current concept of A. candidus is 
too broad”. Recent studies indicated that other species including 
A. campestris (Christensen 1982; Rahbaek et al. 2000; Peterson 
2000; Varga et al. 2000) and A. taichungensis (Yaguchi et al. 1995, 
Rahbaek et al. 2000) are also members of section Candidi. Besides, 
two other white-spored species, A. tritici (as A. triticus, Mehrotra & 
Basu 1976) and A. implicatus (Maggi & Persiani 1994) have also 
been suggested to belong to this section. 

In this study, we examined available isolates of the species, 
proposed to belong to section Candidi, to clarify the taxonomic status 
of this section. The methods used include sequence analysis of the 
ITS region (including internal transcribed spacer regions 1 and 2, 
and the 5.8 S rRNA gene of the rRNA gene cluster), and parts of the 
β-tubulin and calmodulin genes, macro- and micromorphological 
analysis, and analysis of extrolite profiles of the isolates. 

Materials and methods

Morphological examinations

The strains examined are listed in Table 1. The strains were grown 
for 7 d as 3-point inoculations on Czapek agar, Czapek yeast 
autolysate agar (CYA), malt extract agar (MEA), and oat meal agar 
(OA) at 25 °C (medium compositions in Samson et al. 2004).

Analysis for secondary metabolites

The cultures were analysed according to the HPLC-diode array 
detection method of Frisvad & Thrane (1987, 1993) as modified by 
Smedsgaard (1997). The isolates were analyzed on CYA and YES 
agar using three agar plugs (Smedsgaard 1997). The secondary 
metabolite production was confirmed by identical UV spectra 
with those of standards and by comparison to retention indices 
and retention times in pure compound standards (Rahbaek et al. 
2000). 

Isolation and analysis of nucleic acids

The cultures used for the molecular studies were grown on malt 
peptone (MP) broth using 10 % (v/v) of malt extract (Oxoid) and 0.1 

Table 1. The Aspergillus section Candidi isolates examined in this study.

Species Strain No. Origin
Aspergillus campestris CBS 348.81T Soil, North Dakota, U.S.A.
Aspergillus candidus CBS 119.28 IFO 5468; A. okazakii

Aspergillus candidus CBS 116945 Museum dust, Tiel, Netherlands
Aspergillus candidus CBS 175.68 Mouse dung, Netherlands
Aspergillus candidus CBS 114385 Air, Finland
Aspergillus candidus CBS 120.38 No. 827/2; Unknown, J.C. Neill
Aspergillus candidus CBS 225.80 Human nail, Netherlands
Aspergillus candidus CBS 102.13 Japan, G. Kita
Aspergillus candidus CBS 118.28 QM 9372; A. Blochwitz

Aspergillus candidus CBS 566.65T ATCC 1002; IMI 091889; NRRL 303; unknown, J. Westerdijk
Aspergillus candidus 1-F9 TM 04.129 V11
Aspergillus candidus 13-C4 House, Utrecht, Netherlands
Aspergillus candidus 17-C2 House, Eindhoven, Nertherlands
Aspergillus candidus 25-I1 Indoor environment, Germany
Aspergillus candidus IMI 091889 ATCC 1002, CBS 566.65
Aspergillus candidus CBS 283.95 IFO 33019; JCM 10250; SRRC 310

Aspergillus taichungensis IBT 19404T PF1167; Soil, Taiwan
Aspergillus taichungensis CBS 567.65 ATCC 16871; IMI 230752; NRRL 312; unknown, Brazil
Aspergillus taichungensis CBS 112449 Indoor environment, Germany
Aspergillus tritici CBS 119225 SLV 541; wheat flour, Sweden
Aspergillus tritici CBS 117270 Djambee (drum), Ghana

Aspergillus tritici CBS 266.81T Wheat grain, India
Aspergillus tritici 11-H7 Feed ingredient, Netherlands
Aspergillus tritici SZMC 0565 Viticultural Instittute, Kecskemet, Hungary
Aspergillus tritici CBS 283.95 ATCC 13686=IMI 78734=NRRL 2297; P.G. Stansly, B81
Aspergillus tritici SZMC 0897 Agricultural Service, Bekes county, Hungary
Aspergillus implicatus CBS 484.95T Soil, Ivory Coast
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% (w/v) bacto peptone (Difco), 2 mL of medium in 15 mL tubes. The 
cultures were incubated at 25 °C for 7 d. DNA was extracted from the 
cells using the Masterpure™ yeast DNA purification kit (Epicentre 
Biotechnol.) according to the instructions of the manufacturer. 
Fragments containing the ITS region were amplified using primers 
ITS1 and ITS4 as described previously (White et al. 1990). 
Amplification of part of the β-tubulin gene was performed using the 
primers Bt2a and Bt2b (Glass & Donaldson 1995). Amplifications 
of the partial calmodulin gene were set up as described previously 
(Hong et al. 2005). Sequence analysis was performed with the Big 
Dye Terminator Cycle Sequencing Ready Reaction Kit for both 
strands, and the sequences were aligned with the MT Navigator 
software (Applied Biosystems). All the sequencing reactions 
were purified by gel filtration through Sephadex G-50 (Amersham 
Pharmacia Biotech, Piscataway, NJ) equilibrated in double-distilled 
water and analyzed on the ABI PRISM 310 Genetic Analyzer 
(Applied Biosystems). The unique ITS, β-tubulin, and calmodulin 
sequences were deposited at the GenBank nucleotide sequence 
database under accession numbers EU076291–EU076311. 

Data analysis

The sequence data was optimised using the software package 
Seqman from DNAStar Inc. Sequence alignments were performed 
by using CLUSTAL-X (Thompson et al. 1997) and improved 
manually. The neighbour-joining (NJ) method was used for the 
phylogenetic analysis. For NJ analysis, the data were first analysed 
using the Tamura–Nei parameter distance calculation model with 
gamma-distributed substitution rates (Tamura & Nei 1993), which 

were then used to construct the NJ tree with MEGA v. 3.1 (Kumar 
et al. 2004). To determine the support for each clade, a bootstrap 
analysis was performed with 1000 replications. 

For parsimony analysis, the PAUP  v. 4.0 software was used 
(Swofford 2002). Alignment gaps were treated as a fifth character 
state and all characters were unordered and of equal weight. 
Maximum parsimony analysis was performed for all data sets using 
the heuristic search option with 100 random taxa additions and 
tree bisection and reconstruction (TBR) as the branch-swapping 
algorithm. Branches of zero length were collapsed and all multiple, 
equally parsimonious trees were saved. The robustness of the 
trees obtained was evaluated by 1000 bootstrap replications (Hillis 
& Bull 1993). An A. flavus isolate was used as outgroup in these 
experiments.

Results and discussion

Phylogeny

We examined the genetic relatedness of section Candidi isolates 
using sequence analysis of the ITS region of the ribosomal RNA 
gene cluster, and parts of the calmodulin and β-tubulin genes. 
During analysis of part of the β-tubulin gene, 496 characters 
were analyzed, among which 68 were found to be parsimony 
informative. The Neighbour-joining tree based on partial β-tubulin 
genes sequences is shown in Fig. 1. The topology of the tree is 
the same as the single maximum parsimony tree constructed by 
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Fig. 1. Neighbor-joining tree based on -tubulin sequence data of 
Aspergillus section Candidi. Numbers above branches are bootstrap values. 

Only values above 70% are indicated.
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Fig. 1. Neighbour-joining tree based on β-tubulin sequence data of Aspergillus section Candidi. Numbers above branches are bootstrap values. Only values above 70 % are 
indicated. 
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Fig. 2. Neighbor-joining tree based on calmodulin sequence data of Aspergillus section Candidi. Numbers above 
branches are bootstrap values. Only values above 70% are indicated.
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Fig. 2. Neighbour-joining tree based on calmodulin sequence data of Aspergillus section Candidi. Numbers above branches are bootstrap values. Only values above 70 % are 
indicated. 

the PAUP program (length: 240 steps, consistency index: 0.8833, 
retention index: 0.9263). The calmodulin data set included 532 
characters, with 43 parsimony informative characters (Fig. 2). The 
topology of the Neighbour-joining tree was the same as that of one 
of the 78 maximum parsimony trees (tree length: 300, consistency 
index: 0.9633, retention index: 0.9396). The ITS data set included 
492 characters with 5 parsimony informative characters. The 
Neighbour joining tree shown in Fig. 3 has the same topology as 
one of the more than 105 maximum parsimony trees (tree length: 
35, consistency index: 1 0000, retention index: 1 0000).

Phylogenetic analysis of both β-tubulin and calmodulin sequence 
data indicated that Aspergillus section Candidi includes 4 species, 
namely: A. candidus, A. campestris, A. taichungensis and A. tritici. 
Interestingly, the reference strain of A. candidus, CBS 283.95 was 
found to belong to the A. tritici species. Isolates CBS 597.65 and 
CBS 112449 were found to be related to the A. taichungensis type 
strain based on β-tubulin sequence data, and formed a distinct 
clade on the tree based on calmodulin sequences. Further studies 
are needed to clarify the taxonomic position of these isolates. 

Comparison of our ITS sequence data to those available on the 
web site of the Japan Society for Culture Collections (http://www.
nbrc.nite.go.jp/jscc/idb/search) indicated that several strains held 

as A. candidus represent other species. Three strains (NBRC 4389 
= IFO 4389, NBRC 4037 = IFO 4037, and NBRC 4322 = IFO 4322) 
were found to be actually white-spored A. oryzae isolates, NBRC 
5468(= IFO 5468) and NBRC 33019(= IFO 33019 = CBS 283.95 = 
SRRC 310) belong to A. tritici, while NBRC 32248 (= IFO 32248) 
has identical ITS sequence to A. campestris. However, further loci 
should also be analyzed to confirm their assignment. Other isolates 
including NBRC 8816, NBRC 4309, NBRC 4310 and NBRC 4311 
are representatives of the A. candidus species based on their 
identical ITS sequences.

Aspergillus implicatus, another species previously assigned to 
this section (Maggi & Persiani 1994), was found to be more closely 
related to A. anthodesmis based on sequence data, which places 
this species close to Aspergillus section Sparsi (data not shown). 
Further studies are needed to clarify the taxonomic position of this 
white-spored species within the Aspergillus genus.

Chemotaxonomy

All strains of species in section Candidi produced terphenyllins and 
candidusins. Aspergillus candidus isolates produced candidusins 
A and B, terphenyllin, 3-hydroxyterphenyllin and some isolates 
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also produced chlorflavonin and a chlorflavonin analogue. A. tritici 
isolates differed from A. candidus in not producing candidusin A and 
chlorflavonin. A. taichungensis produced candidusin C, terphenyllin, 
and 3-hydroxyterphenyllin, while the type strain of A. campestris 
also produced chlorflavonin. Xanthoascin was only found in some 
strains of A. candidus and not in any other species in Candidi. Each 
species produced a large number of as yet not structure elucidated 
extrolites. These extrolites, including terphenyllins, candidusins, 
chlorflavonins and xanthoascin, have only been found in section 
Candidi and not in any other aspergilli, except for A. ellipticus, that 
produces terphenyllin and candidusin (Samson et al. 2004, 2007).

Morphology

Aspergillus candidus is a wide-spread species throughout the 
world. According to Raper & Fennell (1965), “a typical strain of A. 
candidus differs little from members of the A. niger group except for 
the absence of both pigmentation and roughening in the conidia”. 
Another interesting feature observed in A. candidus is the production 
of diminutive conidial heads which are frequently uniseriate in 
contrast with the biseriate large heads. Colonies on CYA and MEA 
usually slow growing, colonies white to cream coloured, reverse 

usually uncoloured. Conidial heads usually biseriate, white to 
cream coloured, at first globose, with spore chains later adherent 
in loose divergent columns, diminutive heads commonly produced, 
conidiophores varying with the strain from less than 500 µm to up to 
1000 µm long, thick walled, smooth, occasionally septate, vesicles 
globose to subglobose, ranging from 40 µm or more in diam in 
very large heads to less than 10 µm in small heads, typically fertile 
over the whole surface, phialides occasionally uniseriate in small 
heads but typically in two series, colourless, conidia globose or 
subglobose in most strains to elliptical in others, thin walled, 2.5–
3.5 µm or occasionally 4 µm, smooth, colourless. Sclerotia, when 
produced, at first white, quickly becoming reddish purple to black, 
consisting of thick-walled parenchyma-like cells. A. candidus is 
unable to grow at 37 ºC.

Aspergillus taichungensis was described by Yaguchi et al. 
(1995) from soil, Taiwan. The species is characterised by restricted 
growth on CZA and MEA at 25 ºC, colonies white to pale yellow, 
velvety, reverse uncoloured. Conidial heads radiate, biseriate, 
conidiophores smooth, 300–450 µm long, often diminutive (90–250 
µm long, biseriate), vesicles hemispherical to elongate, 5–20 µm 
in diam, fertile over the upper half to two-thirds, conidia hyaline, 
yellow in mass, globose to subglobose, microverrucose, 3–4 µm. 
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Fig. 3. Neighbor-joining tree based on ITS sequence data of Aspergillus
section Candidi. Numbers above branches are bootstrap values. Only 

values above 60% are indicated.
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Fig. 3. Neighbour-joining tree based on ITS sequence data of Aspergillus section Candidi. Numbers above branches are bootstrap values. Only values above 70 % are 
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Dark brown sclerotia which appear on MEA after more that 25 d 
incubation. A. taichungensis is able to grow at 37 ºC on CYA.

Aspergillus campestris was described by Christensen (1982) 
from native prairie soil, North Dakota. The species is characterised 
by its restricted growth on CZA and MEA at 25 ºC, colonies velvety, 
sulphur yellow, reverse uncoloured. Conidial heads biseriate, 
radiate, conidiophores usually 400–800 µm but can be up to 1 300 
µm long, smooth, often diminutive (up to 100 µm long, biseriate), 
vesicles globose to slightly elongate, 25–40 µm in diam, fertile over 
the entire surface, conidia thin-walled, hyaline, pale yellow in mass, 
slightly ellipsoidal, 3–4 × 2.3–3 µm. Sclerotia not observed. A. 
campestris is unable to grow at 37 ºC on any media tested. 

Aspergillus tritici was described as A. triticus by Mehrotra & 
Basu (1976) from wheat grains, India. Colonies are slow-growing 
on CZA and MEA, white to light cream coloured, reverse light brown. 
Conidial heads are biseriate, radiate, conidiophores thick-walled, 
septate, 130–700 µm long, often diminutive (10–75 µm, sometimes 
uniseriate), vesicles elongated, small (5–11 µm), conidia globose 
to subglobose, slightly roughened, 2.7–3.5 µm. At maturity conidia 
are embedded in a water drop giving the conidial heads a “slimy” 
appearance. The sclerotia are at first white, later becoming purple 
to black. A. tritici grows well at 37 ºC.

Based on a polyphasic investigation of Aspergillus section 
Candidi, the section includes four species: A. candidus, A. campestris, 
A. taichungensis and A. tritici. Phenotypic characteristics of these 
species are shown in Table 2. A. campestris was placed in section 

Circumdati because of its yellowish white conidia and it was not 
considered closely related to A. candidus by Christensen (1982). A. 
taichungensis was equivocally placed in either section Versicolores, 
Terrei or Flavipedes (Yaguchi et al. 1995). However, the phylogenetic 
and chemotaxonomic evidence presented here indicates that both 
species belong to section Candidi. This is strongly supported by 
all the morphological characteristics that are characteristic of the 
section Candidi: slow growing colonies with globose conidial heads 
having white to yellowish conidia, conidiophores smooth, small 
conidiophores common, metulae present and covering the entire 
vesicle, some large Aspergillus heads with large metulae, conidia 
smooth or nearly so with a subglobose to ovoid shape (albeit 
slightly ellipsoidal in A. campestris), and sclerotia present in A. 
taichungensis, A. candidus and A. tritici. Sclerotia have not been 
observed in A. campestris, but have been observed in A. candidus 
(light cream coloured turning purple to black in age). Aspergillus 
tritici has been suggested to be the synonym of A. candidus by 
Samson (1979). However, sequence data indicate that this is a 
valid species and includes isolates from soil, wheat grain, flour and 
drums from India, Ghana, Sweden, The Netherlands and Hungary, 
making it a relatively widespread species. 

Table 2. Phenotypic characteristics of species in Aspergillus section Candidi.

A. candidus A. tritici A. taichungensis A. campestris
Morphological characteristics
Colony colour white Light cream Light cream Sulphur yellow
Colony reverse Uncoloured to yellowish Light brown Uncoloured Uncoloured
Conidial heads Globose Radiate Radiate Radiate
Conidiophores Smooth, 500–1000 µm Septate, 130–700 µm Smooth, 300–400 µm Smooth, 400–800 µm

Diminutive heads Common Common Common Common
Vesicles Globose, 40 µm Elongated, 5–11 µm Hemispherical, 5–20 µm Globose, 25–40 µm

Conidial ornamentation Smooth Slightly roughened Microverrucose Smooth
Conidial shape (Sub)globose (Sub)globose (Sub)globose Ellipsoidal
Size of conidia 2.5–3.5 µm 2.7–3.5 µm 3–5 µm 3–4 × 2.3–3 µm
Growth at 37ºC - + + -
Sclerotia Purple to black Purple to black Dark brown -
Extrolite production
Candidusin A + - - -
Candidusin B + + - -
Candidusin C - - + +
Candidusin analogue - + - -
terphenyllin + + + +
3-hydroxyterphenyllin + + + -
chlorflavonin + + - +
chlorflavonin analogue + - - -
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Fig. 4. Aspergillus candidus. A–B Colonies after 7 d at 25 °C A. CYA. B. MEA. C, G. Conidial heads. D–F, H–K. Conidiophores. H. Sclerotia. L. Conidia. Scale bars = 10 µm.
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Fig. 5 Aspergillus campestris. A–B Colonies after 7 d at 25 °C A. CYA. B. MEA. C. Conidial heads. D–H. Conidiophores. I. Conidia. Scale bars = 10 µm.
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Aspergillus campestris Christensen, Mycologia 74: 212. 
1982. Fig. 4.

Type: CBS 348.81, from soil from native prairie, North Dakota, 
U.S.A.

Other no. of the type: IBT 27921 = IBT 13382

Description
Colony diam: CZA25: 10–12 mm; CYA25: 10–15 mm, MEA25: 
7–10 mm, YES25: 18–24 mm, OA25: 9–12 mm, CYA37: 0 mm, 
CREA25: poor growth, no acid production
Colony colour: sulphur yellow to pinard yellow
Conidiation: abundant
Reverse colour (CZA): uncoloured
Colony texture: velvety
Conidial head: radiate, splitting in age
Stipe: 400–800(–1300) × 7–12 µm
Vesicle diam/shape: (18–)24–36(–46) µm, globose to subglobose
Conidium size/shape/surface texture: 3–4 × 2.3–3 µm, ellipsoidal 
to egg-shaped, smooth

Cultures examined: KACC 42091, KACC 42090 = IBT 27920, 
KACC 41955 = IBT 3016, UAMH 1324 (from mouse, Canada, as A. 
sulphureus), IBT 17867

Diagnostic features: restricted growth on all media, sulphur yellow 
colony colour and diminutive conidial heads

Similar species: -

Ecology and habitats: soil

Distribution: U.S.A., Canada

Extrolites: candidusin C, terphenyllins, chlorflavonin (Rahbaek et 
al. 2000), confirmed in this study

Pathogenicity: not reported

Note: Diminutive conidial heads commonly produced (100 × 10–12 
µm)

Aspergillus candidus Link, Mag. Ges. Naturf. Freunde 
Berlin 3: 16. 1809. Fig. 5.

= Aspergillus okazakii Okazaki (1907)

Type: CBS 566.65, from Westerdijk, 1909 

Other no. of the type: ATCC 1002; IMI 091889; LSHB Ac27; NCTC 
595; NRRL 303; QM 1995; WB 303

Description
Colony diam: CZA25: 15–30 mm; CYA25: 13–20 mm, MEA25: 
8–14 mm, YES25: 19–33 mm, OA25: 9–18 mm, CYA37: 0 mm, 
CREA25: poor growth and no acid production
Colony colour: white
Conidiation: limited
Reverse colour (CZA): uncoloured to pale yellow
Colony texture: submerged
Conidial head: diminutive, with few divergent spore chains
Stipe: 500–1000 × 5–10(– 20) µm, walled, smooth, occasionally 
septate, colourless or slightly yellowed in age
Vesicle diam/shape: 10–40 µm, globose to subglobose
Conidium size/shape/surface texture: 2.5–3.5(– 4) µm, globose to 
subglobose, smooth

Cultures examined: CBS 119.28, CBS 116945, CBS 175.68, CBS 
114385, CBS 120.38, CBS 225.80, CBS 102.13, CBS 118.28, CBS 
566.65, 1-F9, 13-C4, 17-C2, 25-I1, IMI 091889, CBS 283.95, NRRL 
5214

Diagnostic features: phialides clustered on one side of the vesicle, 
echinulate conidia, slow growth rate and cream-yellow reverse on 
CYA; unable to grow at 37 °C

Similar species: A. tritici

Distribution: worldwide (Bangladesh, Pakistan, Kuwait, Sri 
Lanka, Japan, South Africa, Somalia, Chad, Libya, Egypt, Syria, 
Israel, Argentina, Bahama Islands, New Guinea, Solomon Islands, 
China, Central America, Chile, Russia, Nepal, U.S.A., Spain, Italy, 
Hungary, Austria, Czechoslovakia, Germany, France, Britain, 
Ireland, Netherlands, Denmark)

Ecology and habitats: stored products, especially cereals, soil, 
dried fruits, dung, dried fish, indoor air

Extrolites: terphenyllin, 3-hydroxyterphenyllin (Rahbaek et 
al. 2000), prenylterphenyllin, 4""-deoxyprenylterphenyllin, 4""-
deoxyisoterprenin, 4""-deoxyterprenin (Wei et al. 2007), and other 
terphenyl-type compounds (Marchelli & Vining 1975 Kurobane et 
al. 1979; Kobayashi et al. 1985; Takahashi et al. 1976b), including 
candidusins (A & B) (Kobayashi et al. 1982) and other terprenins 
(Kamigauchi et al. 1998), chlorflavonin (Bird & Marshall 1969; 
Munden et al. 1970), dechlorochlorflavonin (Marchelli & Vining 
1973), and xanthoascin (Takahashi et al. 1976a). The production 
of terphenyllin, 3-hydroxyterphenyllin, candidusin A, candidusin B, 
chlorflavonin and xanthoascin was confirmed by HPLC-DAD.

Extrolites not produced by A. candidus: kojic acid (Kinosita & 
Shikata 1969; Cole & Cox 1981), and 3-nitro-propionic acid (Kinosita 
et al. 1968) were reported from the same strain of A. candidus of 
which ATCC 44054 is representative. A re-examination of that strain 
showed that it was a white-spored mutant of Aspergillus flavus, a 
known producer of these two metabolites. The asterriquinone 
analogs, neoasterriquinone and isoasterriquinone (Alvi et al. 1999) 
have not been found in any strains of A. candidus by us. These 
asterriquinone analogues are probably produced by A. niveus, but 
this has to be confirmed by examination of isolates of the latter 
species. Citrinin production was observed in some studies (Timonin 
& Rouatt 1944; Kinosita & Shikata 1969), but the producing fungus 
was later identified as A. niveus (NRRL 1955, Raper and Fennell, 
1965). The production of 6-sulfoaminopenicillanic acid by A. 
candidus (Yamashita et al. 1983) has not been confirmed

Pathogenicity: Pathogenicity of A. candidus is rather improbable, 
as this species cannot grow at 37 °C., however pathogenicity has 
often been reported: A. candidus has been claimed to be involved 
in a wide range of human infections including invasive aspergillosis 
(Rippon 1988; Ribeiro et al. 2005), pulmonary aspergillosis (Iwasaki 
et al. 1991), aspergilloma (Avanzini et al. 1991), otomycosis (Yasin 
et al. 1978; Falser 1983), brain granuloma (Linares et al. 1971) and 
onychomycosis (Kaben 1962; Fragner & Kubackova 1974; Cornere 
& Eastman 1975; Piraccini et al. 2002; Schonborn & Schmoranzer 
1970; Zaror & Moreno 1980); also caused various disorders in pigs 
(Moreau 1979). In these cases it is more likely caused by white 
spored mutants of A. flavus or by A. tritici

Note: young heads varying in the same culture from globose 
masses 200 to 300 µm in diam to small heads less than 100 µm in 
diam; some isolates produce purple to black sclerotia
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Fig. 6. Aspergillus taichungensis. A–B Colonies after 7 d at 25 °C A. CYA. B. MEA. C. Conidial heads. D–H Conidiophores. I. Conidia. Scale bars = 10 µm.
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Fig. 7. Aspergillus tritici. A–B Colonies after 7 d at 25 °C A. CYA. B. MEA. C. Conidial heads. D–F, G–H.Conidiophores. I. Sclerota. J. Conidia. Scale bars = 10 µm.
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Aspergillus taichungensis Yaguchi, Someya & Udagawa, 
Mycoscience 36: 421. 1995. Fig. 6.

Type: PF1167, from soil, Taiwan

Other no. of the type: IBT 19404

Description
Colony diam: CZA25: 12–15 mm; CYA25: 17–20 mm, MEA25: 
9–13 mm in 7 d, YES25: 25–28 mm, OA25: 12–16 mm, CYA37: 
7–10 mm, CREA25: poor growth, no acid production
Colony colour: yellowish white to primrose
Conidiation: moderate
Reverse colour (CZA): colourless (CZA), light yellow to pale luteous 
(MEA)
Colony texture: floccose (MEA)
Conidial head: loose radiate
Stipe: 300–440 × 5–9 µm
Vesicle diam/shape: 5–20 µm, hemispherical to elongate
Conidium size/shape/surface texture: 3–4 µm, globose to 
subglobose; sometimes ovoid, 3–5 × 3–4.5 µm, microverrucose

Cultures examined: IBT 19404, CBS 567.65, CBS 112449

Diagnostic features: slow growing colonies with globose conidial 
heads having white to yellowish conidia, presence of diminutive 
conidiophores and dark brown sclerotia

Similar species: A. candidus, A. tritici

Ecology and habitats: soil, air

Distribution: Taiwan, Brazil, Germany

Extrolites: candidusin C, terphenyllin, 3-hydroxyterphenyllin 
(Rahbaek et al. 2000, and confirmed in this study). A large number 
of additional extrolites, until now only found in this species, were 
also produced. These have not yet been structure elucidated, but 
had characteristic UV spectra

Pathogenicity: not reported

Notes:the type strain produces dark brown sclerotia 300–500 × 
200–400 µm in size in 30 d (Yaguchi et al. 1995; Rahbaek et al. 
2000); diminutive conidiophores present, 90–250 × 2–3 µm in size

Aspergillus tritici Mehrotra & Basu, Nova Hedwigia 27: 599, 
1976. Fig. 7.

Type: CBS 266.81, from wheat grain, India

Other no. of the type: No. A x 194

Morphological characteristics
Colony diam (7 d): CZA25: 18–23 mm; CYA25: 16–29 mm, MEA25: 
11–17 mm, YES25: 18–41 mm, OA25: 13–25 mm, CYA37: 7–21 
mm, CREA25: poor growth, no acid production
Colony colour: white to light cream coloured
Conidiation: moderate
Reverse colour (CZA): light yellow to light brown with age
Colony texture: radially furrowed
Conidial head: short radiate
Stipe: 130–700 × 4–8 µm (diminutive stipes 10–75 × 1.5–3.5 µm), 
septate
Vesicle diam, shape: 4.8–11 µm, small, only slightly enlarged at 
the end

Conidium size, shape, surface texture: 2.7–3.5 µm, globose to 
subglobose, slightly roughened

Cultures examined: CBS 119225, CBS 117270, CBS 266.81, CBS 
112.34, 11-H7, SZMC 0565, CBS 283.95, SZMC 0897, IBT 23116, 
IBT 24170

Diagnostic features: colonies more yellowish than those of A. 
candidus; able to grow at 37 °C

Similar species: A. candidus

Distribution: India, Ghana, Sweden, Hungary, Slovenia, South 
Africa

Ecology and habitats: wheat, soil

Extrolites: candidusin B, candidusin analogue, terphenyllin, 
3-hydroxyterphenyllin, chlorflavonin (Rahbaek et al. 2000, and 
confirmed in this study)

Pathogenicity: not reported, but since this species is able to grow 
at 37 °C, it may have caused some of the mycoses listed under A. 
candidus

Notes: some isolates produce sclerotia purple to black in colour; 
in some isolates conidia are embedded in a water drop with age 
(„slimy” appearance) and produces diminutive heads
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