REVIEW Open Access

Current update on malaria in pregnancy: a systematic review

Awoke Minwuyelet^{1*}, Delenasaw Yewhalaw^{2,3}, Melkamu Siferih⁴ and Getnet Atenafu¹

Abstract

Background Malaria during pregnancy poses significant risks to both the mother and the developing fetus. For pregnant women, the infection can result in severe illness and even death. Parasite sequestration in the placenta can cause maternal anemia and increase the risk of mortality both during and after childbirth. Malaria is also a major contributor to stillbirths and preterm births. Infected placental tissue can impede fetal growth, resulting in low birth weight, which is linked to delayed growth and cognitive development in the child. Furthermore, malaria during pregnancy remains a major contributor to perinatal, neonatal, and infant mortality.

Objectives To review the epidemiological patterns of malaria in pregnancy and its impact on maternal and neonatal health, and to analyze the availability and effectiveness of drug treatment options.

Methods Relevant articles published only in English were searched using electronic databases such as PubMed, Web of Science, Scopus, and Pro-Quest. Keywords including "malaria in pregnancy", "placental malaria", "congenital malaria", "treatment options", and "nutrition intervention and intermittent preventive treatment" were used in combination. Of the total of 4,486 articles identified, 139 articles were ultimately included. Whereas, others were excluded due to duplication, irrelevant abstract, title, and quality assessment.

Results From 139 included studies, 47 focused on epidemiology of malaria in pregnancy, 58 on its impact and 16 on treatment options and 18 on nutrition intervention and intermittent treatment. *Plasmodium falciparum* is the leading cause of complications in pregnant women and is primarily found in Africa, while *P.vivax* is recognized as an emerging global threat, and causing serious consequences. Other species, such as *P.knowlesi*, *P.ovale*, and *P. malariae* are less common. Malaria prevalence in pregnancy can reach 60% in sub-Saharan Africa and 36% globally, with placental malaria affecting up to 28% of cases. The disease causes serious complications such as maternal anemia, premature birth, and low birth weight, severe anemia and increased maternal and infant mortality. Prevention strategies like intermittent preventive treatment (IPTp), insecticide-treated nets (ITNs) and Indoor residual spray (IRS) are essential. Early diagnosis and treatment can reverse adverse effects on placental and congenital function. Artesunate is recommended for severe malaria in all trimesters. Even resistance to chloroquine reported in some areas, it is the drug of choice for uncomplicated *P.vivax* infections.

Conclusions Malaria during pregnancy significantly impacts maternal and fetal health, leading to anemia, growth restriction, preterm birth, and neonatal death. Infants born to mothers with malaria are more likely to contract the disease. Further research and improved treatment strategies are needed to address this issue effectively.

Keywords Malaria, Plasmodium species, Malaria in pregnancy, Placenta malaria, Congenital malaria

*Correspondence: Awoke Minwuyelet awokeminwuyelet5@gmail.com Full list of author information is available at the end of the article

Introduction

Malaria continues to be a major public health problem worldwide. According to the 2023 World Health Organization (WHO) malaria report, there were an estimated 249 million malaria cases and over 0.6 million malaria deaths worldwide in 2022. Of these, 95% of malaria cases and 96% of malaria deaths occurred in 29 African countries. In addition, an estimated 35.4 million pregnancies were reported in 2022, of which 12.7 million (36%) were exposed to malaria infection during pregnancy [1].

Malaria in pregnancy can be categorized into three distinct yet interconnected conditions: gestational malaria, placental malaria, and congenital malaria. These involve the infection and/or illness experienced during pregnancy, the infection of the placenta with or without symptoms in the pregnant woman, and the infection and/or disease affecting the neonate up to 28 days of age, excluding infection transmitted through the bite of infected *Anopheles* mosquitoes, respectively [2–4].

Malaria infection during pregnancy remains a significant public health problem, especially in areas where the disease is endemic, such as sub-Saharan Africa, Southeast Asia, and parts of Latin America [5]. The 2023 WHO malaria report shows that the highest rates of malaria exposure during pregnancy were observed in West Africa (39.3%) and Central Africa (40.1%), while the sub-region of East and Southern Africa had a relatively low prevalence of 27.0% [1].

Pregnant women are particularly susceptible to malaria due to the immunological changes they experience and the presence of a new organ, the placenta, which provides a favorable environment for the most dangerous malaria parasites, *P.falciparum* and *P.vivax* [6–8]. The prevalence and impact of malaria in pregnancy vary according to the intensity of malaria transmission, the number of previous pregnancies, and the availability of preventive measures. The African region accounts for approximately 90% of global malaria cases, and pregnant women, especially those in their first pregnancy (primigravidae), are at a higher risk of severe malaria and its complications [8–11]. This burden is the highest in sub-Saharan Africa, where approximately 25% of all pregnancies are affected by malaria, mainly due to the highly virulent *P.falciparum* strain [1]. The burden of malaria during pregnancy is considerable and has a significant impact on maternal and neonatal health [12].

In pregnancy-associated malaria, *P. falciparum* is the main causative agent, attaching to the placenta and causing placental malaria. The infected red blood cells attach to chondroitin sulfate A (CSA) and other placental receptors, leading to inflammation, fibrosis in the intervillous space, and impaired placental function. This sequestration in the placenta disrupts the exchange of nutrients

and oxygen between mother and fetus, contributing to adverse pregnancy outcomes such as low birth weight, premature birth, and increased infant mortality [13].

Malaria in pregnancy can present with a wide spectrum of clinical symptoms, ranging from asymptomatic parasitemia to severe disease [14]. Asymptomatic infections show no obvious symptoms but can still pose a significant risk to fetal development [15]. These severe complications include cerebral malaria, severe anemia, hypoglycemia, and acute pulmonary edema [14]. The physiological changes that accompany pregnancy, such as immunomodulation, reduce the effectiveness of the immune response to malaria and make pregnant women more susceptible to severe forms of the disease [15].

Malaria in pregnancy is associated with several adverse outcomes for both the mother and the baby. Maternal complications include severe anemia, increased susceptibility to other infections, and a higher mortality rate. The fetus and newborn are at risk of intrauterine growth retardation, low birth weight, premature birth, and increased neonatal mortality. Moreover, infants born to mothers with malaria have a higher risk of malaria infection and morbidity in early life [16–18].

In the absence of an effective vaccine, malaria during pregnancy remains a significant public health problem [19]. Therefore, the management of malaria in pregnancy encompasses a multifaceted approach that includes preventive and therapeutic strategies [20]. Preventive measures include IPTp with sulfadoxine-pyrimethamine and the use of ITNs to mitigate mosquito bites [21]. Effective case management includes timely diagnosis and treatment with antimalarial drugs that are considered safe for use during pregnancy, taking into account the potential development of drug resistance and the special needs of pregnant women [22].

Recent studies have aimed to clarify the pathophysiological mechanisms of pregnancy-associated malaria, improve diagnostic methods, and develop new preventive and therapeutic strategies [10, 19, 20]. Researchers are exploring the molecular underpinnings of placental malaria, the influence of host and parasite genetic factors, and the development of malaria vaccines tailored for pregnant women [10, 20, 23]. Moreover, studies are continually assessing drug resistance trends and the safety of emerging antimalarial drugs in pregnant women [10, 19].

Questions of this systematic review

- What have been the global and regional trends in malaria during pregnancy, especially in Africa, since 2000?
- 2. How does malaria in pregnancy impact maternal and neonatal health outcomes: particularly concerning

- anemia, premature birth, and low birth weight, congenital malaria, neonatal death, and infant mortality?
- 3. How effective are current drug treatments for malaria during pregnancy, such as artesunate, chloroquine, and other antimalarial drugs, and what are the implications of drug resistance in different regions?
- 4. How effective are preventive interventions, such as intermittent preventive treatment, insecticide-treated nets, and indoor residual spraying, in reducing malaria prevalence during pregnancy and improving maternal and neonatal outcomes?
- 5. How do nutrition interventions and intermittent preventive treatment affect the health outcomes of pregnant women and neonates in malaria-endemic areas?
- 6. What challenges do emerging *Plasmodium* species, such as *P. falciparum*, *P. vivax*, *P. ovalae*, *P. malarae*, and *P. knowlesi*, pose in the context of malaria during pregnancy, and how do these species impact maternal and neonatal health?
- 7. What are the main gaps in current research on malaria in pregnancy, and what are the recommendations for future research to address these gaps?

Objectives of the study

The objective of this systematic review was to examine the epidemiology of malaria in pregnancy, its impact and strategies for managing it. By analyzing the latest empirical evidence and current guidelines, the review aims to provide health professionals, policymakers, and researchers with insights into optimal treatment approaches and new strategies to mitigate the adverse effects of malaria on pregnant women and their infants. By advancing research and refining public health policy, we can improve health outcomes for pregnant women and their children while contributing to the global reduction of malaria in pregnancy.

Specific objective of the review

- 1. To assess the prevalence, distribution, and their changes in malaria during pregnancy over time.
- 2. To review the maternal health outcomes directly associated with malaria during pregnancy.
- To explore the effects of malaria on the neonate and how it contributes to mortality and morbidity in newborns.
- 4. To evaluate the treatment effectiveness, safety, and challenges related to drug resistance in different regions.
- 5. To assess preventive measures and their role in minimizing malaria-related risks during pregnancy.

- 6. To explore the potential role of nutritional support in managing the health effects of malaria during pregnancy.
- 7. To point out on the emerging threats of different malaria species and their impact on pregnancy outcomes.
- 8. To highlight areas where further investigation is needed, particularly in treatment, prevention, and understanding of malaria's effects on maternal and neonatal health.

Methodology

This systematic review on malaria in pregnancy focused on the epidemiological aspects, the impacts on maternal and neonatal health, and drug treatment options. It was performed based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (additional file 1:Table S1).

Search strategy

To find relevant articles for this study, we used global electronic databases: PubMed, Web of Science, Scopus, and Pro-Quest. The search keywords used in the literature search included both MeSH terms and test words: "malaria in pregnancy," "placental malaria," "congenital malaria," "impacts of malaria in pregnancy," "treatment options for malaria in pregnancy," "nutrition interventions," and "intermittent preventive treatment." These terms were used either separately or in combination. We applied filters: English, Humans, female, from 2000/1/1—2024/12/12. We conducted the search in two phases: from May 15 to June 12, 2024, and from November 15 to November 21, 2024 (additional file 2: Table S2).

Study selection and eligibility criteria

The eligibility criteria for this systematic review were designed to encompass significant original research on the epidemiology of malaria in pregnancy, its associated impacts, and available management strategies. Articles published in English since January 2000 were considered for inclusion. This timeframe was selected due to the increasing global emphasis on maternal and neonatal health outcomes in public health research. Additionally, this period coincides with key advancements in malaria diagnostics, the introduction of novel antimalarial therapies such as artemisinin-based combination treatments (ACTs), and the emergence of new malaria strains. The growing concern over drug resistance, as well as the rising global focus on malaria control and prevention exemplified by initiatives like the Roll Back Malaria Partnership and the WHO Global Malaria Programme also began in this era.

Only peer-reviewed articles, along with randomized controlled trials, observational studies, and laboratory-based experimental studies, were considered based on population intervention comparison outcome (PICOS), length of follow-up and report characteristics. Articles were included if they addressed the objective comprehensively and contained relevant data on epidemiology, clinical outcomes, or treatment strategies. Articles were excluded if they focused on non-pregnant populations or non-malaria conditions, lacked full-text access, were not published in peer-reviewed journals, or did not contain sufficient data on prevalence, interventions, or outcomes related to malaria in pregnancy.

Data extraction

Two authors (AM and GA) independently collected all necessary data using a standardized extraction form that was modified from the JBI format designed for systematic reviews. They collected information from various sources within the articles, including text, figures, and tables. Any inconsistencies between these authors regarding the data to be extracted were addressed and resolved through discussion with the other coauthors of this study.

Assessment of methodological quality

The quality and potential for bias were assessed before inclusion in the review through critical appraisal, which was incorporated into the review process. Two authors (AM and GA) independently evaluated the quality of each article using a standardized assessment tool, adapted from the JBI critical appraisal checklist for studies reporting prevalence data [24]. The quality assessment tools consisted of nine criteria designed to evaluate the quality of the primary studies considered for inclusion in our review. These criteria focused on aspects such as sample size, sampling frame, methods for identifying outcomes, study setting, response outcomes, and statistical analysis. Studies qualities scoring above 50% were included, while those scoring 50% or below were excluded. Consequently, 139 articles were included in the review, and 892 were excluded. To simplify the table, only the selected articles were included in the supporting file (additional file 3: Table S3). The 50% cut-off point was determined after reviewing relevant literature.

Result

Study selection and characteristics

An initial search yielded 4,269 publications from various international databases. Of these, 1,027 were removed due to duplication. A further 2,211 articles were excluded based on deficiencies in their titles and abstracts. After additional screening for studies with insufficient data, unclear methodologies, or a focus on specific

demographic groups, 892 articles were removed. Ultimately, 139 articles were selected and retrieved for this review (see Fig. 1).

Epidemiology of malaria in pregnancy: a global perspective

Of the 139 original studies retrieved, 47 dealt with the epidemiology of malaria during pregnancy, 58 investigated its effects, and 16 discussed its treatment options and its prevention using 18 nutrition interventions and IPTp. *P.falciparum* is the main cause of malaria complications during pregnancy, but it is mainly restricted to Africa. *P.vivax* is widespread and is currently considered a significant global threat to pregnancy. Other *Plasmodium* species, such as *P.knowlesi*, *P.ovale*, and *P.malariae*, have also caused malaria in pregnancy in various countries, although less frequently [25–29] (Fig. 2).

The figure indicates malaria during pregnancy is mainly caused worldwide by *P. falciparum* and *P. vivax* [6, 28–56]. Although *P. falciparum* is the main cause of severe morbidity and mortality associated with malaria in pregnancy, the global threat from *P. vivax* is increasing [57–59]. In addition to these two dominant species, other *P. lasmodium* species such as *P. malariae*, *P. knowlesi* and *P. ovalae* have been reported in various regions of Asia and Africa, which also contribute to the burden of malaria in pregnancy [25–27].

On the other hand, malaria in pregnancy remains a significant global health issue due to its substantial disease burden. A brief timeline illustrating the prevalence of malaria in pregnancy, based on WHO malaria reports from 2000 to 2023, along with additional findings from references [8, 60] is shown in Fig. 3. The most important epidemiological data on malaria in pregnancy are summarized in Tables 1, 2, and 3.

Malaria in pregnancy remains a significant public health issue, with the burden being much higher in the African region. The figure illustrates the trends in malaria during pregnancy from 2000 to 2011, with more than 98% of the data coming from the African region. For example, the prevalence of malaria in pregnancy in Eastern and Southern Africa was 29.5%, while in west and Central Africa it was 35.1% [60]. While the number cases of malaria in pregnancies was decreased globally between 2007 and 2020, the number of cases of malaria in pregnancies in Africa increased by 25.4% [8]. This increase is mainly due to rapid population growth in malariaendemic areas, which led to rise in pregnancies. In general, the data indicate a decline in malaria in pregnancy over time, reflecting the impact of improved prevention measures and treatment strategies. From 2000 to 2023, the global trend shows an overall increase in the prevalence and burden of malaria in pregnancy but decline in

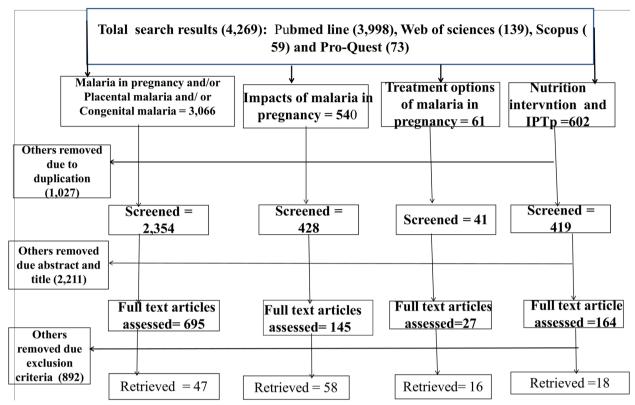


Fig. 1 The flowchart of search and selection of articles for review of current update on malaria in pregnancy: A Systematic review

Fig. 2 Global epidemiology of malaria in pregnancy by *Plasmodium* species

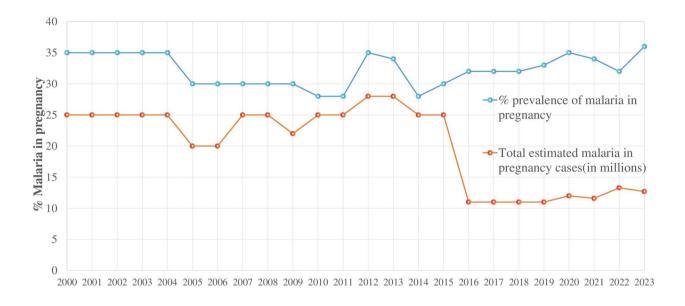


Fig. 3 Prevalence of malaria in pregnancy based on WHO reports from 2000 to 2023

estimation of malaria in pregnancy cases, due to interventions such as IPTp, ITNs, and better treatment protocols. However, regional disparities remain, and challenges such as drug resistance and gaps in health systems have slowed progress in some areas. The COVID-19 pandemic also caused setbacks that further impacted progress in the regions most affected by malaria [1].

The epidemiological results of this study assessed the varying prevalence of gestational malaria in different countries, showed substantial regional differences. In Africa, where malaria transmission is the highest, the gestational malaria ranges from 10% to 56.3%. The highest gestational malaria was observed in West Africa, where high prevalence rates were found, such as in Burkina Faso (54.5%) and Ghana (56.3%). While, up to 37.8% (Sudan) gestational malaria was reported in East Africa. However, lower rates are observed in Southeast Asia and the Western Pacific. Both P.falciparum and P.vivax are widespread in various parts of Africa and in certain regions of the Amazon, India and Southeast Asia. In addition, P.ovale, P.malariae and P.knowlesi have been reported from Africa, Southeast Asia and the Western Pacific, and the review also discusses the two main diagnostic methods: Polymerase chain reaction (PCR) tends to detect a higher prevalence than thick blood smear (TBS), as seen in countries like Southern Laos, where TBS reported 1.5%, compared to PCR's 5.9%. The review underscores the importance of early diagnosis by microscopy and prompt treatment of malaria during pregnancy to reduce the risk of placental and congenital malaria (Table 1).

Placental malaria

Years

The review emphasizes that placental malaria is more common in regions with high malaria transmission, particularly in sub-Saharan Africa. There is considerable geographic variation in the prevalence of placental malaria. Countries like Ghana, Burkina Faso, and Sudan report high prevalence rates, while India and some other regions show negligible or no prevalence. Higher prevalence rates of placental malaria were reported in epidemiological studies of Plasmodium-infected mothers in Uganda (44.3%) and Burkina Faso (87%). However, relatively low prevalence out of Africa such as India and Bolivia In regions outside of Africa, placental malaria caused by P.vivax was generally more prevalent than other species. Nevertheless, the high prevalence of placental malaria in Africa underscores the ongoing challenges in malaria control, particularly in areas where both P.vivax and P.falciparum are endemic. The lower intensity of microscopy findings suggests that submicroscopic infections may serve as the main reservoir for malaria transmission (Table 2).

Congenital malaria

This systematic review addressing the impact of malaria during pregnancy underscores the significant issue of congenital malaria, as a serious outcome linked to maternal malaria. The incidence of congenital malaria varies significantly across different nations. In various African countries, high prevalence rates have been documented; for example, Niger recorded a prevalence of 26.5% for

 Table 1
 Prevalence of gestational malaria by country and diagnostic techniques (TBS or PCR)

Authors	Countries	% (Prevalence of gestational malaria)								
		P.falciparum		P.vivax		Mixed				
		TBS	PCR	TBS	PCR	TBS	PCR			
Martínez- Espinosa et al. (2004)	Brazil	3.5	NA	7.9	NA	0.3	NA	[30]		
Bôtto-Menezes et al.(2016)	Brazil	27.6	NA	16.8	NA	3.1	NA	[61]		
Pincelli et al. (2018)	Brazil	1.6	15.7	4.9	13.1	0.1	1.1	[29]		
Dombrowski et al. (2018)	Brazil	2.4	NA	5.7	NA	0.8	NA	[62]		
Bardají et al. (2017)	Brazil	0	2	0.3	8.4	0.3	10	[58]		
Mean	Brazil	7.02	8.8	7.1	10.7	0.9	-			
Brutus et al. (2013)	Bolivia	NA	NA	7.9	NA	NA	NA	[57]		
Agudelo et al. (2013)	Colombia	2.5	4.9	5.8	9.1	0.8	0	[63]		
Agudelo-Garc´ıa et al. (2017)	Colombia	8	18.9	0	4.4	0	0.7	[34]		
Va´squez1 et al. (2018)	Colombia	3.7	4.8	0	0	0	0	[64]		
Cardona-Arias and Carmona- Fonseca (2024)	Colombia	1.1	10.3	3.2	10.8	0.2	0.9	[6]		
Bardají et al. (2017)	Colombia	0.6	3	0.6	6	2.1	15.6	[58]		
Mean	Colombia	3.2	8.4	1.9	6.1	0.6	3.4			
Bardají et al. (2017)	Papua New Guinea	6.7	11.6	1.7	13.9	8.3	23.7	[58]		
Poespoprodjo et al. (2008)	Papua, Indo- nesia	9.6	NA	5.6	NA	0.6	NA	[28]		
Bardají et al. (2017)	Guatemala	0	14	1.1	11.6	0.1	21	[58]		
Bardají et al. (2017)	India	0.05	NA	1.2	1	0	NA	[58]		
Hamer et al. (2009)	India	53.5	NA	37.2	NA	9.3	NA	[65]		
Singh et al. (2022)	India	0.4	NA	0.8	NA	NA	NA	[36]		
Mean	India	19.5	NA	13.6	-	4.6	NA			
Khan et al. (2014)	Bangladesh	2.3	6	NA	NA	AN	NA	[66]		
Barber et al. (2015)	Malaysia	NA	33	NA	9.8		0.9	[25]		
Briand et al. (2016)	Southern Laos	1	5.9	0	5.4	0	0.5	[67]		
Williams et al. (2016)	Burkina Faso	NA	54.2	NA	0	NA	NA	[68]		
Williams et al. (2016)	Gambia	NA	10.8	NA	0	NA	0	[68]		
Williams et al. (2016)	Ghana	NA	56.1	NA	0	NA	0	[68]		
Williams et al. (2016)	Mali	NA	31.3	NA	0.3	NA	0.3	[68]		

Table 1 (continued)

Authors	Countries	% (Prevalence of gestational malaria)							
		P.falciparum		P.vivax		Mixed			
		TBS	PCR	TBS	PCR	TBS	PCR		
Doritchamou et al. (2018)	Benin	NA	39.2	NA	0	NA	0	[27]	
Umemmuo et al.(2020)	Nigeria	12.9	NA	0	NA	0	NA	[39]	
Unger et al. (2019)	Papua New Guinea	4.7	5.1	0.6	2.2	0.5	0	[69]	
Omer et al.(2017)	Sudan	37.8	NA	0	NA	0		[41]	
Nega et al. (2015)	South Ethiopia	7.0	NA	8.8	NA	2.3	NA	[42]	
Gontie et al. (2020)	West Ethiopia	2.3	NA	0.6	NA	0	NA	[70]	
Feleke et al. (2020)	North, Ethiopia	3.4	NA	2.3	NA	0	NA	[71]	
Solomon et al. (2020)	Southern Ethiopia,	5.2	NA	10.0	NA	0	NA	[72]	
Subussa et al. (2021)	Oromia, Ethiopia	1.6	NA	1.9	NA	0	NA	[46]	
Limenih et al. (2021)	Northwest Ethiopia	3.7	NA	2.8	NA	0	NA	[73]	
Almaw et al. (2022)	Ethiopia	12.2	NA	4.8	NA	3.8	NA	[48]	
Gemechu et al. (2023	West Ethiopia	10.9	NA	13.1	NA	0	NA	[74]	
Mean	Ethiopia	5.7	NA	5.6	NA	0.8	NA		

TBS Thick blood smear, PCR Polymerase Chain Reaction, NA not applicable

Pfalciparum. Uganda displayed a prevalence rate of 6.1%, while Sudan exhibited a wide range of prevalence, with figures between 18.6% and 56.8% determined through PCR analyses of cord blood samples. Outside of Africa, congenital malaria is less frequently reported but has been observed in South America, s particularly in Colombia. Notably, both Pfalciparum and Pvivax have been identified, with their prevalence demonstrating significant variation depending on the diagnostic methodologies employed (Table 3).

Effects of malaria during pregnancy

The striking pathology of malaria in pregnancy, including placental, congenital and neonatal malaria, and its major complications, is summarized in additional file 4: Table S4 and Fig. 4.

The figure clearly illustrates several significant outcomes of malaria in pregnancy, highlighting the interconnected impacts on both maternal and fetal/neonatal health. Maternal effects include conditions such as hypoglycemia and anemia, which compromise the mother's health and increase susceptibility to secondary infections [6, 25, 40, 42, 43]. Severe cases may progress to

life-threatening complications such as severe malaria both the mother and the fetus [40, 43, 84]. For the fetus or neonate, malaria poses risks such as low birth weight, preterm delivery, and growth restriction [10, 85], all of which are critical predictors of neonatal survival and long-term health including the maternal health [6, 32, 40, 43, 86-88]. More severe outcomes, including stillbirth, congenital malaria, and neonatal mortality, underscore the grave consequences of inadequate malaria management during pregnancy [6, 32, 40, 43, 86-88]. The complex relationship between maternal and neonatal effects reflects a pathophysiological cascade, where malariainduced maternal complications negatively affect fetal development and survival. Maternal anemia and infections can impair the supply of oxygen and nutrients to the fetus [89], contributing to outcomes like intrauterine growth restriction and preterm delivery [90, 91].

Pregnancy-associated malaria remains a major public health challenge in endemic areas and poses risks to both mother and fetus. Current research has shown that infection with *P.falciparum* during pregnancy can lead to severe and significant organ dysfunction. This is attributed to the unique behavior of the parasite's schizonts,

which form knobs on the surface of infected red blood cells (RBCs). These knobs express an adhesive protein called *P.falciparum* erythrocyte membrane protein 1 (PfEMP1), enabling the infected cells to adhere to receptors on the capillary and venous endothelium, a process known as sequestration. This sequestration and the formation of "rosettes" (the adherence of infected erythrocytes to uninfected cells) impair the spleen's ability to effectively clear the infected erythrocytes, ultimately leading to organ dysfunction [92, 93]. In contrast to the long-term immunity conferred by measles, frequent infections with *P.falciparum* have been reported to produce relatively short immunologic memory [94].

Conversely, a study by Carvalho et al. (2010) reported that although the cytoadhesion of *P.vivax*-infected erythrocytes is about ten times lower than that of *P.falciparum*-infected erythrocytes, the strength of the interaction is comparable. Cytoadhesion of *P.vivax*-infected erythrocytes is mediated in part by VIR proteins encoded by *P.vivax* variant genes (vir), and this interaction is inhibited by endothelial cells [95]. Additionally, a study conducted in Brazil by Dombrowski et al. (2021) found that IgG against the *P.vivax* MSP₁₁₉ protein was used as a marker for exposure during pregnancy [96].

Several studies have confirmed that infections with *P.knowlesi, P.malariae* and *P.ovale* in pregnant women can lead to adverse maternal and pregnancy outcomes. However, these infections appear to have milder consequences for those affected compared to the more severe effects of *P.falciparum* and *P.vivax* [25, 27]. Another study found that mixed *Plasmodium* infections were associated with a higher risk of preterm birth but did not result in lower birth weight compared to single-species infections [97]. Additionally, one study found that *P.malariae* infects the placental blood rather than the peripheral blood [27].

A study conducted in Thailand by Nosten et al. (1999) found that P.vivax malaria was more common in primigravidae compared to multigravidae and was associated with mild anemia and an increased risk of low birth weight [98]. Likewise, other studies reported that pregnant women, especially those in their first pregnancy (primigravidae), are at a higher risk of severe malaria and its complications [8-11]. However, the effects of *P.vivax* infection were less severe than those of P.falciparum infection. Additionally, Bôtto-Menezes et al. (2015) conducted a study in the Brazilian Amazon, which showed that clinical P.vivax malaria has serious health consequences for mothers and their babies, particularly in adolescents, primigravidae, and women with limited prenatal care [99]. This may be due to the fact that a febrile episode triggers activation of hypnozoites (dormant liver

stages) and increased allelic diversity during relapse [100].

It has been shown that uncomplicated malaria occurs mainly in pregnant women and often leads to severe anemia [6, 25, 40, 42, 43]. Malaria during pregnancy leads to at least one complication, such as spontaneous abortion, fetal death, or premature birth, without further complications [6, 32, 40, 43, 86]. Another study also found an association between parasitemia and preterm delivery and stillbirth, suggesting that the increased risk of malaria is primarily due to fever and severe anemia rather than parasitemia itself [40, 43, 84].

Numerous studies have reported that malaria during pregnancy, caused by both P.falciparum and P.vivax, can lead to severe complications [10, 14, 88, 101]. These complications include severe anemia, cerebral malaria, multi-organ failure [102], spontaneous abortion, fetal growth restriction [10, 85], fetal death, premature birth, and maternal death [6, 32, 40, 43, 86–88]. Additionally, studies have shown that P.vivax infection during pregnancy can also cause severe pre-eclampsia and trigger acute respiratory distress syndrome (ARDS) [90, 91]. Furthermore, co-infection with COVID-19 and malaria can exacerbate the severity of morbidity and mortality [103]. These complications may result from malaria infection of the placenta, which can lead to pathophysiological changes during pregnancy, causing morphological changes in the placental villi and impaired gas exchange [89].

Placental pathology is one of the most important complications associated with malaria during pregnancy. Evidence suggests that the presence of malaria in the placenta can interact with and alter its angiogenic profiles, which are essential for healthy placental development and function. According to Ataíde et al. (2015), women who contracted malaria during pregnancy had lower levels of angiopoietin-1, a vital regulator of angiogenesis, leading to specific changes in the structure and function of the placenta, which could explain the pathological changes observed [104].

In a study conducted by Souza et al. (2013) in the Brazilian state of Acre, it was found that the placentas of women exposed to *Pvivax* had more lesions than those of unexposed women, despite limited evidence of hemozoin. The researchers found that *Pvivax* infection was associated with syncytial nodules, increased thickness of the placental barrier, and a higher presence of mononuclear cells [105]. Similarly, Chaikitgosiyakul et al. (2014) showed that active placental malaria acutely reduces the size, circumference, and vascularity of villi, thereby reducing the surface area per villus available for gas exchange. However, the increased number of villi per unit area offsets this change and persists after treatment.

The authors suggest that early detection and appropriate malaria treatment may reverse these histopathological and villous architectural changes [89].

In contrast, Machado Filho et al. (2014) point out that *Pvivax* infections in early gestation do not affect blood flow in the umbilical artery, but do affect fetal biometry in the second trimester and at birth [106]. Prasetyorini et al. (2021) reported in Maumere, Nusa Tenggara Timur, that *P.vivax* infection can cause acute, sub-acute, and chronic placental malaria in subclinically infected pregnant women, resulting in low birth weight in the infant [107]. On the other hand, Dombrowski et al. (2019) found that the histological findings in the placentas in *P.falciparum*-infected pregnant women included increased syncytial nuclear aggregates and inflammatory infiltrates in the placentas of newborns with reduced head circumference [108].

Pineros et al. (2013) studied the clinical manifestations of malaria in pregnant women living in malaria-endemic regions of Colombia and found that the disease presents a diverse clinical picture in this population. In particular, the authors reported that *P.vivax* infections in pregnant women frequently lead to organ-specific complications, with liver dysfunction being the most important complication observed [109]. Complementing these findings, Bhandari et al. (2021) conducted a study in India that showed liver disease is common in pregnant women and that the presence of malaria can exacerbate the severity of this disease [110].

Dharmaratne et al. (2022) have shown that antibodies against the P.falciparum antigens PfAMA1 and varicose antigen 2 Chondroitin sulfate A (PfVAR2CSA) can be useful for serologic surveillance of malaria infection in pregnant women, especially in regions with low malaria transmission [111]. Accordingly, Lopez-Perez et al. (2018) conducted a study in Colombia and found that men and children often have high levels of functional VAR2CSAspecific IgG. This study concluded that IgG responses to the P.falciparum antigen VAR2CSA are specific to pregnancy and are not triggered by exposure to *P.vivax* [112]. In contrast, Iyamu et al. (2023) demonstrated that the VAR2CSA protein is expressed on the surface of erythrocytes infected with *P.vivax* and facilitates their sequestration within the placenta. Antibodies targeting VAR2CSA have been primarily associated with infections during pregnancy, and antibodies directed against the P.vivax Duffy Binding Protein (PvDBP) were found to crossreact with VAR2CSA due to the presence of an epitope in the CRP1 domain, suggesting that CRP1 is a potential vaccine candidate that could target a specific CSA binding site within VAR2CSA [113]. A further study confirmed these results and showed that antibodies against PvDBP can induce antibodies that functionally recognize VAR2CSA. This revealed a new mechanism of cross-species immune recognition in *P.falciparum* malaria [114].

Charnaud et al. (2016) demonstrated that maternal-fetal transmission of anti-malaria IgG antibodies against *Plasmodium* species occurs in low-transmission environments. In contrast to *P. falciparum* IgG, the acquisition of *P. vivax* IgG is not associated with recent exposure, suggesting differences in the mechanisms of antibody acquisition. Transfer of IgG peaks in the final weeks of pregnancy, which has implications for the timing of future malaria vaccination strategies in pregnant women [115]. Dombrowski et al. (2020) found that, in the Brazilian Amazon, plasma IgG against the MSP₁₁₉ protein of *P. vivax* serves as a marker for infection during the first trimester of pregnancy [116].

The available articles indicate that pregnant women infected with *P.falciparum* and *P.vivax* have higher plasma concentrations of pro-inflammatory cytokines than their uninfected counterparts [117, 118]. Furthermore, anti-inflammatory cytokines are positively associated with malaria infection [14]. In addition, the histopathological features and CD+cell profiles of infected placentas showed statistically significant differences compared to non-placental malaria cases [119–121], as summarized in Fig. 5.

The Figure illustrates the changes in pro- and antiinflammatory mediators, histopathologic and expression of immune markers associated with P.falciparum and P.vivax malaria infection during pregnancy. Elevated plasma levels of cytokines such as IL-6, IL-10, IL -12 and TNF have been observed during P.vivax infection [122, 120]. Histopathologic changes include the presence of P.vivax and/or P.falciparum placental malaria, which show marked tissue changes [121]. Gene expression analysis shows increased levels of messenger RNA for genes related to the immune response (e.g. Fas, HIF1α) and for regulatory genes (e.g. FOXP3). In addition, activation of immune cells with upregulation of markers such as CD4+, CD8+and CD68+can be observed [121, 123, 124]. This upregulation of both proinflammatory markers (e.g. IL-1β, TNF) and anti-inflammatory markers (e.g. IL-10, TGFβ) suggests a complex balance between immune activation and regulation during malaria infections in pregnancy.

Requena et al. (2016) found that VIR antigens induce the natural acquisition of antibody and T-cell memory responses that may be critical for immunity against *P.vivax* during pregnancy in different geographic regions [125]. Another study demonstrated that *P.vivax* infection by VIR antigens induces an IgG response [95, 126]. Although it was previously believed that *P.vivax*

Table 2 Prevalence of placental malaria across different countries and diagnostic methods (TBS or PCR)

Authors	Countries		% (Prevalence of placental malaria)							References
		P.falciparum			P.vivax			Mixed		
		TBS		PCR	TBS	PCR		TBS	PCR	
Carmona-Fonseca et al. (2013)	Colombia	1.5	NA		11	NA		NA	NA	[75]
Agudelo et al. (2013)	Northwest Colombia	1.6		10.7	1.6	5.8		0	0	[63]
Va´squez1 er al.(2018)	Colombia	0.7		2.8	0	0		0		[64]
Agudelo-Garc´ıa et al.(2017)	Colombia	NA		16.1	NA		10.2	NA	2.2	[34]
Cardona-Arias, Carmona-Fonseca (2022)	Colombia	0		10.1	0		4.8	0	1.3	[51]
Cardona-Arias and Carmona-Fonseca (2024)	Colombia	0.6		8.7	1.2		7.8	0	1.2	[6]
Bardají et al. (2017)	Colombia	0.5		1	0		2	0	0	[58]
Mean	Colombia	0.82		8.2	2.3		5.1	0	0.8	
Brutus et al. (2013)	Bolivia	0		NA	2.8		NA	0	NA	[57]
Bardají et al. (2017)	Guatemala	0		0	0		13.7	0	0	[58]
Bardají et al. (2017)	Brazil	0		0	0.14		0	0	0	[58]
Bardají et al. (2017)	India	0		NA	0		0	0	NA	[58]
Singh et al.(2022)	India	0		NA	0		NA	0	NA	[36]
Mean	India	0		NA	0		NA	0	NA	
Bardají et al. (2017)	Papua New Guinea	3.5		0.9	1.5		2.8	0	0	[58]
Mayor et al. (2012)	Papua New Guinean	12.5		NA	10		NA	0	NA	[59]
Lufele et al. (2017)	Papua New Guinea	NA		3.7	0		NA	NA	0	[52]
Mean	Papua New Guinea	8		2.3	3.8		2.8	0	0	
Doritchamou et al. (2017)	Benin	0		32.0	0		0	0	0	[27]
Ouédraogo et al.(2019)	Southern Benin	11.3		NA	0	NA		0	NA	[53]
Mean	Benin	5.65		32	0	0		0	0	
Bihoun et al.(2022)	Burkina Faso	NA		^a 86.8	NA	0		NA	0	[54]
Mwin et al.(2021)	Ghana	7		NA	0	NA		0	NA	[55]
Akinnawo et al. (2022)	Ghana	0		9.4	0	0		0	0	[56]
Asante et al.(2023)	Ghana	6.7		NA	0	NA		0	NA	[76]
LUUSE et al.(2024)	Ghana	NA		19.4	NA	0		NA	0	[77]
Mean	Ghana	4.6		14.4	0	0		0	0	
Umemmuo et al.(2020)	Nigeria	9.4		NA	0	NA		0	NA	[39]
Kalinjuma et al. (2020)	Tanzania	0		20.5	0	0		0	0	[78]
Tran et al. (2020)	Uganda	^a 44.3		NA	0	NA		0	NA	[79]
Solomon et al. (2020)	Ethiopia	1.7		NA	2.2	NA		0	NA	[72]
Limenih et al. (2021)	Northwest Ethiopia	3.7		NA	2.8	NA		0	NA	[73]
Mean	Ethiopia	2.7		NA	2.5	NA		0	NA	E- +3
Omer et al.(2017)	Sudan	a58.9		NA	0	NA		0	NA	[41]

TBS Thick blood smear, PCR Polymerase chain reaction, NA not applicable

infection was not observed in Duffy-negative populations because the red blood cell surface antigen is required for parasite invasion [127], a study by Dhorda et al. (2011) in Uganda reported three *P.vivax*-positive cases in Duffy-negative African pregnant women [128]. Similarly, a study conducted by Boel et al. (2012) on the western border of Thailand analyzed the association

between blood group and malaria in pregnancy and found that one-third of women (447 of 1,468) had at least one malaria infection during pregnancy. However, the ABO blood group phenotype was not associated with *Plasmodium* species of infection, frequency of malaria attacks, symptoms of malaria, hematocrit or parasitemia during pregnancy [129].

^a The prevalence of placental malaria was determined on the basis of the documented maternal infection

Table 3 Prevalence of congenital malaria by country and diagnostic method (TBS or PCR)

Authors	Countries	% (Preva	References					
		P.falciparum		P.vivax		Mixed		
		TBS	PCR	TBS	PCR	TBS	PCR	
Piñeros-Jiménez et al. (2011)	Colombia	0.9	0	3.4	0	0	0	[80]
Agudelo et al. (2013)	Colombia	0	0	0	0	0	0	[63]
Agudelo-Garc´ıa et al.(2017)	Colombia	0	1.4	0	2.1	0	0	[34]
Cardona-Arias,Carmona- Fonseca (2022)	Colombia	0	12.4	0	1.8	0	0.2	[51]
Cardona-Arias and Carmona- Fonseca (2024)	Colombia	0	3.8	0	1.7	0	0.2	[6]
Mean	Colombia	0.2	3.5	0	1.1	-	0.08	
Singh et al.(2022)	India	0	NA	0	NA	0	NA	[36]
Unger et al. (2019)	Papua New Guinea	1.1	2.3	0.5	0	0	0	[40]
Natama1 et al.(2017)	Burkina Faso	NA	4	NA	NA	0	NA	[81]
Tahirou et al.(2020)	Niger	26.5	NA	0	NA	0	NA	[82]
Hangi et al.(2019)	Uganda	6.1	NA	0	NA	0	NA	[83]
Omer et al.(2020)	Sudan	*56.8	NA	0	NA	0	NA	[41]

TBS Thick blood smear, PCR Polymerase chain reaction, NA not applicable

Antimalarial treatment for malaria during pregnancy

Malaria in pregnancy can be particularly severe, and artesunate has become the treatment of choice for all trimesters [130, 131]. Although the reasons for this are not fully understood, *Pvivax* malaria is increasingly recognized as a cause of severe malaria [132]. The treatment of severe *P.vivax* malaria is similar to that of severe *P.falciparum* malaria [92, 133]. A single episode

of *Pfalciparum* or *Pvivax* malaria during the first trimester of pregnancy can lead to miscarriage [134]. The use of artesunate in early pregnancy has not led to any additional toxic effects [135, 136].

A study conducted by Saito et al. (2021) in the border region between Thailand and Myanmar found that dihydroartemisinin-piperaquine was well tolerated, safe, and showed satisfactory efficacy in pregnant women infected

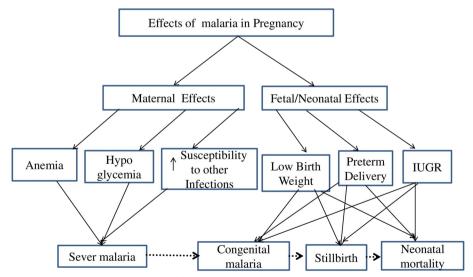


Fig. 4 The impact of malaria in pregnancy on maternal and fetal health

^{*} Congenital malaria detected in newborns from placental infected mothers

with *P. falciparum* in an area with widespread artemisinin resistance. Chloroquine also proved to be a safe treatment for pregnant women infected with *P. vivax* [137].

Conversely, Waheed et al. (2015) documented the case of a pregnant woman with *P.vivax* infection in Pakistan who showed chloroquine resistance despite appropriate treatment [138]. Similarly, Rijken et al. (2011) reported that a pregnant woman on the western border of Thailand developed chloroquine-resistant vivax malaria despite adequate chloroquine treatment [139]. In addition, a 3% prevalence of hearing loss was observed in newborns of mothers who had contracted *P.vivax* malaria and had taken chloroquine during pregnancy [140]. A case study by Sankar et al. (2020) in India found that quinine could not prevent transplacental transmission of *P.vivax* infection [141]. In Colombia, 95.8% of pregnant women responded to chloroquine monotherapy to cure their acute attack of uncomplicated *P. vivax* malaria [142].

Other studies have reported that mefloquine is safe and effective for malaria prophylaxis in the second half of pregnancy [143]. A study by Barnadas et al. (2007) found that sulfadoxine-pyrimethamine (SP) is effective as monotherapy, for intermittent preventive treatment of pregnant women or children [144] (Additional file 5:Table S5).

Intermittent preventive treatment and nutritional interventions for malaria in pregnancy

Intermittent preventive treatment in pregnancy (IPTp) has been shown to have significant benefits for maternal and neonatal health in malaria-endemic regions. Studies have demonstrated that IPTp-SP can reduce the prevalence of maternal *P.falciparum* infection, low birth weight and preterm birth, particularly in women in their first and second pregnancies [21, 145–147], and that it can reduce placental malaria parasitemia and maternal anemia [146, 148, 149]. Another study showed that antimalarial drug combinations containing mefloquine (MQ) are currently recommended for malaria treatment in pregnancy and that MQ alone is recommended for prophylaxis in pregnant women traveling to endemic countries [150]. In contrast, another study showed that IPT-SP is ineffective in preventing malaria infection [151].

The efficacy of IPTp-SP has been in both HIV-negative and HIV-positive pregnant women. In HIV-negative women, IPTp-SP with three or more doses has been shown to significantly improve birth weight and reduce the risk of low birth weight by 56% compared to fewer than three doses [147]. In HIV-positive women, monthly SP regimens have been shown to be superior to the standard two-dose regimen, with lower rates of placental and peripheral malaria parasitemia, particularly in primigravidae and secundigravidae [146, 152, 153].

However, there are some contradictions and challenges associated with IPTp-SP. The efficacy of this measure can be compromised by parasite resistance to SP [147]. Additionally, SP cannot be administered concomitantly with co-trimoxazole, a drug often recommended for infection prophylaxis in HIV-positive pregnant women [152]. Furthermore, submicroscopic infections, which frequently occur during pregnancy, cannot be effectively prevented by SP-IPT [154].

In conclusion, while IPTp-SP has shown significant benefits in reducing the adverse effects of malaria in pregnancy, further research is needed to address challenges related to drug resistance and to identify alternative medications for HIV-positive women. Integrating comprehensive counseling about IPTp-SP into antenatal care and addressing health system challenges are critical to improving uptake and effectiveness [155]. Future strategies may need to target women before their first antenatal care visit and effectively treat and prevent all malaria infections, including submicroscopic ones [154].

Similarly, malnutrition, particularly protein-energy malnutrition and micronutrient deficiencies, impairs immune function, and makes pregnant women more susceptible to malaria infection [156]. Conversely, malaria exacerbates nutritional deficiencies, creating a vicious cycle that severely compromises maternal and child health. The report emphasizes the importance of breast-feeding, the timing of complementary feeding, and the quality of complementary foods in protecting infants from malaria [156].

Taking nutritional supplements during pregnancy can have a positive effect on the health of the mother, the course of the pregnancy, and the health of the child [157]. For example, red palm oil (RPO), a good source of vitamin A, has been associated with some protection against malaria in children over 36 months of age, and vitamin A reduced febrile malaria episodes and parasite counts, particularly in children aged 12 to 36 months [158]. Another study showed that vitamin A and zinc supplementation prevented placental malaria in pregnant women [159]. In contrast, another study reported that vitamin A supplementation did not change the incidence of malaria during the study [160]. In general, although some studies suggest a potential benefit of vitamin supplementation in reducing malaria complications during pregnancy, the overall evidence remains inconclusive.

The combination of iron and folic acid supplements with SP-IPTp has been associated with a significant reduction in neonatal mortality in malaria-endemic countries in sub-Saharan Africa [161]. While the administration of iron alone had a negative impact on malaria prevalence in pregnant women in some studies, the combination of iron/folic acid supplements with SP-IPTp

appears to have a protective effect against neonatal death [161], as summarized in (Additional file 6:Table S6). This suggests that a balanced approach to supplementation and malaria prevention may be necessary to achieve optimal results.

Discussion

Malaria remains a major global health problem, with *P.falciparum* and *P.vivax* being the main causes of pregnancy-associated malaria. Malaria control efforts have significantly reduced the risk to pregnant women in most endemic areas, with the exception of sub-Saharan Africa, where population growth has exceeded the progress made in malaria control. Therefore, implementing strategies to mitigate the risk of malaria during pregnancy remains critically important [162–164].

P.vivax, a malaria parasite, is known worldwide for its wide geographic distribution and complex biological characteristics, which pose a challenge for its control and eradication. This parasite can form dormant stages, known as hypnozoites, in the hepatocytes (liver cells). Studies have shown that pregnant women often have polyclonal infections, which can result from either relapses or reinfections. In addition, the genetic diversity of P.vivax is remarkable, with the existence of different haplotypes (groups of genetic variations) and the ability to develop at lower temperatures, in contrast to the lower genetic diversity observed in *P.falciparum*. Interestingly, P.falciparum has been linked to specific genotypes associated with asymptomatic infections at the time of delivery. A phylogenetic analysis examining the evolutionary relationships between the organisms shows that the P.vivax population is globally distributed among pregnant women [163–166].

The review also emphasizes the impact of infections with *P.malariae*, *P.ovale* and *P.knowlesi*, which are detected early in pregnancy and are presented in maternal peripheral and placental blood at delivery. Although *P.falciparum* and *P.vivax* infections during pregnancy have been extensively studied, non-falciparum infections in women infected with these parasites also have a significant impact on pregnancy outcomes [27, 68].

Our review has shown that primigravidae women are more susceptible to malaria infection than women with a higher parity. Similarly, studies have indicated that primigravidae have an increased risk of severe malaria and associated complications [8–11]. A study conducted by Singh et al. (1999) in India also found that malaria is more common in primigravidae than in multiparous women, and that malaria during pregnancy increased the risk of placental and congenital malaria [167]. This suggests that the physiological changes in the first pregnancy, which affect immune function and increase susceptibility to

Plasmodium infection, make primigravidae particularly vulnerable to this disease and its complications [13].

Pregnancy-associated malaria is a major public health concern due to its harmful effects on maternal and fetal health. Severe maternal malaria is linked to 'several serious complications, including ARDS, neurologic disorders caused by cerebral malaria, liver and renal dysfunction, anemia, thrombocytopenia, and fatal placental malaria [168–170]. Additionally, other studies have reported that severe maternal malaria can result in cerebral malaria, associated neurologic sequelae, malarial anemia, respiratory distress, hypoglycemia, and other pregnancy-related complications [131, 169, 171–173]. The pathophysiology of severe malaria infection involves a multifaceted process [174]. It is characterized by the metabolic products of malaria parasites, including the digestion of hemoglobin and damage to components of the erythrocyte membrane. Infection also involves the action of proinflammatory and anti-inflammatory cytokines and the adherence of malaria parasites to the vascular endothelium, leading to sequestration and rosette formation [173].

The prevalence of congenital malaria and its harmful effects on the health of newborns and infants is a major issue in sub-Saharan Africa, Latin America and Asia. A ten-year review conducted by Cardona-Arias and Carmona-Fonseca (2022) in Colombia underscores this observation [175]. The available evidence suggests that malaria during pregnancy may have a detrimental effect on fetal health. Intrauterine growth restriction, low birth weight and reduced fetal viability, including stunted growth and cognitive development in children, have been observed in association with chronic disease in adulthood [176, 177]. In addition, reduced birth weight and head circumference have been associated with P.vivax infections and gestational, placental, and congenital malaria [178]. Malaria-associated stillbirths and low birth weight have been observed in women with low protective immunity, possibly because acute infection causes a shortened pregnancy [179, 180]. This may be due to adherence of infected red blood cells to the placental vasculature, leading to inflammation, impaired blood flow and significant maternal anemia, which reduce the oxygen-carrying capacity of the blood. The inflammatory response triggered by malaria can also damage placental tissue, leading to poor placental function and disrupting the exchange of oxygen and nutrients between mother and fetus. This can lead to fetal hypoxia, growth restriction and developmental problems [176].

Malaria in pregnancy has a complicated pathophysiology characterized by a complex interaction between the malaria parasite, the maternal immune system and the placenta [10, 16, 181]. Sequestration of infected red

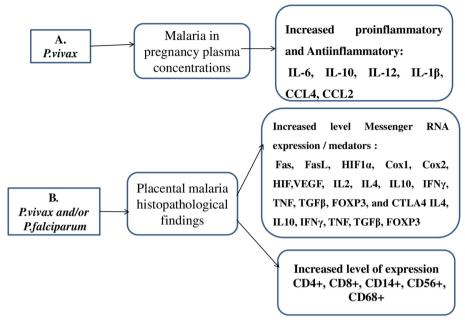


Fig. 5 Inflammatory responses and mRNA expression in maternal and placental malaria caused by P. vivax and P.falciparum

blood cells in the placenta, facilitated by specific parasite ligands such as VAR2CSA, triggers placental inflammation, reduced blood flow and impaired nutrient exchange [19, 182, 183]. Consequently, this cascade of events can lead to impaired fetal growth and development, ultimately contributing to an unfavorable pregnancy outcome [10, 16, 181].

Malaria during pregnancy can exacerbate the condition of patients with drug-resistant parasites, anemia, endemic poverty, and malnutrition [87, 184]. Even with prompt treatment, one or more asymptomatic infections with *P.falciparum* or *P.vivax* during the first half of pregnancymay result in a smaller-than-expected fetal head circumference in the middle trimester [185]. Strategies for the prevention of malaria in pregnancy should focus on early pregnancy [10, 186].

Malaria during pregnancy can manifest in different ways,, from asymptomatic parasitemia to severe disease. Typical symptoms include fever, chills, headache, and muscle pain [14, 187, 188]. Nevertheless, the altered immune response associated with pregnancy can lead to atypical symptoms or even an asymptomatic course, posing a challenge for accurate diagnosis and treatment [181, 189, 190].

Accurate diagnosis and effective treatment of malaria during pregnancy are essential for the well-being of both the mother and the developing fetus. Early detection of *Plasmodium* parasites can be performed through various methods, such as TBS, RDTs, and PCR [127, 137].

In this review we observed a significant difference in diagnostic viability between PCR and TBS. The different diagnostic results emphasize the need to select appropriate tools for surveillance and diagnosis. High prevalence rates in regions such as Niger and Sudan underscore. the need for improved maternal screening and preventive measures, while the absence of congenital malaria in India may be due to effective control measures or underreporting associated with diagnostic limitations [191–193].

Timely and appropriate antimalarial treatment, tailored to the gestational age and severity of the disease, is crucial for the effective treatment of malaria in pregnancy. Artemisinin-based combination therapies (ACTs) are the recommended treatment for uncomplicated malaria during the second and third trimesters of pregnancy, while quinine and clindamycin are often used during the first trimester. In addition to effective treatment, preventive measures are essential to reduce the incidence and impact of malaria during pregnancy. These measures include IPTp-SP, the use of ITNs and the use of IRS in conjunction with nutritional interventions [130, 160, 181, 194].

Malaria treatment options for pregnant women with uncomplicated, chloroquine-resistant *P.falciparum* or *P.vivax* infections are limited to mefloquine or quinine plus clindamycin. However, the availability of quinine is limited, and increasing resistance to mefloquine further restricts these options [195]. Artemether-lumefantrine (AL, Coartem) is effective and safe in the treatment of

malaria during pregnancy [196]. The WHO has endorsed the use of ACTs, including AL, as a treatment option for uncomplicated malaria during the second and third trimesters of pregnancy and during the first trimester when other treatment options are not available. These updated recommendations are based on current evidence and are in line with the WHO malaria treatment guidelines [197]. In addition, intravenous artesunate is recommended for severe malaria and is the preferred treatment for reducing mortality, including in pregnant women, due to its higher efficacy and safety profile compared to quinine. Since primaquine and tafenoquine may only be used to a limited extent during pregnancy due to their possible hemolytic effects, recurrent malaria may occur after malaria treatment [198].

Recrudescence, the reappearance of *Plasmodium* parasites after treatment, may persist for a prolonged period during pregnancy, regardless of the antimalarial treatment used [199]. Studies have shown that the use of ACTs is associated with longer intervals of recrudescence compared to other treatment regimens. The occurrence of concurrent *Pvivax* infections treated with chloroquine has also been associated with a longer interval before recurrence. To accurately assess the efficacy of antimalarial drugs in pregnant women, it is recommended that the follow-up period be extended either until delivery or day 63, whichever is later [200–202].

Prevention of malaria in pregnancy requires chemoprophylaxis, vector control measures, and strengthening of health systems to enable early diagnosis and treatment [203-205]. IPTp has been shown to significantly reduce malaria prevalence and improve pregnancy-related outcomes [203, 204]. IPTp-SP is recommended for pregnant women in areas with moderate to high malaria transmission. Recent studies have shown that although IPTp-SP is effective, the development of drug resistance (particularly to SP) is a growing problem [206–208]. However, some countries are now exploring alternative drugs or combination therapies for IPT [209–211]. To support this, in areas of high seasonal malaria transmission, seasonal malaria chemoprevention with a combination of mefloquine, or amodiaquine and SP is being used as a strategy to reduce the incidence of malaria in pregnancy [206, 211-213].

Regarding nutritional interventions for malaria in pregnancy, there is evidence that supplementation of vitamins and minerals (e.g. iron/folic acid) may be effective in reducing the impact of malaria and nutritional deficiencies on maternal and neonatal health. Similarly, a balanced diet can generally meet increased nutrient requirements during pregnancy, but supplementation may be required for certain nutrients such as vitamin

D, folic acid and iron [214]. Overall, a combination of proper nutrition, vitamins or minerals supplementation and malaria prevention strategies can help improve maternal and infant health in malaria-endemic regions. However, further research is needed to establish a causal link between malaria in pregnancy and malaria in infancy [215] and its synergistic effect with malaria prevention strategies in pregnancy.

Similarly, the appropriate use of ITNs and application of IRS is essential components of malaria control, and their use remains a cornerstone in the prevention of malaria in pregnancy. The WHO now recommends widespread provision of ITNs to pregnant women, particularly in regions with malaria epidemics. In addition, the introduction of ITNs has contributed to a significant reduction in malaria transmission. Better health outcomes for pregnant women and their children depend on the continued development and refinement of malaria prevention strategies and their implementation in routine antenatal care [21, 130, 216, 217]. Other vector control measures like environmental management (eliminating mosquito breeding sites) also may be used in some regions.

Currently, RTS, S/AS01 (RTS, S) is the only malaria vaccine specifically recommended for use in pregnant women. There are no other vaccines available at this time for the prevention of malaria in pregnancy, apart from RTS, S, which is used in malaria-endemic regions, particularly during the second or third trimester of pregnancy [218, 219]. However, it's important to note that the overall approach to preventing malaria in pregnancy involves a combination of strategies, and vaccines are just one part of the broader malaria prevention and control measures.

Limitations of the study

The limitation of this systematic review is that only articles published exclusively in English peer-reviewed, and open access journals were included, potentially excluding relevant studies from non-peer-reviewed sources or grey literature. In addition, the exclusion of articles without full-text access or articles focusing on non-pregnant populations or non-malaria conditions may have resulted in valuable data from broader or more diverse studies not being included. Furthermore, the requirement for sufficient data on prevalence, interventions, or outcomes related to malaria in pregnancy may have led to the exclusion of studies with incomplete or limited information that could have provided useful insights. These inclusion and exclusion criteria may have led to selection bias, limiting the generalizability of the results.

Conclusion

This systematic review provides a comprehensive analysis of the current state of research on malaria in pregnancy, highlighting recent advances and identifying key areas for future investigation. Malaria in pregnancy remains a major public health challenge worldwide, with a particularly heavy burden in sub-Saharan Africa. P.vivax is the most prevalent species worldwide, while P.falciparum is mainly restricted to Africa. In addition to gestational malaria, placental malaria and congenital malaria are also significant problems, mainly caused by P.falciparum and P.vivax even though other species also contribute infection. These infections lead to serious consequences such as premature birth, low birth weight and increased morbidity and mortality for mother and fetus. Antibody responses to P.falciparum and P.vivax exhibit remarkable temporal variability, with high malaria antibody levels being maintained by dynamic immune responses triggered by intermittent exposure to the parasite. Pro and anti-inflammatory mediators are immune marker expressions associated with malaria infections during pregnancy. The persistent presence of PfVAR2CSA antibodies suggests that maternal immunity acquired during pregnancy may provide protection for subsequent pregnancies. A multifaceted approach that includes effective prevention, timely diagnosis and appropriate treatment is essential in the control of malaria in pregnancy. Regular follow-up, early diagnosis and prompt treatment are key pillars in preventing malaria-related morbidity in pregnancy. Artesunate is the drug of choice for all forms of malaria at any stage of pregnancy. Although resistance to chloroquine has been identified in P.vivax, chloroquine remains the drug of choice for *P.vivax* in some countries. ACTs, such as artemether-lumefantrine (AL, Coartem), are the preferred treatment for uncomplicated P.falciparum cases at all stages of pregnancy. In addition, the use of IPTp-SP, nutritional supplementation, ITNs and IRS are effective preventive measures for malaria during pregnancy. Ongoing research and continuous updating of clinical practice are essential to overcome the challenges of malaria in pregnancy and improve maternal and child health.

Abbreviations

ARDS Acute Respiratory Distress Syndrome

CSA Chondroitin sulfate A
IRS Indoor Residual Spraying
INTs Insecticide-treated bed Nets

IPTp Intermittent Preventive Treatment in pregnancy

PCR Polymerase chain Reaction

PICO Population Intervention Comparison Outcome

RDT Rapid Diagnostic Test
TBS Thick blood smear

VAR2CSA Varicose Antigen 2 Chondroitin Sulfate A

VIR Variant Immune Response WHO World Health Organization

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s40794-025-00248-1.

		`
Additional file 1.		
Additional file 2.		
Additional file 3.		
Additional file 4.		
Additional file 5.		
Additional file 6.		

Authors' contributions

A.M. Conceptualize, data extraction, interpretation, and writing the review. G.A. critically review the manuscript of this review. D.Y.critically reviewed the manuscript of this review. M.S.critically reviewed the manuscript of this review.

Funding

No funding.

Data availability

All Data is provided within the manuscript or supplementary information files.

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Author details

¹Department of Biology, College of Natural and Computational Science, Debre Markos University, Debre Markos, Amhara, Ethiopia. ²Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia. ³School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia. ⁴Department of Obstetrics and Gynecology, School of Medicine, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Amhara, Ethiopia.

Received: 23 August 2024 Accepted: 8 February 2025 Published online: 22 May 2025

References

- WHO. World malaria report Geneva: World Health Organization; 2023 Licence: CC BY-NC-SA 30 IGO. 2023.
- Chua CL, Hasang W, Rogerson SJ, Teo A. Poor birth outcomes in malaria in pregnancy: recent insights into mechanisms and prevention approaches. Front Immunol. 2021;12:621382.
- Mens PF, Bojtor EC, Schallig HD. Molecular interactions in the placenta during malaria infection. Eur J Obstet Gynecol Reprod Biol. 2010;152(2):126–32.
- WHO. World malaria report 2024: addressing inequity in the global malaria response. Geneva: World Health Organization; Licence: CC BY-NC-SA 30 IGO. 2024.
- Varo R, Chaccour C, Bassat Q. Update on malaria. Med Clín (English Edition). 2020;155(9):395–402.
- Cardona-Arias JA, Carmona-Fonseca J. Prospective study of malaria in pregnancy, placental and congenital malaria in Northwest Colombia. Malar J. 2024;23(1):116.
- 7. Aung PP, Han KT, Groot W, Biesma R, Thein ZW, Htay T, et al. Heterogeneity in the prevalence of subclinical malaria, other co-infections

- and anemia among pregnant women in rural areas of Myanmar: a community-based longitudinal study. Trop Med Health. 2024;52(1):22.
- Reddy V, Weiss DJ, Rozier J, Ter Kuile FO, Dellicour S. Global estimates of the number of pregnancies at risk of malaria from 2007 to 2020: a demographic study. Lancet Glob Health. 2023;11(1):e40–7.
- Aguzie I. Pregnancy-associated malaria, challenges and prospects in sub-Saharan Africa. Clin Mother Child Health. 2018;15(1):1000282.
- Rogerson SJ, Desai M, Mayor A, Sicuri E, Taylor SM, van Eijk AM. Burden, pathology, and costs of malaria in pregnancy: new developments for an old problem. Jancet Infect Dis. 2018;18(4):e107–18.
- Yimam Y, Nateghpour M, Mohebali M, Abbaszadeh Afshar MJ. A systematic review and meta-analysis of asymptomatic malaria infection in pregnant women in Sub-Saharan Africa: a challenge for malaria elimination efforts. PLoS ONE. 2021;16(4):e0248245.
- Gbaguidi MLE, Adamou R, Edslev S, Hansen A, Domingo ND, Dechavanne C, et al. IgG and IgM responses to the Plasmodium falciparum asexual stage antigens reflect respectively protection against malaria during pregnancy and infanthood. Malar J. 2024;23(1):154.
- Bauserman M, Conroy AL, North K, Patterson J, Bose C, Meshnick S, editors. An overview of malaria in pregnancy. Seminars in perinatology; 2019: Elsevier.
- Desai M, Ter Kuile FO, Nosten F, McGready R, Asamoa K, Brabin B, et al. Epidemiology and burden of malaria in pregnancy. Lancet Infect Dis. 2007;7(2):93–104.
- 15. Rogerson SJ, Hviid L, Duffy PE, Leke RF, Taylor DW. Malaria in pregnancy: pathogenesis and immunity. Lancet Infect Dis. 2007;7(2):105–17.
- Berhe AD, Doritchamou JY, Duffy PE. Malaria in pregnancy: adverse pregnancy outcomes and the future of prevention. Front Trop Dis. 2023:4:1229735.
- Obeagu E, Obeagu G. Neonatal outcomes in children born to mothers with severe Malaria, HIV, and transfusion history: a review. Elite J Nurs Health Sci. 2024;2(3):38–58.
- Saito M, Phyo AP, Chu C, Proux S, Rijken MJ, Beau C, et al. Severe falciparum malaria in pregnancy in Southeast Asia: a multi-centre retrospective cohort study. BMC Med. 2023;21(1):320.
- Dellicour S, Tatem AJ, Guerra CA, Snow RW, Ter Kuile FO. Quantifying the number of pregnancies at risk of malaria in 2007: a demographic study. PLoS Med. 2010;7(1):e1000221.
- Fried M, Duffy PE. Malaria during pregnancy. Cold Spring Harb Perspect Med. 2017;7(6):a025551.
- 21. Desai M, Hill J, Fernandes S, Walker P, Pell C, Gutman J, et al. Prevention of malaria in pregnancy. Lancet Infect Dis. 2018;18(4):e119–32.
- 22. Dimasuay KG, Boeuf P, Powell TL, Jansson T. Placental responses to changes in the maternal environment determine fetal growth. Front Physiol. 2016;7:12.
- Hviid L, Salanti A. VAR2CSA and protective immunity against pregnancy-associated Plasmodium falciparum malaria. Parasitology. 2007;134(13):1871–6.
- 24. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and metaanalyses of studies that evaluate health care interventions: explanation and elaboration. Ann Int Med. 2009;151(4):65.
- Barber BE, Bird E, Wilkes CS, William T, Grigg MJ, Paramaswaran U, et al. Plasmodium knowlesi malaria during pregnancy. J Infect Dis. 2015;211(7):1104–10.
- Williams J, Njie F, Cairns M, Bojang K, Coulibaly SO, Kayentao K, et al. Non-falciparum malaria infections in pregnant women in West Africa. Malar J. 2016;15:1–8.
- Doritchamou JY, Akuffo RA, Moussiliou A, Luty AJ, Massougbodji A, Deloron P, et al. Submicroscopic placental infection by non-falciparum Plasmodium spp. PLoS Negl Trop Dis. 2018;12(2):e0006279.
- Poespoprodjo JR, Fobia W, Kenangalem E, Lampah DA, Warikar N, Seal A, et al. Adverse pregnancy outcomes in an area where multidrugresistant Plasmodium vivax and Plasmodium falciparum infections are endemic. Clin Infect Dis. 2008;46(9):1374–81.
- Pincelli A, Neves PA, Lourenço BH, Corder RM, Malta MB, Sampaio-Silva J, et al. The hidden burden of Plasmodium vivax malaria in pregnancy in the Amazon: an observational study in Northwestern Brazil. Am J Trop Med Hyg. 2018;99(1):73.
- 30. Martínez-Espinosa FE, Daniel-Ribeiro CT, Alecrim WD. Malaria during pregnancy in a reference centre from the Brazilian Amazon:

- unexpected increase in the frequency of Plasmodium falciparum infections. Mem Inst Oswaldo Cruz. 2004;99:19–21.
- Bôtto-Menezes C, Bardají A, dos Santos CG, Fernandes S, Hanson K, Martínez-Espinosa FE, et al. Costs associated with malaria in pregnancy in the Brazilian Amazon, a low endemic area where Plasmodium vivax predominates. PLoS Negl Trop Dis. 2016;10(3):e0004494.
- Dombrowski JG, Souza RMD, Silva NRM, Barateiro A, Epiphanio S, Gonçalves LA, et al. Malaria during pregnancy and newborn outcome in an unstable transmission area in Brazil: A population-based record linkage study. PLoS One. 2018;13(6):e0199415.
- Agudelo O, Arango E, Maestre A, Carmona-Fonseca J. Prevalence of gestational, placental and congenital malaria in north-west Colombia. Malar J. 2013;12:1–9.
- Agudelo-García OM, Arango-Flórez EM, Carmona-Fonseca J. Submicroscopic and asymptomatic congenital infection by Plasmodium vivax or P. falciparum in Colombia: 37 cases with placental histopathology and cytokine profile in maternal and placental blood. J Trop Med. 2017;2017(1):3680758.
- Hamer DH, Singh MP, Wylie BJ, Yeboah-Antwi K, Tuchman J, Desai M, et al. Burden of malaria in pregnancy in Jharkhand State. India Malaria J. 2009:8:1–11
- Singh A, Mohan K, Omar BJ, Chacham S, Chaturvedi J, Basu S, et al. Congenital Malaria in newborns delivered to malaria-infected mothers in the hilly region of Northern India: Is it deadly? Curr Pediatr Rev. 2022;18(1):53–8.
- 37. Khan WA, Galagan SR, Prue CS, Khyang J, Ahmed S, Ram M, et al. Asymptomatic Plasmodium falciparum malaria in pregnant women in the Chittagong Hill Districts of Bangladesh. PLoS ONE. 2014;9(5):e98442.
- 38. Briand V, Le Hesran J-Y, Mayxay M, Newton PN, Bertin G, Houzé S, et al. Prevalence of malaria in pregnancy in southern Laos: a cross-sectional survey. Malar J. 2016;15:1–11.
- Umemmuo MU, Agboghoroma CO, Iregbu KC. The efficacy of intermittent preventive therapy in the eradication of peripheral and placental parasitemia in a malaria-endemic environment, as seen in a tertiary hospital in Abuja, Nigeria. Int J Gynecol Obstet. 2020;148(3):338–43.
- Unger HW, Rosanas-Urgell A, Robinson LJ, Ome-Kaius M, Jally S, Umbers AJ, et al. Microscopic and submicroscopic Plasmodium falciparum infection, maternal anaemia and adverse pregnancy outcomes in Papua New Guinea: a cohort study. Malar J. 2019;18:1–9.
- Omer SA, Idress HE, Adam I, Abdelrahim M, Noureldein AN, Abdelrazig AM, et al. Placental malaria and its effect on pregnancy outcomes in Sudanese women from Blue Nile State. Malar J. 2017;16:1–8.
- Nega D, Dana D, Tefera T, Eshetu T. Prevalence and predictors of asymptomatic malaria parasitemia among pregnant women in the rural surroundings of Arbaminch Town, South Ethiopia. PLoS ONE. 2015;10(4):e0123630.
- 43. Gontie GB, Wolde HF, Baraki AG. Prevalence and associated factors of malaria among pregnant women in Sherkole district, Benishangul Gumuz regional state West Ethiopia BMC. Infect Dis. 2020;20:1–8.
- 44. Feleke DG, Adamu A, Gebreweld A, Tesfaye M, Demisiss W, Molla G. Asymptomatic malaria infection among pregnant women attending antenatal care in malaria endemic areas of North-Shoa, Ethiopia: a cross-sectional study. Malar J. 2020;19:1–6.
- Solomon A, Kahase D, Alemayhu M. Prevalence of placental malaria among asymptomatic pregnant women in Wolkite health center, Gurage zone, Southern Ethiopia. Trop Dis Travel Med Vaccines. 2020;6:1–8.
- Subussa BW, Eshetu T, Degefa T, Ali MM. Asymptomatic Plasmodium infection and associated factors among pregnant women in the Merti district, Oromia, Ethiopia. PLoS ONE. 2021;16(3):e0248074.
- 47. Limenih A, Gelaye W, Alemu G. Prevalence of malaria and associated factors among delivering mothers in Northwest Ethiopia. Biomed Res Int. 2021;2021(1):2754407.
- Almaw A, Yimer M, Alemu M, Tegegne B. Prevalence of malaria and associated factors among symptomatic pregnant women attending antenatal care at three health centers in north-west Ethiopia. PLoS ONE. 2022;17(4):e0266477.
- Gemechu T, Dedecha W, Gelchu M, Husen O, Jarso H. Asymptomatic malaria during pregnancy: prevalence, influence on anemia and associated factors in West Guji Zone, Ethiopia–a community-based study. Infect Drug Resist. 2023;31:6747–55.

- Carmona-Fonseca J, Arango E, Maestre A. Placental malaria in Colombia: histopathologic findings in Plasmodium vivax and P. falciparum infections. American J Trop Med Hygiene. 2013;88(6):1093.
- Cardona-Arias JA, Carmona-Fonseca J. Congenital malaria: frequency and epidemiology in Colombia, 2009–2020. PLoS ONE. 2022;17(2):e0263451.
- Lufele E, Umbers A, Ordi J, Ome-Kaius M, Wangnapi R, Unger H, et al. Risk factors and pregnancy outcomes associated with placental malaria in a prospective cohort of Papua New Guinean women. Malar J. 2017:16:1–10
- Ouédraogo S, Accrombessi M, Diallo I, Codo R, Ouattara A, Ouédraogo L, et al. Placental impression smears is a good indicator of placental malaria in sub-Saharan Africa. Pan African Med J. 2019;34(1):30.
- 54. Bihoun B, Zango SH, Traoré-Coulibaly M, Valea I, Ravinetto R, Van Geertruyden JP, et al. Age-modified factors associated with placental malaria in rural Burkina Faso. BMC Pregnancy Childbirth. 2022;22(1):248.
- Mwin PK, Kuffuor A, Nuhu K, Okine P, Kubio C, Wurapa F, et al. Predictors of placental malaria in upper West regional Hospital-Ghana. BMC Pregnancy Childbirth. 2021;21(1):403.
- Akinnawo A, Seyram K, Kaali EB, Harrison S, Dosoo D, Cairns M, et al. Assessing the relationship between gravidity and placental malaria among pregnant women in a high transmission area in Ghana. Malar J. 2022;21(1):240.
- 57. Brutus L, Santalla J, Schneider D, Avila JC, Deloron P. Plasmodium vivax malaria during pregnancy, Bolivia. Emerg Infect Dis. 2013;19(10):1605.
- Bardají A, Martínez-Espinosa FE, Arévalo-Herrera M, Padilla N, Kochar S, Ome-Kaius M, et al. Burden and impact of Plasmodium vivax in pregnancy: A multi-centre prospective observational study. PLoS Negl Trop Dis. 2017:11(6):e0005606.
- Mayor A, Bardají A, Felger I, King CL, Cisteró P, Dobaño C, et al. Placental infection with plasmodium vivax: a histopathological and molecular study. J Infect Dis. 2012;206(12):1904–10.
- Takem EN, D'Alessandro U. Malaria in pregnancy. Mediterranean J Hematol Infect Dis. 2013;5(1):e2013010.
- 61. Bôtto-Menezes C, Bardají A, Campos GDS, Fernandes S, Hanson K, Martínez-Espinosa FE, et al. Costs associated with malaria in pregnancy in the brazilian amazon, a low endemic area where *Plasmodium vivax* predominates. PLoS Negl Trop Dis. 2016;10(3):e0004494.
- Dombrowski JGR, Souza RMD, Regina NR, Silva M, Barateiro A, Epiphanio S, et al. Malaria during pregnancy and newborn outcome in an unstable transmission area in Brazil: a population-based record linkage study. PLoS ONE. 2018;13(6):e0199415.
- Agudelo O, Arango E, Maestre A, Carmona-Fonseca J. Prevalence of gestational, placental and congenital malaria in north-west Colombia. Malar J. 2013;12:341.
- 64. Vásquez AM, Medina AC, Tobon-Castano A, Posada M, Vélez GJ, Campillo A, et al. Performance of a highly sensitive rapid diagnostic test (HS-RDT) for detecting malaria in peripheral and placental blood samples from pregnant women in Colombia. PLoS ONE. 2018;13(8):e0201769.
- Hamer DH, Singh MP, Wylie BJ, Antwi KY, Tuchman J, Desai M, et al. Burden of malaria in pregnancy in Jharkhand State. India Malaria Journal. 2009:8:210.
- Khan WA, Galagan SR, Prue CS, Khyang J, Ahmed S, Ram M, et al. Asymptomatic *Plasmodium falciparum* Malaria in Pregnant Women in the Chittagong Hill Districts of Bangladesh. PLoS ONE. 2014;9(5):e9844.
- Briand V, Hesran JYL, Mayxay M, Newton PN, Bertin G, Houzé S, et al. Prevalence of malaria in pregnancy in southern Laos: a cross-sectional survey. Malar J. 2016;15:436.
- Williams J, Njie F, Cairns M, Bojang K, Coulibaly SO, Kayentao K, et al. Non-falciparum malaria infections in pregnant women in West Africa. Malar J 2016:15:53
- 69. Unger HW, Rosanas-Urgell A, Robinson LJ, Ome-Kaius M, Jally S, Umbers AJ, et al. Microscopic and submicroscopic *Plasmodium falciparum* infection, maternal anaemia and adverse pregnancy outcomes in Papua New Guinea: a cohort study. Malarria J. 2019;18:302.
- 70. Gontie GB, Wolde HF, Baraki AG. Prevalence and associated factors of malaria among pregnant women in Sherkole district, Benishangul Gumuz regional state West Ethiopia BMC. Infect Dis. 2020;20:573.
- 71. Feleke DG, Adamu A, Gebreweld A, Tesfaye M, Demisiss W, Molla G. Asymptomatic malaria infection among pregnant women attending

- antenatal care in malaria endemic areas of North-Shoa, Ethiopia: a cross-sectional study. Malar J. 2020;19:67.
- Solomon A, Kahase D, Alemayhu M. Prevalence of placental malaria among asymptomatic pregnant women in Wolkite health center, Gurage zone, Southern Ethiopia. Trop Dis Travel Med Vacc. 2020;6:20.
- Limenih A, Gelaye W, Alemu G. Prevalence of Malaria and associated factors among delivering mothers in Northwest Ethiopia. Hindawi BioMed Res Int. 2021;2021:7.
- Gemechu T, Dedecha W, Gelchu M, Husen O, Jarso H. Asymptomatic Malaria during pregnancy: prevalence, influence on anemia and associated factors in West Guji Zone, Ethiopia – a community-based study. Infect Drug Resist. 2023;16:6747–55.
- Carmona-Fonseca J, Eliana A, Maestre A. Placental Malaria in Colombia: histopathologic findings in plasmodium vivax and P. falciparum infections. Am J Trop Med Hyg. 2013;88(6):1093–101.
- Asante KP, Wylie BJ, Oppong FB, Quinn A, Gyaase S, Lee AG, et al. Association between malaria and household air pollution interventions in a predominantly rural area of Ghana. Malar J. 2023;22(1):106.
- 77. Luuse AT, Alidu H, Mawuli MA, Mubarak A-R, Gyan B. Do Blood group and Sickle cell trait protect against placental malaria? J Public Health Africa. 2023;14(12):2817.
- Kalinjuma AV, Darling AM, Mugusi FM, Abioye Al, Okumu FO, Aboud S, et al. Factors associated with sub-microscopic placental malaria and its association with adverse pregnancy outcomes among HIV-negative women in Dar es Salaam, Tanzania: a cohort study. BMC Infect Dis. 2002;20:1–13
- Tran EE, Cheeks ML, Kakuru A, Muhindo MK, Natureeba P, Nakalembe M, et al. The impact of gravidity, symptomatology and timing of infection on placental malaria. Malar J. 2020;19:1–11.
- 80. Piñeros-Jiménez JG, Álvarez G, Tobón A, Arboleda M, Carrero S, Blair S. Congenital malaria in Urabá. Colombia Malaria J. 2011;10:239.
- Natama HM, Ouedraogo DF, Sorgho H, Rovira-Vallbona E, Serra-Casas E, Somé MA, et al. Diagnosing congenital malaria in a high-transmission setting: clinical relevance and usefulness of P. falciparum HRP2-based testing. Sci Rep. 2017;7(1):2080.
- 82. Tahirou I, Zara M, Moustapha M, Kamayé M, Mahamadou D, Ibrahim A, et al. Congenital malaria and its associated factors at issaka gazobi maternity of Niamey in Niger. Int J Pediatr. 2020;2020(1):7802560.
- Hangi M, Achan J, Saruti A, Quinlan J, Idro R. Congenital malaria in newborns presented at tororo general hospital in Uganda: a cross-sectional study. Am J Trop Med Hyg. 2019;100(5):1158.
- 84. Poespoprodjo ER, Fobia W, Kenangalem E, Lampah DA, Warikar N, Seal A, et al. Adverse pregnancy outcomes in an area where multidrug resistant *Plasmodium vivax* and *Plasmodium falciparum* infections are endemic. Clin Infect Dis. 2008;46(9):1374–81.
- Umbers AJ, Stanisic DI, Ome M, Wangnapi R, Hanieh S, Unger HW, et al. Does Malaria affect placental development? evidence from in vitro models. PLoS ONE. 2018;8(1):e55269.
- Romero M, Leiba E, Carrión-Nessi FS, Freitas-De Nobrega DC, Kaid-Bay S, Gamardo ÁF, et al. Malaria in pregnancy complications in Southern Venezuela. Malar J. 2021;20:1–8.
- Sharma VP. Hidden burden of malaria in Indian women. Malar J. 2009;8:281.
- Rijken MJ, McGready R, Boel ME, Poespoprodjo R, Singh N, Syafruddin D, et al. Malaria in pregnancy in the Asia-Pacific region. Lancet Infect Dis. 2012;12(1):75–88.
- Chaikitgosiyakul S, Rijken MJ, Muehlenbachs A, Lee SJ, Chaisri U, Viriyavejakul P, et al. A morphometric and histological study of placental malaria shows significant changes to villous architecture in both *Plas-modium falciparum* and *Plasmodium vivax* infection. Malar J. 2014;13:4.
- Sharma R, Suneja A, Yadav A, Guleria K. Plasmodium vivax induced acute respiratory distress syndrome – a diagnostic and therapeutic dilemma in Preeclampsia. J Clin Diag Res. 2017;11(4):03–4.
- McGready R, Wongsaen K, Chu CS, Tun NW, Chotivanich K, White NJ, et al. Uncomplicated *Plasmodium vivax* malaria in pregnancy associated with mortality from acute respiratory distress syndrome. Malar J. 2014;13:191
- 92. Hegde A. Malaria in the Intensive Care Unit. *Indian Journal of Critical Care Medicine*. 2021:https://doi.org/10.5005/jp-journals-10071-23871
- 93. McLean ARD, Boel M, McGready R, Ataide R, Drew D, Tsuboi T, et al. Antibody responses to plasmodium falciparum and plasmodium vivax and

- prospective risk of plasmodium spp. Infection postpartum. American J Trop Med Hygien. 2017;96(5):1197–204.
- 94. Fowkes FJ, McGready R, Cross NJ, Hommel M, Simpson JA, Elliott SR, et al. New insights into acquisition, boosting, and longevity of immunity to Malaria in pregnant women. J Infect Dis. 2012;206:1612–21.
- Carvalho BO, Lopes SCP, Nogueira PA, Orlandi PP, Bargieri DY, Blanco YC, et al. On the cytoadhesion of *Plasmodium vivax*-infected erythrocytes. J Infect Dis. 2010;202(4):638–47.
- 96. Dombrowski JGr, Barateiro A, Peixoto EPM, Barros ABCudS, Souza RMd, Clark TG, et al. Adverse pregnancy outcomes are associated with *Plasmodium vivax* malaria in a prospective cohort of women from the Brazilian Amazon. *PLoS Nealected Tropical Diseases* 2021;15(4):e0009390.
- Gavina K, Gnidehou S, Arango E, Hamel-Martineau C, Mitran C, Agudelo O, et al. Clinical outcomes of submicroscopic infections and correlates of protection of VAR2CSA antibodies in a longitudinal study of pregnant women in Colombia. Infect Immun. 2018;86:e00797-e817.
- Nosten F, McGready R, Simpson JA, Thwai KL, Balkan S, Cho T, et al. Effects of *Plasmodium vivax* malaria in pregnancy. Lancet Glob Health. 1999;354:546–9.
- Bôtto-Menezes C, Santos MCSD, Simplício JL, Medeiros JMD, Gomes KCB, De IC, et al. Plasmodium vivax Malaria in pregnant women in the brazilian amazon and the risk factors associated with prematurity and low birth weight: a descriptive study. PLoS ONE. 2015;10(12):e0144399.
- 100. Thanapongpichat S, McGready R, Luxemburger C, Day NP, White NJ, Nosten F, et al. Microsatellite genotyping of *Plasmodium vivax* infections and their relapses in pregnant and non-pregnant patients on the Thai-Myanmar border. Malar J. 2013;12:275.
- 101. Mcgready R, Thwai KL, Cho T, Samuel, Looareesuwan S, White NJ, et al. The effects of quinine and chloroquine antimalarial treatments in the first trimester of pregnancy. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2002;96(2):180–4.
- Hegde A. Malaria in the intensive care Unit. Indian J Crit Care Med. 2021. https://doi.org/10.5005/jp-journals:10071-23871.
- Carrión-Nessi FS, Castro MP, Nobrega DCFD, Moncada-Ortega A, Omaña-Ávila ÓD, Mendoza-Millán DL, et al. Clinical-epidemiological characteristics and maternal-foetal outcomes in pregnant women hospitalised with COVID-19 in Venezuela: a retrospective study. BMC Pregnancy Childbirth. 2022;22:905.
- Ataíde R, Murillo O, Dombrowski JG, Souza RM, Lima FA, Lima GFMC, et al. Malaria in pregnancy interacts with and alters the angiogenic profiles of the placenta. PLoS Negl TropDis. 2015;9(6):e0003824.
- Souza RM, Atai de R, Dombrowski JG, lito VI, Aitken EH, Valle SN, et al. Placental Histopathological Changes Associated with *Plasmodium vivax* Infection during Pregnancy. *PLoS Negl Trop Dis*. 2013;7(2):e2071.
- 106. Filho ACM, Costa EPD, Costa EPD, Iracema S, Reis EACF, Paim BV, Martinez-Espinosa FE. Effects of *Vivax* Malaria acquired before 20 weeks of pregnancy on subsequent changes in fetal growth. American Soc Trop Med Hygiene. 2014;90(2):371–6.
- 107. Prasetyorini N, Erwan NE, Utomo RP, Nugraha RYB, Fitri LE. The relationship between fetal weight with sequestration of infected erythrocyte, monocyte infiltration, and malaria pigment deposition in placenta of mother giving birth suffering from *Plasmodium Vivax* infection. MED ARCH. 2021;75(4):291–6.
- Dombrowski JG, Souza RMD, Lima FA, Bandeira CL, Murillo O, Costa DDS, et al. Association of malaria infection during pregnancy with head circumference of newborns in the brazilian amazon. JAMA Network Open. 2019;2(5):e193300.
- 109. Pineros JG, Tobon-Castano A, A'Ivarez G, Portilla C, Blair S. Maternal clinical findings in malaria in pregnancy in a region of Northwestern Colombia. American Soc Trop Med Hygiene. 2013;89(3):520–6.
- 110. Bhandari V, Sharma K, Pannu HS, Chhina RS, Taneja A, Desai HD, et al. Clinicobiochemical parameters and predictors of liver disease in hospitalized Asian Indian pregnant women in a tertiary care center in Northern India. Cureus. 2021;13(2):e13405.
- Dharmaratne ADVTT, Dini S, O'Flaherty K, Price DJ, Beeson J, McGready R, et al. Quantification of the dynamics of antibody response to malaria to inform sero-surveillance in pregnant women. Malaria J. 2022;21:75.
- 112. Lopez-Perez M, Larsen MD, Bayarri-Olmos R, Ampomah P, Stevenson L, Arévalo-Herrera M, et al. IgG responses to the *Plasmodium*

- falciparum Antigen VAR2CSA in Colombia are restricted to pregnancy and are not induced by exposure to *Plasmodium vivax*. Infect Immun. 2018:86(8):e00136-e218.
- Iyamu U, Vinals DF, Tornyigah B, Arango E, Bhat R, Adra TR, et al. A conserved epitope in VAR2CSA is targeted by a cross-reactive antibody originating from *Plasmodium vivax* Duffy binding protein. Front Cell Infect Microbiol. 2023;13:1202276.
- Sédami G, Mitran CJ, Arango E, Banman S, Mena A, Medawar E, et al. Cross-species immune recognition between *Plasmodium vivax* duffy binding protein antibodies and the *Plasmodium falciparum* surface antigen VAR2CSA. J Infect Dis. 2019;219:110–20.
- Charnaud S, McGready R, Herten-Crabb A, Powell R, Andrew G, Langer C, et al. Maternal-foetal transfer of *Plasmodium falciparum* and *Plasmodium vivax* antibodies in a low transmission setting. Sci Rep. 2016;6:20859.
- 116. Dombrowski JGR, Barateiro A, Peixoto EPM, Barros ABCudS, Souza MD, Clark TG, et al. Adverse pregnancy outcomes are associated with Plasmodium vivax malaria in a prospective cohort of women from the Brazilian Amazon. PLoS Negl Trop Dis. 2021;15(4):e0009390.
- 117. Fried M, Duffy PE. Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science. 1996;272(5267):1502–4.
- Hay SI, Okiro EA, Gething PW, Patil AP, Tatem AJ, Guerra CA, et al. Estimating the global clinical burden of Plasmodium falciparum malaria in 2007. PLoS Med. 2010;7(6):e1000290.
- Dobaño C, Bardaji A, Are´valo-Herrera M, Espinosa FEMn, Boˆtto-Menezes C, Padilla N, et al. Cytokine signatures of *Plasmodium vivax* infection during pregnancy and delivery outcomes. *PLOS Neglected Trop Dis*. 1999;14(5):e0008155.
- 120. Singha KP, Shakeela S, Naskari N, Bhartia A, Kaulc A, Anwarb S, et al. Role of IL-1β, IL-6 and TNF-α cytokines and TNF-α promoter variability in *Plasmodium vivax* infection during pregnancy in endemic population of Jharkhand. India Mol Immunol. 2018;97:82–93.
- Carmona-Fonseca J, Cardona-Arias JA. Placental malaria caused by Plasmodium vivax or P. falciparum in Colombia: histopathology and mediators in placental processes. PLoS ONE. 2022;17(`1):e0263092.
- Dobaño C, Bardaji´ A, Are´valo-Herrera M, Espinosa FEMn, Boˆtto-Menezes C, Padilla N, et al. Cytokine signatures of *Plasmodium vivax* infection during pregnancy and delivery outcomes. *PLoS Neglected Trop Dis* 2020;14(5):e0008155.
- 123. Suguitan AL Jr, Leke RG, Fouda G, Zhou A, Thuita L, Metenou S, et al. Changes in the levels of chemokines and cytokines in the placentas of women with Plasmodium falciparum malaria. J Infect Dis. 2003;188(7):1074–82.
- 124. Muehlenbachs A, Fried M, Lachowitzer J, Mutabingwa TK, Duffy PE. Genome-wide expression analysis of placental malaria reveals features of lymphoid neogenesis during chronic infection. J Immunol. 2007;179(1):557–65.
- 125. Requena P, Rui E, Padilla N, Martı'nez-Espinosa FE, Castellanos ME, Bo^tto-Menezes C, et al. *Plasmodium vivax* VIR proteins are targets of naturally-acquired antibody and T cell immune responses to Malaria in pregnant women. PLOS Neglected Trop Dis. 2016;10(10):e0005009.
- 126. Requena P, Rui E, Padilla N, Martó Ânez-Espinosa FE, Castellanos ME, tto-Menezes CB, et al. *Plasmodium vivax* VIR Proteins Are Targets of Naturally-Acquired Antibody and T Cell Immune Responses to Malaria in Pregnant Women. *PLoS Neglected Tropical Diseases*. 2016;10(10):e0005009.
- 127. Requena P, Arévalo-Herrera M, Menegon M, Martínez-Espinosa FE, Padilla N, Bôtto-Menezes C, et al. Naturally Acquired Binding-Inhibitory Antibodies to *Plasmodium vivax* Duffy Binding Protein in Pregnant Women Are Associated with Higher Birth Weight in a Multicenter Study. Frontier in Immunology. 2017;8:163.
- Dhorda M, Nyehangane D, Re'nia L, Piola P, Guerin PJ, Snounou G. Transmission of plasmodium vivax in South-Western Uganda: report of three cases in pregnant women. PLoS ONE. 2011;6(5):e19801.
- Boel ME, Rijken MJ, Pimanpanarak M, Keereecharoen NL, Proux S, Nosten FO, et al. Short report: no association of phenotypic ABO blood group and malaria during pregnancy. Am J Trop Med Hyg. 2012;87(3):447–9.
- Al Khaja KA, Sequeira RP. Drug treatment and prevention of malaria in pregnancy: a critical review of the guidelines. Malar J. 2021;20:1–13.

- 131. Kovacs SD, Rijken MJ, Stergachis A. Treating severe malaria in pregnancy: a review of the evidence. Drug Saf. 2015;38:165–81.
- 132. Baird JK. Evidence and implications of mortality associated with acute Plasmodium vivax malaria. Clin Microbiol Rev. 2013;26(1):36–57.
- Bruneel F, Hocqueloux L, Alberti C, Wolff M, Chevret S, Bédos J-P, et al.
 The clinical spectrum of severe imported falciparum malaria in the intensive care unit: report of 188 cases in adults. Am J Respir Crit Care Med. 2003;167(5):684–9.
- Nosten F, McGready R, Simpson J, Thwai KL, Balkan S, Cho T, et al. Effects of Plasmodium vivax malaria in pregnancy. The Lancet. 1999;354(9178):546–9.
- McGready R, Lee SJ, Wiladphaingern J, Ashley EA, Rijken MJ, Boel M, et al. Adverse eff ects of falciparum and vivax malaria and the safety of antimalarial treatment in early pregnancy: a population-based study. Lancet Infect Dis. 2012;12:388–96.
- 136. McGready R, Tan SO, Ashley EA, Pimanpanarak M, Viladpai-Nguen J, Phaiphun L, et al. A randomised controlled trial of artemether-lume-fantrine versus artesunate for uncomplicated Plasmodium falciparum treatment in pregnancy. PLoS Med. 2008;5(12):e253.
- 137. Saito M, Carrara VI, Gilder ME, Min AM, Tun NW, Pimanpanarak M, et al. A randomized controlled trial of dihydroartemisinin-piperaquine, artesunate mefloquine and extended artemether lumefantrine treatments for malaria in pregnancy on the Thailand-Myanmar border. BMC Med. 2021:19:132.
- Waheed AA, Ghanchi NK, Rehman KA, Raza A, Mahmood SF, Beg MA. Vivax malaria and chloroquine resistance: a neglected disease as an emerging threat. Malar J. 2015:14:146.
- Rijken MJ, Boel ME, Russell B, Imwong M, Leimanis ML, Phyo AP, et al. Chloroquine resistant vivax malaria in a pregnant woman on the western border of Thailand. Malar J. 2011;10:113.
- Aurélio FS, Dutra ÍP, Silva VBD, Sampaio ALL, Oliveira CACP. Prevalence of hearing loss in newborns of mothers who had malaria and were treated with antimalaric drugs in pregnancy. Int Tinnitus J. 2014;19(1):68–76.
- 141. Sankar J, Menon R, Kottarathara AJ. Congenital malaria a case report from a non-endemic area. Trop Biomed. 2010;27(2):326–9.
- Castro-Cavadía CJ, Carmona-Fonseca J. Assessment of the efficacy and safety of chloroquine monotherapy for the treatment of acute uncomplicated gestational malaria caused by P. vivax, Córdoba, Colombia, 2015–2017. Rev colomb obstet ginecol. 2020:21–33.
- 143. Barnadas C, Tichit M, Bouchier C, Ratsimbasoa A, Randrianasolo L, Raherinjafy R, et al. *Plasmodium vivax* dhfr and dhps mutations in isolates from Madagascar and therapeutic response to sulphadoxine-pyrimethamine. Malar J. 2008;7:35.
- 144. Barnadas C, Tichit M, Bouchier C, Ratsimbasoa A, Randrianasolo L, Raherinjafy R, et al. Plasmodium vivax dhfr and dhps mutations in isolates from Madagascar and therapeutic response to sulphadoxinepyrimethamine. Malar J. 2008;7:1–11.
- 145. Ramharter M, Schuster K, Bouyou-Akotet MK, Adegnika AA, Schmits K, Mombo-Ngoma G, et al. Malaria in pregnancy before and after the implementation of a national IPTp program in Gabon. Am J Trop Med Hyg. 2007;77(3):418–22.
- 146. Filler SJ, Kazembe P, Thigpen M, Macheso A, Parise ME, Newman RD, et al. Randomized trial of 2-dose versus monthly sulfadoxine-pyrimethamine intermittent preventive treatment for malaria in HIV-positive and HIV-negative pregnant women in Malawi. J Infect Dis. 2006;194(3):286–93.
- 147. Mlugu EM, Minzi O, Asghar M, Färnert A, Kamuhabwa AA, Aklillu E. Effectiveness of sulfadoxine–pyrimethamine for intermittent preventive treatment of malaria and adverse birth outcomes in pregnant women. Pathogens. 2020;9(3):207.
- Menéndez C, Bardají A, Sigauque B, Sanz S, Aponte JJ, Mabunda S, et al. Malaria prevention with IPTp during pregnancy reduces neonatal mortality. PLoS ONE. 2010;5(2):e9438.
- Omole-Ohonsi A, Attah R, Umoru J, Habib U. Appraisal of the efficacy of SP-IPTP in Aminu Kano teaching hospital-impact on maternal anaemia, malaria parasitaemia and clinical malaria in pregnancy. Trop J Obstet Gynaecol. 2014;31(2):22–30.
- 150. Rupérez M, González R, Mombo-Ngoma G, Kabanywanyi AM, Sevene E, Ouédraogo S, et al. Mortality, morbidity, and developmental outcomes in infants born to women who received either mefloquine or

- sulfadoxine-pyrimethamine as intermittent preventive treatment of malaria in pregnancy: a cohort study. PLoS Med. 2016;13(2):e1001964.
- 151. Yeboah DF. Evaluation of the effectiveness of Sulfadoxine-Pyrimethamine (Sp) as antimalarial prophylaxis in pregnant women in selected health facilities in Central Region: University of Cape Coast; 2011.
- Mathanga DP, Uthman OA, Chinkhumba J. Intermittent preventive treatment regimens for malaria in HIV-positive pregnant women. Cochrane Database of Systematic Reviews. 2011(10).
- 153. Kamga SLS, Ali IM, Ngangnang GR, Ulucesme MC, Keptcheu LT, Keming EM, et al. Uptake of intermittent preventive treatment of malaria in pregnancy and risk factors for maternal anaemia and low birthweight among HIV-negative mothers in Dschang, West region of Cameroon: a cross sectional study. Malar J. 2024;23(1):6.
- Cohee LM, Kalilani-Phiri L, Boudova S, Joshi S, Mukadam R, Seydel KB, et al. Submicroscopic malaria infection during pregnancy and the impact of intermittent preventive treatment. Malar J. 2014;13:1–9.
- 155. Berchie GO, Doe PF, Azu TD, Agyeiwaa J, Owusu G, Boso CM, et al. Uptake and effectiveness of intermittent preventive treatment with sulfadoxine-pyrimethamine during pregnancy in Africa: a scoping review. Diseases. 2024;12(9):203.
- Maina Mwaura F. Interplay Between Infant Nutrition and Malaria Susceptibility in West Africa: Socioeconomic, Environmental, and Cultural Perspectives.
- 157. Glenville M. Nutritional supplements in pregnancy: commercial push or evidence based? Curr Opin Obstet Gynecol. 2006;18(6):642–7.
- Cooper K, Adelekan D, Esimai A, Northrop-Clewes C, Thurnham D. Lack of influence of red palm oil on severity of malaria infection in preschool Nigerian children. Trans R Soc Trop Med Hyg. 2002;96(2):216–23.
- 159. Darling AM, Mugusi FM, Etheredge AJ, Gunaratna NS, Abioye Al, Aboud S, et al. Vitamin A and zinc supplementation among pregnant women to prevent placental malaria: a randomized, double-blind, placebo-controlled trial in Tanzania. Am J Trop Med Hyg. 2017;96(4):826.
- Olofin IO, Spiegelman D, Aboud S, Duggan C, Danaei G, Fawzi WW. Supplementation with multivitamins and vitamin A and incidence of malaria among HIV-infected Tanzanian women. JAIDS J Acquired Immune Deficiency Syndromes. 2014;67:S173–8.
- Titaley CR, Dibley MJ, Roberts CL, Agho K. Combined iron/folic acid supplements and malaria prophylaxis reduce neonatal mortality in 19 sub-Saharan African countries. Am J Clin Nutr. 2010;92(1):235–43.
- 162. Gore-Langton GR, Cano J, Simpson H, Tatem A, Tejedor-Garavito N, Wigley A, et al. Global estimates of pregnancies at risk of *Plasmodium falciparum* and *Plasmodium vivax* infection in 2020 and changes in risk patterns since 2000. PLOS Glob Public Health. 2022;2(11):e0001061.
- Dellicour S, Tatem AJ, Guerra CA, Snow RW, Kuile FOT. Quantifying the number of pregnancies at risk of Malaria in 2007: a demographic study. PLoS Med. 2010;7(1):e1000221.
- Dellicour S, Tatem AJ, Guerra CA, Snow RW, Kuile FOT. Quantifying the number of pregnancies at risk of Malaria in 2007: a demographic study. PLoS Med. 2007;7(1):e1000221.
- 165. Dombrowski JG, Acford-Palmer H, Campos M, Separovic EPM, Epiphanio S, Clark TG, et al. Genetic diversity of *Plasmodium vivax* isolates from pregnant women in the Western Brazilian Amazon: a prospective cohort study. Lancet Regional Health - Americas. 2023;18:100407.
- 166. Arango EM, Samuel R, Agudelo OM, Carmona-Fonseca J, Maestre A, Yanow SK. Genotype comparison of *Plasmodium vivax* and *Plasmodium falciparum* clones from pregnant and non-pregnant populations in North-west Colombia. Malar J. 2012;11:392.
- Singh N, Shukla MM, Sharma VP. Epidemiology of malaria in pregnancy in central India. Bull World Health Organ. 1999;77(7):567–72.
- Prabhat DP, Waghmare TP, Vaideeswar P. Complicated Malaria in Pregnancy. Maternal Mortality-Lessons Learnt from Autopsy: Springer; 2022. p. 113–7.
- Talwar A, Fein AM, Ahluwalia G. Pulmonary and critical care aspects of severe malaria. Lung Biol Health Dis. 2006;211:255.
- Tiiba JDI, Ahmadu PU, Naamawu A, Fuseini M, Raymond A, Osei-Amoah E, et al. Thrombocytopenia a predictor of malaria: how far? J Parasitic Dis. 2023;47(1):1–11.
- 171. Lacerda MV, Mourão MP, Alexandre MA, Siqueira AM, Magalhães BM, Martinez-Espinosa FE, et al. Understanding the clinical spectrum of

- complicated Plasmodium vivax malaria: a systematic review on the contributions of the Brazilian literature. Malar J. 2012;11:1–18.
- Murphy SC, Breman JG. Gaps in the childhood malaria burden in Africa: cerebral malaria, neurological sequelae, anemia, respiratory distress, hypoglycemia, and complications of pregnancy. Intolerable Burd Malaria. 2001;64(1):57–67.
- 173. Ohiagu FO, Chikezie PC, Ahaneku CC, Chikezie CM, Law-Obi FC. Pathophysiology of severe malaria infection. Asian J Health Sci. 2021;7(2):ID22-ID.
- 174. Chen H. Pathogenesis and clinical features of Malaria. Malaria control and elimination in china: a successful guide from bench to bedside: Springer; 2023. p. 71–85.
- Cardona-Arias JA, Carmona-Fonseca J. Frequency of placental malaria and its associated factors in northwestern Colombia, pooled analysis 2009–2020. PLoS ONE. 2022;17(5):e0268949.
- Malhotra A, Allison BJ, Castillo-Melendez M, Jenkin G, Polglase GR, Miller SL. Neonatal morbidities of fetal growth restriction: pathophysiology and impact. Front Endocrinol. 2019;10:55.
- Miller SL, Huppi PS, Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J Physiol. 2016;594(4):807–23.
- 178. Cardona-Arias JA, Higuita-Gutiérrez LF, Carmona-Fonseca J. Clinical and parasitological profiles of gestational, placental and congenital Malaria in Northwestern Colombia. Trop Med Infect Diss. 2023;8:292.
- 179. Ahmed R, Singh N, Kuile FOT, Bharti PK, Singh PP, Desai M, et al. Placental infections with histologically confirmed *Plasmodium falciparum* are associated with adverse birth outcomes in India: a cross-sectional study. Malaria J. 2014;13:232.
- Reddy V, Weiss DJ, Rozier J, Kuile FOT, Dellicou S. Global estimates of the number of pregnancies at risk of malaria from 2007 to 2020: a demographic study. Lancet Glob Health. 2023;11:e40-7.
- Zambare KK, Thalkari AB, Tour NS. A review on pathophysiology of malaria: a overview of etiology, life cycle of malarial parasite, clinical signs, diagnosis and complications. Asian J Res Pharmaceut Sci. 2019;9(3):226–30.
- 182. Rogerson SJ, Pollina E, Getachew A, Tadesse E, Lema VM, Molyneux ME. Placental monocyte infiltrates in response to Plasmodium falciparum malaria infection and their association with adverse pregnancy outcomes. Am J Trop Med Hyg. 2003;68(1):115–9.
- Umbers AJ, Aitken EH, Rogerson SJ. Malaria in pregnancy: small babies, big problem. Trends Parasitol. 2011;27(4):168–75.
- Macgregor JD, Avery JG. Malaria transmission and fetal growth. BMJ. 1974;3:433–6.
- 185. Brabin B, Ginny M, Alpers M, Brabin L, Eggelte T, Van der Kaay H. Failure of chloroquine prophylaxis for falciparum malaria in pregnant women in Madang, Papua New Guinea. Ann Trop Med Parasitol. 1990;84(1):1–9.
- 186. Rijken MJ, Papageorghiou AT, Thiptharakun S, Kiricharoen S, Dwell SLM, Wiladphaingern J, et al. Ultrasound evidence of early fetal growth restriction after maternal Malaria infection. PLoS ONE. 2012;7(2):e31411.
- Warrell DA. Clinical features of malaria. Essential Malariology, 4Ed: CRC Press; 2017. p. 191–205.
- Schantz-Dunn J, Nour NM. Malaria and pregnancy: a global health perspective. Rev Obstet Gynecol. 2009;2(3):186.
- Maharani CR, Yeni CM, Ayu DM. Prevalence of pregnant women with malaria in Aceh, symptoms and fetomaternal outcome. Bali Med J. 2021;10(2):534–9.
- Smereck J. Malaria in pregnancy: update on emergency management. J Emerg Med. 2011;40(4):393–6.
- Cardona-Arias JA, Higuita Gutiérrez LF, Carmona-Fonseca J. Diagnostic accuracy of a thick blood smear compared to qPCR for malaria associated with pregnancy in Colombia. Trop Med Infect Dis. 2023;8(2):119.
- Owalla TJ, Hergott DE, Seilie AM, Staubus W, Chavtur C, Chang M, et al. Rethinking detection of pre-existing and intervening Plasmodium infections in malaria clinical trials. Front Immunol. 2022;13:1003452.
- Das JK, Lakhani S, Rahman AR, Siddiqui F, Padhani ZA, Rashid Z, et al. Malaria in pregnancy: Meta-analyses of prevalence and associated complications. Epidemiol Infect. 2024;152: e39.
- Ades V. Diagnosis and Treatment of Malaria in Pregnancy. Around the Globe for Women's Health: A Practical Guide for the Health Care Provider: Springer; 2013. p. 55–67.

- Chico RM, Chandramohan D. Intermittent preventive treatment of malaria in pregnancy: at the crossroads of public health policy. Tropical Med Int Health. 2011;16(7):774–85.
- 196. Manyando C, Kayentao K, D'Alessandro U, Okafor HU, Juma E, Hamed K. A systematic review of the safety and efficacy of artemether-lume-fantrine against uncomplicated Plasmodium falciparum malaria during pregnancy. Malar J. 2012;11:1–13.
- Ballard S-B, Salinger A, Arguin PM, Desai M, Tan KR. Updated CDC recommendations for using artemether-lumefantrine for the treatment of uncomplicated Malaria in pregnant women in the United States. Morb Mortal Wkly Rep. 2018;67:14.
- Watson J, Taylor WRJ, Bancone G, Chu CS, Jittamala P, White NJ. Implications of current therapeutic restrictions for primaquine and tafenoquine in the radical cure of vivax malaria. PLoS Negl Trop Dis. 2018;12(4):e0006440.
- Virginia DM, Shegokar R, Pathak Y. Malaria–current Treatment Options. Malarial Drug Delivery Systems: Advances in Treatment of Infectious Diseases: Springer; 2023. p. 71–89.
- Laochan N, Zaloumis SG, Imwong M, Lek-Uthai U, Brockman A, Sriprawat K, et al. Intervals to *Plasmodium falciparum* recurrence after anti-malarial treatment in pregnancy: a longitudinal prospective cohort. Malar J. 2015;14:221.
- Laochan N, Zaloumis SG, Imwong M, Lek-Uthai U, Brockman A, Sriprawat K, et al. Intervals to Plasmodium falciparum recurrence after anti-malarial treatment in pregnancy: a longitudinal prospective cohort. Malar J. 2015;14:1–9.
- 202. Patson NP. Multivariate analysis of drug safety in clinical trials with application to antimalarials in pregnancy in Malawi: Faculty of Health Sciences, University of Witwatersrand; 2022.
- 203. Eisele TP, Larsen DA, Anglewicz PA, Keating J, Yukich J, Bennett A, et al. Malaria prevention in pregnancy, birthweight, and neonatal mortality: a meta-analysis of 32 national cross-sectional datasets in Africa. Lancet Infect Dis. 2012;12(12):942–9.
- 204. van Eijk AM, Hill J, Alegana VA, Kirui V, Gething PW, ter Kuile FO, et al. Coverage of malaria protection in pregnant women in sub-Saharan Africa: a synthesis and analysis of national survey data. Lancet Infect Dis. 2011;11(3):190–207.
- 205. Lawn JE, Blencowe H, Oza S, You D, Lee AC, Waiswa P, et al. Every Newborn: progress, priorities, and potential beyond survival. The lancet. 2014;384(9938):189–205.
- Ameyaw EK. Uptake of intermittent preventive treatment of malaria in pregnancy using sulfadoxine-pyrimethamine (IPTp-SP) in Uganda: a national survey. Malar J. 2022;21(1):285.
- 207. Organization WH. Community deployment of intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine: a field guide: World Health Organization; 2024.
- 208. Kayiba NK, Yobi DM, Tchakounang VRK, Mvumbi DM, Kabututu PZ, Devleesschauwer B, et al. Evaluation of the usefulness of intermittent preventive treatment of malaria in pregnancy with sulfadoxinepyrimethamine in a context with increased resistance of Plasmodium falciparum in Kingasani Hospital, Kinshasa in the Democratic Republic of Congo. Infect Genet Evol. 2021;94:105009.
- Ragonnet R, Trauer J, McBryde E, Houben R, Denholm J, Handel A, et al. Is IPT more effective in high-burden settings? Modelling the effect of tuberculosis incidence on IPT impact. Int J Tuberc Lung Dis. 2017;21(1):60–6.
- Eisenberg S-L, Krieger AE. A comprehensive approach to optimizing malaria prevention in pregnant women: evaluating the efficacy, cost-effectiveness, and resistance of IPTp-SP and IPTp-DP. Glob Health Action. 2023;16(1):2231257.
- 211. Manore CA, Teboh-Ewungkem MI, Prosper O, Peace A, Gurski K, Feng Z. Intermittent Preventive Treatment (IPT): its role in averting disease-induced mortality in children and in promoting the spread of antimalarial drug resistance. Bull Math Biol. 2019;81:193–234.
- 212. Apinjoh TO, Ntui VN, Chi HF, Moyeh MN, Toussi CT, Mayaba JM, et al. Intermittent preventive treatment with Sulphadoxine-Pyrimethamine (IPTp-SP) is associated with protection against sub-microscopic P. falciparum infection in pregnant women during the low transmission dry season in southwestern Cameroon: a Semi-longitudinal study. Plos one. 2022;17(9):e0275370.

- 213. Gutman JR, Khairallah C, Stepniewska K, Tagbor H, Madanitsa M, Cairns M, et al. Intermittent screening and treatment with artemisinincombination therapy versus intermittent preventive treatment with sulphadoxine-pyrimethamine for malaria in pregnancy: a systematic review and individual participant data meta-analysis of randomised clinical trials. EClinicalMedicine. 2021;41:101160.
- 214. Erkkola M, Karppinen M, Järvinen A, Knip M, Virtanen S. Folate, vitamin D, and iron intakes are low among pregnant Finnish women. Eur J Clin Nutr. 1998;52(10):742–8.
- 215. Kakuru A, Staedke SG, Dorsey G, Rogerson S, Chandramohan D. Impact of Plasmodium falciparum malaria and intermittent preventive treatment of malaria in pregnancy on the risk of malaria in infants: a systematic review. Malar J. 2019;18:1–13.
- Rogerson SJ, Unger HW. Prevention and control of malaria in pregnancy–new threats, new opportunities? Expert Rev Anti Infect Ther. 2017;15(4):361–75.
- Cot M, Deloron P. Malaria prevention strategies: pregnancy-associated malaria (PAM). Br Med Bull. 2003;67(1):137–48.
- 218. Mumtaz H, Nadeem A, Bilal W, Ansar F, Saleem S, Khan QA, et al. Acceptance, availability, and feasibility of RTS, S/AS01 malaria vaccine: a review. Immun Inflam Dis. 2023;11(6):e899.
- 219. Ogieuhi IJ, Ajekiigbe VO, Kolo-Manma K, Akingbola A, Odeniyi TA, Soyemi TS, et al. A narrative review of the RTS S AS01 malaria vaccine and its implementation in Africa to reduce the global malaria burden. Discover Public Health. 2024;21(1):1–13.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.