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The kriging-based estimation of the different types of atmospheric particulate matter (PM) 
pollutions defined in the air quality regulation raises some operational problems because the 
(co)kriging equations are obtained by minimizing a linear combination of the estimation variances 
subject to unbiasedness constraints. As a consequence, the estimation process can result in total 
PM10 concentrations that are less than the PM2.5 concentrations which would be physically 
impossible. In a previous publication, it was shown that a convenient external drift modeling

can reduce the number of spatial locations where the inequality constraint is not satisfied, 
without completely solving the problem. In this work, the formulation of the cokriging system is 
modified, inspired by previous works focusing on positive kriging. The introduction of additional 
constraints on the cokriging weights are presented, leading to a unique and optimal solution to 
the problem of cokriging under inequality constraints between two variables. Some computational 
and algorithmic details are introduced. An evaluation of the penalized cokriging is provided by 
using the European PM monitoring sites dataset: some maps and performance scores are given to 
assess the relevance of our iterative optimization scheme.

1. Introduction

In air quality, the geostatistical estimation is commonly used [9,19,20,29,22] to produce maps of ambient air regulatory pollutants 
[15], including PM10 and PM2.5, the particles whose diameter are respectively smaller than 10 μg m−3 and 2.5 μg m−3. If the PM10
mapping is a topic already well documented [8,4], the interest for PM2.5 is growing [38,11,33] for public health reasons.

Measurements of PM2.5 having started later than PM10 measurements, their monitoring network is less developed, which can 
affect the final mapping. In the French PREV’AIR system, see e.g. [32], the analyzed maps of ozone and PM10 are built by kriging 
the observations [25], including simulations of the CTM CHIMERE model [24] as external drift. Applying such a technique to PM2.5
does not take into account the inequality between the concentrations of PM2.5 and PM10, and can therefore lead to PM2.5 estimations 
greater than PM10. Ad-hoc corrections were already considered, see e.g. [32] to estimate PM2.5 as the corresponding PM10 times 
the ratio PM2.5/PM10 simulated by CHIMERE. However, this method is not satisfactory given the uncertainties in the model-based 
simulations, in particular during air pollution episode. For the joint estimation of both pollutants, cokriging is the most common 
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solution used with a linear coregionalization model [37]. Different solutions were already implemented: [34] proposed a Bayesian 
version of the linear model of coregionalization applied to air quality data (CO, NO, NO2). Multivariate non-stationarity processes 
were also addressed by Bayesian formulations, see e.g. [7], with spatial variations of the coefficients in the covariance model [18].

Beauchamp et al. [3] also developed a cokriging model for mapping PM10 and PM2.5, in order to improve the precision of PM 
mapping. In this work, the local means of both variables are related by an additive model, but the latter does not ensure to satisfy the 
physical relationship existing between the two after their joint estimation. Indeed, the PM2.5 concentration is by definition less than 
PM10. At most, the additive model of Beauchamp et al. [3] ensures the drift, a local regression of the observations on the Chemistry 
Transport Model (CTM) outputs [24], to be physically consistent thanks to the appropriate unbiasedness conditions. Thus, when 
the correlation between the model and the two observational datasets is good enough, the final estimation is very likely physically 
consistent. This is no longer the case if the drift poorly approaches the data. Anyway, this cokriging model with additive external 
drift has demonstrated its ability to better reproduce the PM concentration levels for mapping. It significantly reduces the number of 
cases in which PM2.5 estimations are greater than PM10 (from 5 to 0.5%). However, even if the operational solution to deal with the 
inequality constraint is satisfactory, the mathematical problem associated is not entirely solved.

The way of dealing with inequalities in kriging has already been addressed, but mostly when the only information available is 
greater or less than a given value [16,23]. For the estimation itself, Michalak [26] proposed a Gibbs sampler-based approach for 
inequality-constrained geostatistical interpolation, supported by a review on the existing works about this topic: non-negativity of the 
weights [14], Lagrange multipliers based approaches [27] or Monte-Carlo methodologies [1], etc. Additional equality and inequality 
constraints may also be used to solve kriging problems, such as negative weights in ordinary and simple kriging [36] or multiple 
indicator kriging [35].

In this work, a new algorithmic approach is presented to ensure PM2.5 estimation be less than PM10, by introducing additional 
inequality constraints on the cokriging weights, writing the related optimization problem and solving it. The approach relies on 
Karush-Kuhn-Tucker conditions, inspired by the work of [2] on positive kriging. Additional constraints are formulated on the cok-

riging weights. When not met, the constraints result in rewriting the cokriging system. It yields an iterative procedure which is used 
until all the constraints are satisfied to ensure the consistency between both PM2.5 and PM10 estimation.

2. Methods

In Beauchamp et al. [3], the PM description is made through the simple additive model (1):

𝑍(𝐱) = 𝑌 (𝐱) +𝑊 (𝐱) (1)

with 𝑌 (𝐱) ≤𝑍(𝐱) ∀𝐱.

Here, the joint estimation between 𝑍(𝐱), the PM10 concentration and 𝑌 (𝐱), the PM2.5 concentration, is investigated. Such a 
geostatistical estimation is known as cokriging [10].

The two components of the sum are supposed to be non-stationary, but can be explained by the use of deterministic covariates 
𝑓 𝑖(𝐱) and 𝑔𝑗 (𝐱), see Eq. (2):

𝑌 (𝐱) =𝑚𝑌 (𝐱) +𝑅(𝐱)

= 𝑎0 +
𝑙∑
𝑖

𝑎𝑖𝑓
𝑖(𝐱) +𝑅(𝐱)

𝑊 (𝐱) =𝑚𝑊 (𝐱) + 𝑇 (𝐱)

= 𝑏0 +
𝑝∑
𝑗

𝑎𝑗𝑔
𝑗 (𝐱) + 𝑇 (𝐱) (2)

𝑓 𝑖, 𝑖 = 1, ⋯ , 𝑙 and 𝑔𝑗 , 𝑗 = 1, ⋯ , 𝑝 are the covariates respectively used in the computation of the local means 𝑚𝑌 (𝐱) and 𝑚𝑊 (𝐱). 𝑙 and 
𝑝 are the number of covariates for the regression of 𝑌 on the 𝑓 𝑖 and of 𝑊 on the 𝑔𝑗 . Last, 𝑅 and 𝑇 are residuals assumed to be 
second-order stationary random functions with zero mean. This framework can be used for any similar modeling, and even simplified 
if not using any covariates.

Let denote 𝑌 CK(𝐱0) and 𝑍CK(𝐱0) the cokriging-based estimation of PM2.5 and PM10 at location 𝐱0. For sake of simplicity, 𝑌 and 𝑍
respectively refer to variables with index 1 and 2 throughout the paper. We aim at producing a joint estimation such that 𝑌 CK(𝐱0)
is less than 𝑍CK(𝐱0). The additive relationship between 𝑍 and 𝑌 implies that direct and cross covariances are linked through the 
following set of equations:

⎧⎪⎪⎪⎨⎪⎪⎪

𝐶𝑍 (𝐡) = 𝐶𝑅(𝐡)
𝐶𝑍,𝑌 (𝐡) = 𝐶𝑅(𝐡) +𝐶𝑅,𝑇 (𝐡)
𝐶𝑌 ,𝑍 (𝐡) = 𝐶𝑅(𝐡) +𝐶𝑇 ,𝑅(𝐡)
𝐶𝑌 (𝐡) = 𝐶𝑅(𝐡) +𝐶𝑅,𝑇 (𝐡)
2

⎩ +𝐶𝑅,𝑇 (−𝐡) +𝐶𝑇 (𝐡)
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The same conditions can also be written using variograms:

⎧⎪⎪⎨⎪⎪⎩

𝛾𝑍 (𝐱,𝐱 + 𝐡) = 𝐶𝑅(0) −𝐶𝑅(𝐡)
𝛾𝑌 ,𝑍 (𝐱,𝐱 + 𝐡) = 𝛾𝑅(𝐡) + 𝛾𝑅,𝑇 (𝐡)
𝛾𝑌 (𝐱,𝐱 + 𝐡) = 𝛾𝑅(𝐡) + 𝛾𝑇 (𝐡)

+2𝛾𝑅,𝑇 (𝐡)

𝐶(.) denotes a covariance and 𝛾(.) a variogram, see e.g. Cressie and Wikl [13]. In Beauchamp et al. [3], it is described why the 
use of variograms instead of covariances is preferable and well suited to the data and their related hypothesis.

𝑍CK(𝐱0) is obtained by solving the cokriging system (CK), see Eq. (3) and Sect. 2.5 in [3]:

𝑍CK(𝐱0) =
𝑀∑
𝛽=1

𝜈′
𝛽
𝑍(𝐱𝛽 ) +

𝑁∑
𝛼=1

𝜆′
𝛼
𝑌 (𝐱𝛼) (3)

where 𝛼 = 1, ⋯ , 𝑁 and 𝛽 = 1, ⋯ , 𝑀 are the indices for the observations 𝑌 (𝐱𝛼) and 𝑍(𝐱𝛽 ). 𝜈′𝛽 = 𝜈′(𝐱𝛽 ) and 𝜆′
𝛼
= 𝜆′(𝐱𝛼) are the cokriging 

weights of the observations 𝑍(𝐱𝛽 ) and 𝑌 (𝐱𝛼). Modifying a bit the cokriging system notations of Beauchamp et al. [3] to ease the link 
with this work, see Eq. (4), the cokriging system of 𝑍CK(𝐱0) becomes:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐊22 𝐊21 1 𝐠𝑗2 0 𝐟 𝑖2
𝐊12 𝐊11 0 0 1 𝐟 𝑖1
1 0 0 0 0 0
𝐠𝑗2 0 0 0 0 0
0 1 0 0 0 0
𝐟 𝑖2 𝐟 𝑖1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

𝝂′

𝝀′

𝜇0
𝝁𝒋

𝜐0
𝝊𝒊

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐊20
𝐊120
1
𝑔
𝑗

0
0
𝑓 𝑖
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4)

where:

𝐊11 = {𝐶𝑌 (𝐱𝛼 − 𝐱𝛼′ )}.

𝐊22 = {𝐶𝑍 (𝐱𝛽 − 𝐱𝛽′ )}.

𝐊12 = {𝐶𝑌 ,𝑍 (𝐱𝛼 − 𝐱𝛽 )}.

𝐊20 = {𝐶𝑍 (𝐱𝛽 − 𝐱0)}.

𝐊120 = {𝐶𝑌 ,𝑍 (𝐱𝛼 − 𝐱0)}.

𝝂′ = (𝜈′
𝛽
) and 𝝀′ = (𝜆′

𝛼
) are the cokriging weights of the observations 𝑍(𝐱𝛽 ) and 𝑌 (𝐱𝛼). 𝐠

𝑗

2 denotes the vector of the j𝑡ℎ covariate 𝑔𝑗 at 
locations 𝐱𝛽 {𝑔𝑗 (𝐱𝛽 )}. 𝐟 𝑖2 denotes the vector of the i𝑡ℎ covariate 𝑓 𝑖 at locations 𝐱𝛽 {𝑓 𝑖(𝐱𝛽 )}. 𝐟 𝑖1 denotes the vector of the i𝑡ℎ covariate 
𝑓 𝑖 at locations 𝐱𝛼 {𝑓 𝑖(𝐱𝛼)}. 𝑔𝑗0 and 𝑓 𝑖

0 respectively denote the j𝑡ℎ and i𝑡ℎ covariates 𝑔𝑗 and 𝑓 𝑖 at the target location 𝐱0. Last, 𝜇0, 𝝁𝒋 , 𝜐0, 
𝝊𝒊 are the Lagrange multipliers for the unbiasedness conditions, see Eq. (11a) to Eq. (11d) in Beauchamp et al. [3].

For sake of generality, this system is given with covariances but can be easily written with variograms, as this tool was used in 
Beauchamp et al. [3] and again in this study. As denoted by Isaaks and Srivastava [21], this type of cokriging estimation may lead 
to negative values and the effect of the secondary variable on the estimation is weak depending on the spatial sampling of the two 
variables, but it is not relevant here because there is generally more PM10 data available than PM2.5 and the deterministic covariate 
almost ensures the positivity of the estimation, see again Beauchamp et al. [3].

In a more convenient synthetic notations:

𝐊𝐏+𝐀𝐌 =𝐊𝟎

𝐀′𝐏 = 𝐅𝟎 (5)

where:

𝐊 =
[
𝐊𝟏𝟏 𝐊𝟏𝟐
𝐊𝟐𝟏 𝐊𝟐𝟐

]
, 𝐀 =

[
1 𝐠𝑗2 0 𝐟 𝑖2
0 0 1 𝐟 𝑖1

]
,

𝐏 =

[
𝜈′
𝛽

𝜆′
𝛼

]
, 𝐌 =

⎡⎢⎢⎢⎢⎣
𝝁0
𝝁𝑗

𝝊0
𝝊𝑖

⎤⎥⎥⎥⎥⎦
𝐊𝟎 =
[
𝐊20
𝐊120

]
, 𝐅𝟎 =

⎡⎢⎢⎢
1
𝑔
𝑗

0
0

⎤⎥⎥⎥

3

⎢⎣𝑓 𝑖
0
⎥⎦
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Let suppose now that 𝑍CK(𝐱0) from Eq. (5) is already computed. The estimation 𝑌 CK(𝐱0) writes:

𝑌 CK(𝐱0) =
𝑁∑
𝛼=1

𝜆𝛼𝑌 (𝐱𝛼) +
𝑀∑
𝛽=1

𝜈𝛽𝑍(𝐱𝛽 )

where the weights 𝜆𝛼 of 𝑌 (𝐱𝛼) and the weights 𝜈𝛽 of 𝑍(𝐱𝛽 ) are found by solving a cokriging system similar to (4), wherein the order 
of the variables is simply modified accordingly in matrix 𝐊 and vectors 𝐏, 𝐌 and 𝐊𝟎. The unbiasedness conditions also modify the 
contents of matrix 𝐀:

𝐀 =
[
1 0 0 𝐟 𝑖1
0 𝐠𝑗2 1 𝐟 𝑖2

]
, 𝐅𝟎 =

⎡⎢⎢⎢⎢⎣
1
0
0
𝑓 𝑖
0

⎤⎥⎥⎥⎥⎦
2.1. Additional constraints on the weights

𝑌 CK(𝐱0) has to be less than the prior estimation 𝑍CK(𝐱0) of the first variable, i.e.:

𝑌 CK(𝐱0) ≤𝑍CK(𝐱0)

≤

𝑀∑
𝛽=1

𝜈′
𝛽
𝑍(𝐱𝛽 ) +

𝑁∑
𝛼=1

𝜆′
𝛼
𝑌 (𝐱𝛼) (6)

Let precise that cutting the estimation of 𝑌 CK as the minimum between (𝑌 CK, 𝑍CK) is not a good solution because even if it can 
lead to satisfying results, both in terms of mapping and obviously being consistent with the physical constraints, it does not enable 
to compute the corresponding cokriging standard deviation.

Replacing the cokriging of 𝑍 by its mathematical expression given in Eq. (3) leads to:

𝑁∑
𝛼=1

𝜆𝛼𝑌 (𝐱𝛼) ≤
𝑁∑
𝛼=1

𝜆′
𝛼
𝑌 (𝐱𝛼) +

𝑀∑
𝛽=1

(𝜈′
𝛽
− 𝜈𝛽 )𝑍(𝐱𝛽 )

Revisiting this inequality, we make the choice of evenly decomposing 
𝑀∑
𝛽=1

(𝜈′
𝛽
− 𝜈𝛽 )𝑍(𝐱𝛽 ) =

𝑁∑
𝛼=1

𝜆′
𝛼

as the sum of 𝑁 terms where:

𝜆′
𝛼
=

[
𝑀∑
𝛽=1

(𝜈′
𝛽
− 𝜈𝛽 )𝑍(𝐱𝛽 )

]
𝑙(𝐱𝛼)
𝑌 (𝐱𝛼)

, 𝛼 = 1,⋯ ,𝑁

with 
𝑁∑
𝛼=1

𝑙(𝐱𝛼) = 1 and 𝑌 (𝐱𝛼) > 0 ∀𝛼. In this work, we consider a uniform repartition scheme, then 𝑙(𝐱𝛼) = 1∕𝑁 ∀𝐱𝛼 , but any other 

scheme could be experimented. The additional weights 𝜆′
𝛼

are then distributed over the 𝑁 weights 𝜆′
𝛼
:

𝑁∑
𝛼=1

𝜆𝛼𝑌 (𝐱𝛼) ≤
𝑁∑
𝛼=1

[
𝜆′
𝛼
+ 𝜆′

𝛼

]
𝑌 (𝐱𝛼)

Thus, at 𝜈𝛽 fixed, the condition (7):

𝜆𝛼 ≤ 𝜆′
𝛼
+ 𝜆′

𝛼
∀𝛼 (7)

is sufficient to ensure the estimation 𝑌 CK(𝐱0) to be less than 𝑍CK(𝐱0).

Because of both unbiasedness cokriging conditions 
𝑁∑
𝛼=1

𝜆𝛼 = 1 and 
𝑁∑
𝛼=1

𝜆′
𝛼
= 0, we have:

𝑁∑
𝛼=1

𝜆′
𝛼
≥ 1 + 𝜆0 with 𝜆0 ≥ 0. (8)

From the expression of 𝜆′
𝛼

and inequality (8), we can use a similar framework to split and distribute a given quantity over the 
weights 𝜈′

𝛽
, we have:

𝑀∑
𝛽=1

𝜈𝛽𝑍(𝐱𝛽 ) ≤
𝑀∑
𝛽=1

[
𝜈′
𝛽
− �̃�′

𝛽

]
𝑍(𝐱𝛽 ) (9)
4

with:
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�̃�′
𝛽
=

𝑘(𝐱𝛽 )(1 + 𝜆0)

𝑍(𝐱𝛽 )
∑𝑁

𝛼=1 𝑙(𝐱𝛼)∕𝑌 (𝐱𝛼)
,

and 
𝑀∑
𝛽=1

𝑘(𝐱𝛽 ) = 1. Again, if a uniform scheme distribution is used over the weights 𝜈′
𝛽
, then 𝑘(𝐱𝛽 ) = 1∕𝑀 ∀𝐱𝛽 .

A sufficient condition to satisfy inequality (9) is:

𝜈𝛽 ≤ 𝜈′
𝛽
− �̃�′

𝛽
∀𝐱𝛽 (10)

And because of condition (10) and both unbiasedness conditions 
𝑀∑
𝛽=1

𝜈𝛽 = 0 and 
𝑀∑
𝛽=1

𝜈′
𝛽
= 1:

𝑀∑
𝛽=1

�̃�′
𝛽
≤ 1 − 𝜈0 with 𝜈0 ≥ 0 (11)

Thus, for a given pair (𝜆0, 𝜈0) satisfying conditions (8) and (11), the set of weights 𝜆𝛼 and 𝜈𝛽 compliant with inequality (6) have 
the following property:

1 + 𝜆0∑
𝛼 𝑙(𝐱𝛼)∕𝑌 (𝐱𝛼)

≤
1 − 𝜈0∑

𝛽 𝑘(𝐱𝛽 )∕𝑍(𝐱𝛽 )
(12)

Because the variables 𝑌 (𝐱) and 𝑍(𝐱) are always positive, it is in most cases possible to find a subset of the observational data 
{𝑌 (𝐱𝛼), 𝑍(𝐱𝛽 )} satisfying condition (12).

Regarding the other unbiasedness condition, Eqs. (13a), (13b), (13c), (13d) appearing in the two cokriging estimations, i.e.:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
𝛼

𝜆𝛼𝑓
𝑖(𝐱𝛼) +

∑
𝛽

𝜈𝛽𝑓
𝑖(𝐱𝛽 ) = 𝑓 𝑖(𝐱0) (a)∑

𝛼

𝜆′
𝛼
𝑓 𝑖(𝐱𝛼) +

∑
𝛽

𝜈′
𝛽
𝑓 𝑖(𝐱𝛽 ) = 𝑓 𝑖(𝐱0) (b)∑

𝛽

𝜈𝛽𝑔
𝑗 (𝐱𝛽 ) = 0 (c)∑

𝛽

𝜈′
𝛽
𝑔𝑗 (𝐱𝛽 ) = 𝑔𝑗 (𝐱0) (d)

(13)

In what follows, the notations 𝜆𝛼 , Eq. (14a), and 𝜈𝛽 , Eq. (14b), denote the penalized conditions (7) and (10):

𝜆𝛼 = 𝜆′
𝛼
+ 𝜆′𝛼 (14a)

𝜈𝛽 = 𝜈′
𝛽
− 𝜈′𝛽 (14b)

2.2. The optimization problem

Here, we present the optimization problem () derived from the formulation of cokriging with inequality constraints:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ω= (𝝀,𝝂)
= argmin Var

[
𝑌 CK(𝐱0) − 𝑌 (𝐱0)

]|ℎ𝑖(Ω) = 0, 𝑔𝑗 (Ω) ≤ 0

where ℎ𝑖(Ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
𝛼

𝜆𝛼 − 1 = 0∑
𝛽

𝜈𝛽 = 0∑
𝛼

𝜆𝛼𝑓
𝑖(𝐱𝛼) +

∑
𝛽

𝜈𝛽𝑓
𝑖(𝐱𝛽 ) = 𝑓 𝑖

0∑
𝛽

𝜈𝛽𝑔
𝑗 (𝐱𝛽 ) = 0

and 𝑔𝑗 (Ω) =

{
𝜆𝛼 − 𝜆𝛼 ≤ 0, 𝛼 = 1,⋯ ,𝑁

𝜈𝛽 − 𝜈𝛽 ≤ 0, 𝛽 = 1,⋯ ,𝑀

The Lagrangian of problem () writes:

[
CK

] 𝑙+𝑝+2∑

5

𝐿(Ω, 𝜇, 𝜏) = Var 𝑌 (𝐱0) − 𝑌 (𝐱0) +
𝑖=1

𝜅𝑖ℎ𝑖(Ω)
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+
2∑

𝑗=1
𝜂𝑗𝑔𝑗 (Ω)

= Var
[
𝑌 CK(𝐱0) − 𝑌 (𝐱0)

]
+ 2𝜇0

(∑
𝛼

𝜆𝛼 − 1

)

+ 2𝜐0
∑
𝛽

(
𝜈𝛽
)
+ 2𝜇𝑗

(∑
𝛽

𝜈𝛽𝑔
𝑗 (𝐱𝛽 )
)

+ 2𝜐𝑖

(∑
𝛼

𝜆𝛼𝑓
𝑖(𝐱𝛼) +

∑
𝛽

𝜈𝛽𝑓
𝑖(𝐱𝛽 ) − 𝑓 𝑖

0

)
+
∑
𝛼

𝜏𝛼(𝜆𝛼 − 𝜆𝛼) +
∑
𝛽

𝜔𝛽 (𝜈𝛽 − 𝜈𝛽 )

If there is a local minimum Ω∗ of Var
[
𝑌 (𝐱0) − 𝑌 CK(𝐱0)], it exists 𝜿 = (𝝁, 𝝊), 𝝁 ∈ℝ𝑙+1, 𝝊 ∈ℝ𝑝+1, and 𝜼 = (𝝉 , 𝝎), 𝝉 ∈ℝ𝑁 , and 𝝎 ∈ℝ𝑀

so that:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇Ω𝐿(Ω∗, 𝜇, 𝜏) =
⎡⎢⎢⎢⎣
𝜕𝐿

𝜕𝜆𝛼

𝜕𝐿

𝜕𝜈𝛽

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

∑
𝛼′

𝜆𝛼′𝐶
1
𝛼𝛼′ −𝐶1

𝛼𝑥
+
∑
𝛽

𝜈𝛽𝐶
12
𝛼𝛽

+ 𝜇0 + 𝜐𝑖𝑓
𝑖(𝐱𝛼) + 𝜏𝛼∑

𝛽′
𝜈𝛽′𝐶

2
𝛽𝛽′ −𝐶12

𝛽𝑥
+
∑
𝛼

𝜆𝛼𝐶
12
𝛼𝛽

+ 𝜐0 + 𝜇𝑗𝑔
𝑗 (𝐱𝛽 ) + 𝜐𝑖𝑓

𝑖(𝐱𝛽 ) +𝜔𝛽

⎤⎥⎥⎥⎥⎦
= 0

ℎ𝑖(Ω∗) = 0, i.e.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
𝛼

𝜆𝛼 − 1 = 0∑
𝛽

𝜈𝛽 = 0∑
𝛼

𝜆𝛼𝑓
𝑖(𝐱𝛼) +

∑
𝛽

𝜈𝛽𝑓
𝑖(𝐱𝛽 ) = 𝑓 𝑖

0∑
𝛽

𝜈𝛽𝑔
𝑗 (𝐱𝛽 ) = 0

𝜂𝑗𝑔𝑗 (Ω∗) = 0, i.e.

⎧⎪⎨⎪⎩
∀𝛼, 𝜏𝛼(𝜆𝛼 − 𝜆𝛼) = 0, i.e.

∑
𝛼

𝜏𝛼(𝜆𝛼 − 𝜆𝛼) = 0

∀𝛽, 𝜔𝛽 (𝜈𝛽 − 𝜈𝛽 ) = 0, i.e.
∑
𝛽

𝜔𝛽 (𝜈𝛽 − 𝜈𝛽 ) = 0

𝜏𝛼 ≥ 0, 𝛼 = 1,⋯ ,𝑁 and 𝜔𝛽 ≥ 0, 𝛽 = 1,⋯ ,𝑀

For sake of simplicity and generality, index 1 and 2 respectively denotes variable 𝑌 and 𝑍, and the notation 𝐶1
𝛼𝛼′

stands for 
𝐶1(||𝐱𝛼 − 𝐱𝛼′ ||) in what follows. The same applies for the other covariances.

These are the so-called Karush-Kuhn-Tucker (KKT) conditions, see e.g. Rothenberg [31], that can be written in a more readable 
matrix form as follows:[

𝐊 𝐀 𝐈 0
𝐀′ 0 0 𝐈

]⎡⎢⎢⎢⎢⎣
𝐏
𝐌
𝜏𝛼
𝜔𝛽

⎤⎥⎥⎥⎥⎦
=

[
𝐊𝟎
𝐅𝟎

]
(15a)

where notations 𝐊, 𝐀, 𝐏, 𝐌, 𝐊𝟎 and 𝐅𝟎 are taken from Eq. (5) and with side constraints:∑
𝛼

𝜏𝛼(𝜆𝛼 − 𝜆𝛼) = 0∑
𝛽

𝜔𝛽 (𝜈𝛽 − 𝜈𝛽 ) = 0
(15b)

𝜆𝛼 − 𝜆𝛼 ≤ 0

𝜈𝛽 − 𝜈𝛽 ≤ 0
and

𝜏𝛼 ≥0, 𝛼 = 1,⋯ ,𝑁

𝜔𝛽 ≥0, 𝛽 = 1,⋯ ,𝑀
(15c)

This estimation of 𝑌 (𝐱0) obtained by solving this KKT-based penalization, Eqs. (15b) and (15c), of the cokriging system (15a) is 
6

now denoted 𝑌 PCK(𝐱0).
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2.3. The complementary slackness conditions

Since the conditions (15c) require all of the 𝜏𝛼 and 𝜔𝛽 be zero or positive while all the terms (𝜆𝛼 − 𝜆𝛼) and (𝜈𝛽 − 𝜈𝛽 ) be zero or 
negative, the condition (15b) requires:

𝜏𝛼 = 0 or 𝜆𝛼 = 𝜆𝛼

and 𝜔𝛽 = 0 or 𝜈𝛽 = 𝜈𝛽

This is a particular case of complementary slackness condition, see e.g. Boyd and Vandenberghe [6], where the variables 𝜏𝛼 and 
𝜔𝛽 are respectively the complementary pairs, also called Lagrangian multipliers or dual variables, corresponding to the constraints 
𝜆𝛼 ≤ 𝜆𝛼 and 𝜈𝛽 ≤ 𝜈𝛽 . Specifically, 

∑
𝛼

𝜏𝛼(𝜆𝛼 − 𝜆𝛼) = 0 indicates that, at the optimal solution 𝜆𝛼 and without loss of generality, either 𝜏𝛼

is zero or 𝜆𝛼 = 𝜆𝛼 , i.e. the inequality constraint is binding. The second constraint 
∑
𝛽

𝜔𝛽 (𝜈𝛽 − 𝜈𝛽 ) = 0 can be interpreted in a similar 

way.

In what follows, the positive kriging approach of Barnes and Johnson [2] is adapted to address our problem: for a given solution 
(not necessarily optimal), the cokriging weights satisfying condition (15c) are denoted as the basic weights 𝜆𝛼 and 𝜈𝛽 :

𝛼 = {𝛼,𝜆𝛼 < 𝜆𝛼, 𝜏𝛼 = 0}

𝛽 = {𝛽, 𝜈𝛽 < 𝜈𝛽 , 𝜔𝛽 = 0} (16)

while the weights equal to their authorized upper-boundaries are identified as the non-basic weights:

𝛼 = {𝛼,𝜆𝛼 = 𝜆𝛼, 𝜏𝛼 ≥ 0}

𝛽 = {𝛽, 𝜈𝛽 = 𝜈𝛽 , 𝜔𝛽 ≥ 0} (17)

Along this line, the set of 𝜏𝛼 and 𝜔𝛽 respectively complementary with the “basic” 𝜆𝛼 and 𝜈𝛽 will be called the “basic” 𝜏𝛼 and 𝜔𝛽 . 
The same idea applies for the definition of the non-basic 𝜏𝛼 and 𝜔𝛽 .

The penalized cokriging system for the estimation 𝑌 PCK(𝐱0) can be rearranged and partitioned by ordering rows and columns 
according to the basic and non-basic components of the solution:

𝝀 =
[
𝝀b

𝝀n

]
, 𝝂 =

[
𝝂b

𝝂n

]
, 𝝉 =

[
𝝉b

𝝉n

]
, 𝝎 =

[
𝝎b

𝝎n

]
where 𝝀b denotes the set of basic weights 𝜆𝛼, 𝛼 ∈𝛼 and 𝝀n, 𝛼 ∈𝛼 the set of non-basic weights 𝜆𝛼 . The same type of notations are 
used for 𝜈𝛽 , 𝜏𝛼 and 𝜔𝛽 .

Reordering rows and columns with the basic and non-basic nomenclature, Eqs. (16) and (17), gives:

⎡⎢⎢⎢⎢⎢⎣

𝐊bb
11 𝐊bn

11 𝐊bb
12 𝐊bn

12

𝐊nb
11 𝐊nn

11 𝐊nb
12 𝐊nn

12

𝐊bb
21 𝐊bn

21 𝐊bb
22 𝐊bn

22

𝐊nb
21 𝐊nn

21 𝐊nb
22 𝐊nn

22

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

𝝀b

𝝀n

𝝂b

𝝂n

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

1 0 0 f𝑖1b

1 0 0 f𝑖1n

0 g
𝑗

2b
1 f𝑖2b

0 g
𝑗

2n
1 f𝑖2n

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

𝜇0

𝝁𝑗

𝜐0

𝝊𝑖

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

𝟏bb
11 0bn

11 0bb
12 0bn

12

0nb
11 𝟏nn

11 0nb
12 0nn

12

0bb
21 0bn

21 𝟏bb
22 0bn

22

0nb
21 0nn

21 0nb
22 𝟏nn

22

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝝉b

𝝉n

𝝎b

𝝎n

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

𝐊b
10

𝐊n
10

𝐊b
120

𝐊n
120

⎤⎥⎥⎥⎥⎥⎦
(18a)

⎡⎢⎢⎢⎢⎣
1 1 0 0
0 0 g

𝑗

2b
g
𝑗

2n

0 0 1 1
f𝑖1b

f𝑖1n f𝑖2b
f𝑖2n

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝝀b

𝝀n

𝝂b

𝝂n

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
1
0
0
𝑓 𝑖
0

⎤⎥⎥⎥⎥⎦
(18b)

[
𝝉b 𝝉n 𝝎b 𝝎n

] ⎡⎢⎢⎢⎢
𝝀b − 𝝀b

𝝀n − 𝝀n

𝝂b − 𝝂b

⎤⎥⎥⎥⎥ = 0 (18c)
7

⎣𝝂n − 𝝂n ⎦
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𝜆𝛼 − 𝜆𝛼 ≤ 0

𝜈𝛽 − 𝜈𝛽 ≤ 0
and

𝜏∗
𝛼
≥0, 𝛼 = 1,⋯ ,𝑁

𝜔∗
𝛽
≥0, 𝛽 = 1,⋯ ,𝑀

(18d)

𝐊bb
𝑖𝑗

= {𝐶𝑖𝑗 (𝐱𝛼 − 𝐱′
𝛼
)}, 𝛼 ∈𝛼, 𝛼′ ∈𝛼 .

𝐊bn
𝑖𝑗

= {𝐶𝑖𝑗 (𝐱𝛼 − 𝐱′
𝛼
)}, 𝛼 ∈𝛼, 𝛼′ ∈𝛼 .

𝐊nb
𝑖𝑗

= {𝐶𝑖𝑗 (𝐱𝛼 − 𝐱′
𝛼
)}, 𝛼 ∈𝛼, 𝛼′ ∈𝛼 .

𝐊nn
𝑖𝑗

= {𝐶𝑖𝑗 (𝐱𝛼 − 𝐱′
𝛼
)}, 𝛼 ∈𝛼, 𝛼′∈𝛼 .

𝐊b
10

= {𝐶1(𝐱𝛼 − 𝐱0)}, 𝛼 ∈𝛼 .

𝐊n
10

= {𝐶1(𝐱𝛼 − 𝐱0)}, 𝛼 ∈𝛼 .

𝐊b
120

= {𝐶12(𝐱𝛽 − 𝐱0)}, 𝛽 ∈𝛽 .

𝐊n
120

= {𝐶12(𝐱𝛽 − 𝐱0)}, 𝛽 ∈𝛽 .

g
𝑗

2b
= {𝑔𝑗 (𝐱𝛽 )}, 𝛽 ∈𝛽 , g𝑗2n

= {𝑔𝑗 (𝐱𝛽 )}, 𝛽 ∈𝛽 .

f𝑖1b
= {𝑓 𝑖(𝐱𝛼)}, 𝛼 ∈𝛼 , f𝑖1n = {𝑓 𝑖(𝐱𝛼)}, 𝛼 ∈𝛼 .

f𝑖2b
= {𝑓 𝑖(𝐱𝛽 )}, 𝛽 ∈𝛽 , f𝑖2n = {𝑓 𝑖(𝐱𝛽 )}, 𝛽 ∈𝛽 .

𝑓 𝑖
0 = 𝑓 𝑖(𝐱0) is the ith covariate 𝑓 𝑖 at the target location 𝐱0.

Because the covariance function is assumed to be symmetric, see again Beauchamp et al. [3], 𝐊bb
21 , 𝐊bn

21 , 𝐊nb
21 and 𝐊nn

21 are respec-

tively the transposes of the matrices 𝐊bb
12 , 𝐊bn

12 , 𝐊nb
12 and 𝐊nn

12 .

𝟏bb
11

and 𝟎bb
11

are the identity and zero matrices with same size than 𝐊bb
11 . The same applies for all the 16 possible combinations of 

covariance matrices between basic and non-basic weights of 𝑌 and 𝑍.

Expanding the system (18a), (18b), (18c), (18d) and because, by definition, the non-basic 𝜆𝛼 and 𝜈𝛽 respectively equals 𝜆𝛼 and 𝜈𝛽
and the basic 𝜏𝛼 and 𝜔𝛽 equals 0:

𝐊bb
11𝝀b +𝐊bb

12𝝂b + 𝜇0 + 𝝊𝑖f
𝑖

1b

=𝐊b
10 −𝐊bn

11𝝀b −𝐊bn
12𝝂b (19a)

𝐊nb
11𝝀b +𝐊nb

12𝝂b + 𝜇0 + 𝝊𝑖f
𝑖
1n + 𝟏nn

11 𝝉n

=𝐊n
10 −𝐊nn

11𝝀b −𝐊nn
12 𝝂b (19b)

𝐊bb
21𝝀b +𝐊bb

22𝝂b + 𝜐0 + 𝝁𝑗g
𝑗

2b
+ 𝝊𝑖f

𝑖

2b

=𝐊b
20 −𝐊bn

21𝝀b −𝐊bn
22𝝂b (19c)

𝐊nb
21𝝀b +𝐊nb

22𝝂b + 𝜐0 + 𝝁𝑗g
𝑗

2n
+ 𝝊𝑖f

𝑖
2n + 𝟏nn

22𝝎n

=𝐊n
20 −𝐊nn

21𝝀b −𝐊nn
22 𝝂b (19d)

𝟏b𝝀b =1 − 𝟏n𝝀n (19e)

g
𝑗

2b
𝝀b =− g

𝑗

2n
𝝂n (19f)

𝟏b𝝂b =− 𝟏n𝝂n (19g)

f𝑖1b
𝝀b + f

𝑗

2b
𝝂b =𝑓 𝑖

0 − f𝑖1n𝝀n − f
𝑗

2n
𝝂n (19h)

𝜆𝛼 − 𝜆𝛼 ≤ 0

𝜈𝛽 − 𝜈𝛽 ≤ 0
and

𝜏∗
𝛼
≥0, 𝛼 = 1,⋯ ,𝑁

𝜔∗
𝛽
≥0, 𝛽 = 1,⋯ ,𝑀

(19i)

The condition (18c) is implicitly satisfied at optimality by the definitions of the basic and non-basic 𝝀, 𝝂, 𝝉 and 𝝎.

Rewriting conditions (19a), (19c), (19e), (19f), (19g), (19h) in a convenient matrix form (non-basic conditions (19b) and (19d)

are not embedded in the linear system) leads to:

⎡⎢⎢⎢⎢⎢⎢

𝐊bb
11 𝐊bb

12 1 0 0 f𝑖1b

𝐊bb
21 𝐊bb

22 0 g
𝑗

2b
1 f𝑖2b

1 0 0 0 0 0
0 g

𝑗

2b
0 0 0 0

0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥

⎡⎢⎢⎢⎢⎢⎢

𝝀b

𝝂b

𝜇0
𝝁𝑗

𝜐0

⎤⎥⎥⎥⎥⎥⎥

8

⎢⎣ f𝑖1b
f𝑖2b

0 0 0 0
⎥⎦ ⎣ 𝝊𝑖 ⎦
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐊b
10 −𝐊bn

11𝝀b −𝐊bn
12𝝂b

𝐊n
20 −𝐊bn

21𝝀b −𝐊bn
22𝝂b

1 − 𝟏n𝝀n

−g
𝑗

2n
𝝂n

−𝟏n𝝂n

𝑓 𝑖
0 − f𝑖1n𝝀n − f𝑖2n𝝂n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The final estimation of 𝑌 (𝐱0) will be:

𝑌 PCK(𝐱0) =
∑
𝛼∈𝛼

𝜆𝛼𝑌 (𝐱𝛼) +
∑
𝛼∈𝛼

𝜆𝛼𝑌 (𝐱𝛼)

+
∑
𝛽∈𝛽

𝜈𝛽𝑍(𝐱𝛽 ) +
∑
𝛽∈𝛽

𝜈𝛽𝑍(𝐱𝛽 ) (20)

with 𝛼 and 𝛽 the set of index for the basic weights of 𝑌 (𝐱𝛼) and 𝑍(𝐱𝛽 ), and 𝛼 and 𝛽 their complementary, see Eq. (16) and (17).

The related cokriging variance of 𝑌 PCK(𝐱0), Eq. (20), is (see the detailed calculations in Appendix A):

Var
[
𝑌 (𝐱0) − 𝑌 PCK(𝐱0)

]
= 𝜎2

PCK
(𝐱0)

= 𝐶1(𝟎) −
∑
𝛼∈𝛼

𝜆𝛼𝐶
1
𝛼0 −
∑
𝛼∈𝛼

𝜆𝛼
[
𝐶1
𝛼0 − 𝜏𝛼

]
−
∑
𝛽∈𝛽

𝜈𝛽𝐶
12
𝛽0 −
∑
𝛽∈𝛽

𝜈𝛽
[
𝐶12
𝛽0 −𝜔𝛽

]
− 𝜇0 −

∑
𝑖

𝜐𝑖𝑓
𝑖(𝐱0)

where {𝜏𝛼} and {𝜔𝛽} are directly given by Eq. (19b) and (19d).

2.4. Strategy

The basic and non-basic 𝜆𝛼 satisfy the condition (7), which requires to know the basic and non-basic 𝜈𝛽 first, satisfying the 
condition (10). The first step thus consists in solving the cokriging system looking at each step of the algorithm which 𝜈𝛽 is the most 
non-basic, see section 2.6 and following Eq. (21), until there is no non-basic 𝜈𝛽 anymore.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐊bb
11 𝐊bb

12 1 0 0 f𝑖1b

𝐊bb
21 𝐊bb

22 0 g
𝑗

2b
1 f𝑖2b

1 0 0 0 0 0
0 g

𝑗

2b
0 0 0 0

0 1 0 0 0 0
f𝑖1b

f𝑖2b
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

𝝀b

𝝂b

𝜇0
𝝁𝑗

𝜐0
𝝊𝑖

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐊b
10 −𝐊bn

12𝝂b

𝐊n
20 −𝐊bn

22𝝂b

1
−g

𝑗

2n
𝝂n

−𝟏n𝝂n

𝑓 𝑖
0 − f𝑖2n𝝂n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(21)

Then, the 𝜈𝛽 are considered as known and fixed. The cokriging system is after that modified to satisfy the condition (7). The 
terms related to the second variable 𝑍 are moved to the right-hand side of the linear system, so that the unbiasedness conditions and 
optimality are still satisfied:

⎡⎢⎢⎣
𝐊bb

11 1 f𝑖1b

1 0 0
f𝑖1b

0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
𝝀b

𝜇0
𝝊𝑖

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎣
𝐊b

10 −𝐊bn
11𝝀n −𝐊bn

12𝝂n −𝐊bb
12𝝂b

1 − 𝟏n𝝀n

𝑓 𝑖
0 − f𝑖1n𝝀n − f𝑖2n𝝂n − f𝑖2b

𝝂b

⎤⎥⎥⎥⎦ (22)

The algorithm may still reduce the set of basic weights too far and the estimation will just be a heuristic produced by the 
additional constraints made on the cokriging system (Fig. 1). Because two unbiasedness conditions are still appearing in the system 
(22), two basic weights are at least required.

2.5. Computational details

Given that 𝐀 is symmetric, 𝐀−1 exists and the inverse of the matrix 𝐀 extended by an additional row and column is:[
𝐀 𝐚
𝐚′ 𝛼

]−1
=
[
𝐂 𝐜
𝐜′ −𝛽

]

9

Thus, 𝐀−1 can be efficiently computed: 𝐀−1 =𝐂 + (1∕𝛽)𝐜𝐜′.
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Fig. 1. Algorigram of the penalized cokriging (PCK) algorithm.

When classifying a weight 𝜆𝛼 or 𝜈𝛽 as non-basic, the row and the column to remove are generally not the last ones. The tool to 
compute the inverse of a matrix 𝐀 after a permutation of the row and column 𝑗 to the far right and bottom of matrix 𝐀 is also given 
in [2]:

⎡⎢⎢⎢⎢⎢⎣

𝑎11 … 𝑎1𝑗 … 𝑎1𝑛
⋮ ⋮
𝑎𝑗1 … 𝑎𝑗𝑗 … 𝑎𝑗𝑛
⋮ ⋮
𝑎𝑛1 … 𝑎𝑛𝑗 … 𝑎𝑛𝑛

⎤⎥⎥⎥⎥⎥⎦

−1

=

⎡⎢⎢⎢⎢⎢⎣

𝑐11 … 𝑐1𝑗 … 𝑐1𝑛
⋮ ⋮
𝑐𝑗1 … 𝑐𝑗𝑗 … 𝑐𝑗𝑛
⋮ ⋮
𝑐𝑛1 … 𝑐𝑛𝑗 … 𝑐𝑛𝑛

⎤⎥⎥⎥⎥⎥⎦
⇒

⎡⎢⎢⎢⎢⎣
𝑎11 … 𝑎1𝑛 𝑎1𝑗
⋮ ⋮ ⋮
𝑎𝑛1 𝑎𝑛𝑛 𝑎𝑛𝑗

𝑎𝑗1 𝑎𝑗𝑛 𝑎𝑗𝑗

⎤⎥⎥⎥⎥⎦

−1

=

⎡⎢⎢⎢⎢⎣
𝑐11 … 𝑐1𝑛 𝑐1𝑗
⋮ ⋮ ⋮
𝑐𝑛1 𝑐𝑛𝑛 𝑐𝑛𝑗

𝑐𝑗1 𝑐𝑗𝑛 𝑐𝑗𝑗

⎤⎥⎥⎥⎥⎦
(23)

Instead of solving the new linear system at each iteration of the algorithm, it is possible with the previously defined tools to 
quickly update the inverse of the matrix and simply multiply it with the update of the second member. An even faster solution is to 
use some simple properties of linear algebra. Let us note 

[
𝐲 𝑧
]′

the solution of the linear system at step 𝐾 of the algorithm. Thus,[
𝐀 𝐚
𝐚′ 𝛼

]−1 [𝐊
𝑘

]
=
[
𝐂 𝐜
𝐜′ −𝛽

][
𝐊
𝑘

]
=
[
𝐲
𝑧

]
At step 𝐾 + 1, a new observation is defined as non-basic. The new basic weights are obtained by multiplying the matrix 𝐀−1 with 

the column vector 𝐊 − 𝐚𝑧, where 𝑧 is the non-basic weights vector related to 𝑧, i.e.:

𝐀−1(𝐊− 𝐚𝑧) =𝐂+ ( 1
𝛽
)𝐜𝐜′(𝐊− 𝑎𝑧)

=𝐂𝐊+ 1
𝛽
𝐜𝐜′𝐊−𝐂𝐚𝑧− 1

𝛽
𝐜𝐜′𝐚𝑧

𝑧 1
10

= 𝐲 +
𝛽
𝐜−𝐂𝐚𝑧−

𝛽
𝐜𝐜′𝐚𝑧
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Table 1

Number of background monitoring sites (PM10 and PM2.5).

Rural Suburban Urban

PM10 190 183 445

PM2.5 63 51 188

By noticing that:[
𝐂 𝐜
𝐜′ −𝛽

][
𝐀 𝐚
𝐚′ 𝛼

]−1
= 𝐈

implies that:[
𝐂 𝐜
] [

𝐚
𝛼

]
=0, i.e. 𝐂𝐚𝑧 = −𝛼𝐜𝑧[

𝐜′ −𝛽
] [

𝐚
𝛼

]
=1, i.e. 𝐝′𝐚𝑧 = (1 + 𝛽𝛼)𝑧

Finally,

𝐀−1(𝐊− 𝐚𝑧) = (𝐂+ ( 1
𝛽
)𝐜𝐜′)(𝐊− 𝑎𝑧)

= 𝐲 + 𝐜
(
𝑧− 𝑧(1 + 𝛼(𝛽 + 1))

𝛽

)
The computational cost is thus considerably reduced. Instead of multiplying a squared matrix of rank 𝑁() = #{𝛼 ∪𝛽}, i.e. the 

number of basic weights, with a column vector of size 𝑁(), that is 𝑁()2 multiplications and [𝑁() −1]2 additions, the numbers of 
operations required to update the basic weights is now only 𝑁()+3 additions and 𝑁()+3 multiplications.

2.6. Remarks

A) The computational time of the method presented here may remain quite restricting when using a unique neighborhood because 
cokriging matrices have a size much bigger than kriging matrices. Thus, despite the previous tools introduced in Sect. 2.5 to avoid 
the solving of the linear system at each step of the algorithm, the update of the second member, the matrix cokriging and the weights 
may still be too costly for an operational algorithm. A solution to speed up the estimation can be to consider a moving neighborhood 
and is fully detailed in Appendix B.

B) At each step of the algorithm, if there are still some weights that do not satisfy the constraints (7), the “most” non-basic weights 
𝜆𝛼 have to be removed from the set of basic weights. The most non-basic index 𝛼 can be defined by:

Eq. (24), as the weight that satisfies the least the constraints (i.e. that maximizes their differences):

argmax
𝛼

{𝜆𝛼 − 𝜆𝛼 > 0} (24)

or as Eq. (25), as the weight non satisfying the constraints (7) and maximizing the distance with the target location 𝐱0 where an 
estimation has to be made:

argmax
𝛼

{||𝐱𝛼 − 𝐱0||, 𝜆𝛼 − 𝜆𝛼 > 0} (25)

This second option allows the weights related to the observations in a close neighborhood of 𝐱0 to be truly estimated and not set to 
their non-basic related values when the algorithm successively reduces the set of basic weights. The same applies to find the most 
non-basic weights 𝜈𝛽 .

3. Results

In this Section, we proposed an application based on the dataset used in Beauchamp et al. [3]. The specific additive modeling

introduced in the above-mentioned work is used to compare both mappings and performance of the penalized cokriging (PCK) 
algorithm with the usual way of solving the cokriging system (CK). The background PM10 and background PM2.5 observational 
dataset is then identical to Beauchamp et al. [3], but extended from France to Europe, see Table 1, because the discontinuities 
discussed in Appendix B are more frequently seen when the domain is larger.

The CHIMERE PM10 and PM2.5 simulations are used as covariates for 𝑚𝑍 (𝐱) and 𝑚𝑌 (𝐱). The model covers the AWM European 
domain of simulation ([−15◦𝑊 , 35◦𝑊 ; 35◦𝑁, 70◦𝑁]), with a coarse resolution of 0.5◦. The maps are interpolated by cokriging on a 
regular grid with the same resolution used by CHIMERE for solving the chemical and physical processes.

The time period covers the first quarter of 2015 in which the PM concentrations were particularly high with a long episode of 
11

pollution occurring in March 2015.
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Regarding the practical implementation, an original C++ program has been developed to run the penalized cokriging version. 
The armadillo C++ library [12] is involved for the numerical analysis related to kriging. An interface with R software [28] is used 
inside the C++ program towards the R library RCppArmadillo [17] so that all the descriptive geostatistical part, e.g. the variogram 
computation and fitting, are done by RGeostats through this interface. The full code is available via Zenodo (10 .5281 /zenodo .
7756425). It is ready-to-use after installation of the appropriate libraries and specifications of the input data. The appropriate shape 
for the inputs is given as comment lines along the program.

3.1. Mapping

On the 10𝑡ℎ of March, Fig. 2 (a) to Fig. 2 (j) respectively show the daily observations, the corresponding scatterplot between the 
collocated PM2.5 and PM10 sites, the CHIMERE simulations for the two pollutants and the kriging maps with their related standard 
deviations for PM10 and PM2.5 with the classic algorithm (CK) and its penalized version (PCK). A zoomed-in window is given on 
Hungary, Serbia, Ukraine and Slovakia to focus on this area where 𝑌 CK(𝐱0) >𝑍CK(𝐱0). The estimations 𝑌 PCK(𝐱0) are successfully less 
than 𝑍CK(𝐱0). Looking at the daily-averaged observations in this area, that are only two in Hungary, the algorithm (PCK) seems 
to extend the representativeness areas of these two monitoring sites over the whole area where the inconsistency appears. PM10
observations are in the range 30-40 μg m−3 while PM2.5 cokriging estimates values are greater than 40 μg m−3 over the area. Adding 
the penalization enables to decrease PM2.5 estimations down to 30-40 μg m−3 which is not unrealistic when regarding how the values 
are spatially distributed. Though, an additional assessment of the true representativeness areas of these sites would be necessary 
to conclude. The same type of results is shown on the 16𝑡ℎ of March in Fig. 3 (a) to Fig. 3 (j), that is a typical example of far-off 
extrapolations in Northern Europe where physical inconsistencies can also occur. Once again, the algorithm (PCK) is successful and 
enables to decrease the prior values produced by the algorithm (CK) from 30 μg m−3 to less than 10 μg m−3 in its (PCK) version. It 
is to note that standard deviation of (PCK) errors were expected to be greater than those produced without the penalization but in 
most cases, as supported by the two examples given, they are in the same range of values for both algorithms.

More generally, the differences are often not significant from a mapping perspective. It was expected since the usual cokriging 
algorithm does not generate so many PM2.5 estimations that are greather than their corresponding PM10 estimations. On some days 
however, the differences between the cokriging and its penalized version are significant, especially because the algorithm (PCK) has 
the direct consequence to fix the (non-basic) weights of some observations in the estimation process. As a consequence, even if all 
the available observations are first used as input data, the progressive decrease of the set of basic weights leads to a map that seems 
to be built with a moving neighborhood. This one has very specific features strongly depending on the strategy used to define the 
most non-basic weight, see Sect. 2.6:

1) if it is defined as the farthest non-basic weight from the target point 𝐱0, see Eq. (25), then all the observations with basic 
weights are included in some distance-based neighborhood. If this distance is large enough, which is generally the case, the approach 
proposed in Appendix B makes vanish the discontinuities because the farthest observations, although with fixed (non-basic) weights, 
are noisy when estimating the PM10 concentration 𝑍(𝐱𝟎).

2) if it is defined as the most non-basic weight, i.e. the weight with the largest positive deviation to its related non-basic version, 
see Eq. (24), then the set of basic weights fail to comply with some distance-based neighborhood. As a consequence, the estimation 
process still may generate strong discontinuities. It would clearly be the best option to keep the largest set of basic weights, but for 
mapping concerns, the way of dealing with these discontinuities appears problematic and Appendix B will not really help.

3.2. Cross-validation

Fig. 5 shows the results of a (leave-one-out) cross-validation procedure carried out every day of the first quarter of 2015. Fig. 5a 
presents the scatterplot of the PM2.5 observations (X-axis) and the PM2.5 estimations (Y-axis) obtained by the cokriging algorithm (CK) 
of Beauchamp et al. [3] and its penalized version (PCK) detailed in Sect. 2. In the latter, the definition (25) of what should be the most 
non-basic weight is used. Over the period, only the observations 𝑌 (𝐱𝛼) with inconsistent cross-validation values 𝑌 CK(𝐱𝛼) > 𝑍CK(𝐱𝛼)
are displayed and used to compute the correlation and RMSE. Let precise that observations sites with inconsistent cross-validation 
values have a significant number of occurrences, see Fig. 4 focusing on the French domain and same evaluation period, with related 
inconsistencies on classic cokriging mapping (without additive model) also noticeable, see the background mapping on the above-

mentioned Figure.

In the case of consistent cokriging-based estimations, the scores of the two methods are similar.

1) correlation ∶
Cov
[
(𝑍(𝐱𝛼),𝑍CK(𝐱𝛼)

]
𝜎
[
𝑍(𝐱𝛼)

]
𝜎
[
𝑍CK(𝐱𝛼)

]
2) (RMSE) ∶

√√√√ 1
𝑛

𝑛∑
𝛼=1

[
𝑍(𝐱𝛼) −𝑍CK(𝐱𝛼)

]2
The preliminary findings from Sect. 3.1 are now confirmed by the validation procedure, which clearly shows that:

PCK CK CK
12

𝑌 (𝐱𝛼) ≤𝑍 (𝐱𝛼) ≤ 𝑌 (𝐱𝛼),

http://10.5281/zenodo.7756425
http://10.5281/zenodo.7756425
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Fig. 2. From top to bottom, PM10 and PM2.5 available observations and corresponding scatterplots, PM10 and PM2.5 CHIMERE outputs, PM10 cokriging and standard 
deviation as implemented in [3], the same for PM2.5 and last, the proposed PM2.5 penalized cokriging and standard deviation as proposed in this paper (2015, March 
13

10). A focus is provided on a small box region over Hungary, Serbia, Ukraine and Slovakia with inconsistent cokriging estimations.
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Fig. 3. From top to bottom, PM10 and PM2.5 available observations and corresponding scatterplots, PM10 and PM2.5 CHIMERE outputs, PM10 cokriging and standard 
deviation as implemented in [3], the same for PM2.5 and last, the proposed PM2.5 penalized cokriging and standard deviation as proposed in this paper (2015, March 
14

16). A focus is provided on a small box region o the western coastal area of Norway with inconsistent cokriging estimations.
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Fig. 4. Frequencies of PM2.5/PM10 ratio greater than 1 for both observation sites (cross-validation) and cokriging estimation maps.

Fig. 5. Cross-validation procedure over the first quarter of 2015.

meaning that the iterative algorithm is successful. Regarding the scores, if the correlation is a bit less with the new algorithm, its 
RMSE is better. As a consequence, not only the estimations satisfy the inequality constraint but they are also consistent with the 
observations.

From the cross-validation procedure described previously, we respectively store the values of #{𝛼} and #{𝛽}, the number of 
basic weights for the main and secondary variable. A high number of basic weights indicates that only a few number of weights are 
fixed in the iterative process so that the PM2.5 estimations satisfy the physical inequality. On the contrary, a low number of non-basic 
weights in the estimation leads to a simple heuristic. Fig. 5b displays the bivariate distribution of the basic weights. As we can see, 
only a few samples display low values for both #{𝛼} and #{𝛽}. Even when it is the case, and because we use definition (25)

for the most non-basic weights identification, the nearest observations are always used to compute the PM2.5 optimal interpolation, 
which explains why the estimations remain consistent. In terms of computation cost, let precise that because the number of modified 
weights are small, the penalized version cost is very close to the original cokriging algorithm. When the inequality constraint is not 
satisfied and the iterative penalized scheme is involved, less than 10 iterations were generally involved in our datasets (i.e. less than 
10 observational weights are non-basic) and no estimation location ended with a simple heuristic interpolation (when the number of 
iteration reaches the number of observations, thus excluding most of the available information). This specific cases happened when 
15

PM2.5 and PM10 observations are both close in terms of values and spatial locations.
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4. Conclusions

The problem of consistency in cokriging arises when dealing with quantities that involve inequality constraints. In a study 
by Beauchamp et al. [3], cokriging was employed to enhance the estimation of PM2.5 by incorporating PM10 observations using a 
specific additive modeling approach. The local means were derived by exploiting the physical relationship between the two variables. 
Although this cokriging approach led to improved estimations, it failed to ensure that the resulting estimations adhered to the 
inequality constraint. From a mathematical standpoint, it is possible to verify this by conducting conditional simulations at a target 
location 𝐱0. Such simulations reveal that the intersection of the PM2.5 simulated distribution with the PM10 simulated distribution 
is never empty. Thus, even when the average PM2.5 simulation is higher than the average PM10 simulation, the consistency of the 
estimation is preserved.

To address the issue of inconsistencies in PM2.5 concentrations, a new algorithm is proposed, in which additional constraints are 
introduced on the cokriging weights. They allow for successive iterations to solve the cokriging system in terms of basic component 
that satisfies these new constraints. The algorithm also includes several computational details that ensure a reasonable computational 
cost, making it practical for operational contexts.

Although the new estimator is performing well in most cases, there are still some limitations that need to be considered. One 
such limitation is the algorithm sensitivity to observation noise, as inaccuracies in the observed data can lead to significant errors 
in the final mapping. This can be especially problematic in areas with a high degree of spatial variability, where the data may be 
sparse or irregularly distributed. In such cases, the successive iterations in the penalization procedure may reduce the set of basic 
weights too far and thus build a simple heuristic that poorly estimates the true PM2.5 concentration. This can result in a less accurate 
final mapping and may require additional adjustments to improve the algorithm’s performance. Other limitations of the proposed 
algorithm include its reliance on assumptions about the underlying spatial structure of the data, as well as its potential limitations in 
handling non-Gaussian and non-stationary data, which could be crucial for communication and decision-making.

Finally, the use of our algorithm may apply to similar problems: it would remain identical and valid. First example would be 
the estimation of PM non-volatile fraction, see e.g. [5]. Only the penalization 𝝀 and 𝝂 introduced on the cokriging weights shall be 
adapted.
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Appendix A. Variance of the penalized cokriging estimator

The related cokriging variance of 𝑌 PCK(𝐱0) is:

Var
[
𝑌 (𝐱0) − 𝑌 PCK(𝐱0)

]
= 𝜎2

PCK
(𝐱0)

= 𝐶𝑌 (𝟎) +

⎛⎜⎜⎜⎜⎝
∑
𝛼∈𝛼

𝛼′∈𝛼

𝜆𝛼𝜆𝛼′𝐶
1
𝛼𝛼′ +

∑
𝛼∈𝛼

𝛼′∈𝛼

𝜆𝛼𝜆𝛼′𝐶
1
𝛼𝛼′

+
∑
𝛼∈

𝜆𝛼𝜆𝛼′𝐶
1
𝛼𝛼′ +

∑
𝜆𝛼𝜆𝛼′𝐶

1
𝛼𝛼′

⎞⎟⎟⎟
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𝛼

𝛼′∈𝛼

𝛼∈𝛼

𝛼′∈𝛼

⎟⎠
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+

⎛⎜⎜⎜⎜⎜⎝
∑
𝛽∈𝛽

𝛽′∈𝛽

𝜈𝛽𝜈𝛽′𝐶
2
𝛽𝛽′ +

∑
𝛽∈𝛽

𝛽′∈𝛽

𝜈𝛽𝜈𝛽′𝐶
2
𝛽𝛽′

+
∑
𝛽∈𝛽

𝛽′∈𝛽

𝜈𝛽𝜈𝛽′𝐶
2
𝛽𝛽′ +

∑
𝛽∈𝛽

𝛽′∈𝛽

𝜈𝛽𝜈𝛽′𝐶
2
𝛽𝛽′

⎞⎟⎟⎟⎟⎟⎠
− 2
⎛⎜⎜⎝
∑
𝛼∈𝛼

𝜆𝛼𝐶
1
𝛼0 +
∑
𝛼∈𝛼

𝜆𝛼𝐶
1
𝛼0

+
∑
𝛽∈𝛽

𝜈𝛽𝐶
12
𝛽0 +
∑
𝛽∈𝛽

𝜈𝛽𝐶
12
𝛽0

⎞⎟⎟⎠
+ 2

⎛⎜⎜⎜⎜⎝
∑
𝛼∈𝛼
𝛽∈𝛽

𝜆𝛼𝜈𝛽𝐶
12
𝛼𝛽

+
∑
𝛼∈𝛼
𝛽∈𝛽

𝜆𝛼𝜈𝛽𝐶
12
𝛼𝛽

+
∑
𝛼∈𝛼

𝛽∈𝛽

𝜆𝛼𝜈𝛽𝐶
12
𝛼𝛽

+
∑
𝛼∈𝛼

𝛽∈𝛽

𝜆𝛼𝜈𝛽𝐶
12
𝛼𝛽

⎞⎟⎟⎟⎟⎟⎠
By regrouping all the terms from Eq. (19a) to (19d), this kriging variance is:

𝜎2
PCK

(𝐱0)

= 𝐶𝑌 (𝟎)

−
∑
𝛼∈𝛼

𝜆𝛼𝐶
1
𝛼0 − (𝜇0 +

∑
𝑖

𝜐𝑖𝑓
𝑖(𝐱𝛼))

−
∑
𝛼∈𝛼

𝜆𝛼
[
𝐶1
𝛼0 − 𝜏𝛼

]
− (𝜇0 +

∑
𝑖

𝜐𝑖𝑓
𝑖(𝐱𝛼))

−
∑
𝛽∈𝛽

𝜈𝛽𝐶
12
𝛽0 − (𝜐0 +

∑
𝑖

𝜐𝑖𝑓
𝑖(𝐱𝛽 ) +

∑
𝑗

𝜇𝑗𝑔
𝑗 (𝐱𝛽 ))

−
∑
𝛽∈𝛽

𝜈𝛽
[
𝐶12
𝛽0 −𝜔𝛽

]
− (𝜐0 +

∑
𝑖

𝜐𝑖𝑓
𝑖(𝐱𝛽 )

+
∑
𝑗

𝜇𝑗𝑔
𝑗 (𝐱𝛽 ))

finally leading to:

𝜎2
PCK

(𝐱0) = 𝐶1(𝟎) −
∑
𝛼∈𝛼

𝜆𝛼𝐶
1
𝛼0 −
∑
𝛼∈𝛼

𝜆𝛼
[
𝐶1
𝛼0 − 𝜏𝛼

]
−
∑
𝛽∈𝛽

𝜈𝛽𝐶
12
𝛽0 −
∑
𝛽∈𝛽

𝜈𝛽
[
𝐶12
𝛽0 −𝜔𝛽

]
− 𝜇0 −

∑
𝑖

𝜐𝑖𝑓
𝑖(𝐱0)

Appendix B. Continuous cokriging for moving neighborhood

In the usual cokriging framework, a moving neighborhood is more costly than a unique neighborhood because the kriging matrix 
has to be inverted for each target location 𝐱0. In our penalized algorithm, because the system is updated at each step of the algorithm, 
the smaller this linear system is, the faster is the update. In addition, a moving neighborhood allows to refine at best the coefficients 
of the drift according to the local behavior of the covariates to the observations. Still, one issue of using a moving neighborhood is 
17

than it can create artificial discontinuities in the estimation when mapping the field on a (regular) grid.



Heliyon 9 (2023) e17413M. Beauchamp and B. Bessagnet

In Rivoirard and Romary [30], the discontinuities caused by the moving neighborhood are managed by considering the observa-

tions 𝑍(𝐱𝛽 ) spoiled by a noise 𝜀𝑍 (𝐱𝛽 ).
As a consequence, the kriging matrix is modified: to each term Cov

[
𝑍(𝐱𝛽 ), 𝑍(𝐱𝛽′ )

]
is added Cov

[
𝜀𝑍 (𝐱𝛽 ), 𝜀𝑍 (𝐱𝛽′ )

]
. The same applies for 

Cov
[
𝑌 (𝐱𝛼), 𝑌 (𝐱𝛼′ )

]
and the kriging fashion is easily transposed for multivariate datasets. In particular, the cokriging becomes:

𝑌 CK(𝐱0) =
∑
𝛼

𝜆𝛼{𝑌 (𝐱𝛼) + 𝜀𝑌 (𝐱𝛼)}

+
∑
𝛽

𝜈𝛽{𝑍(𝐱𝛽 ) + 𝜀𝑍 (𝐱𝛽 )}

When the initial covariance structure is non-continuous (with a nugget effect), 𝜀𝑍 (𝐱𝛽 ) and 𝜀𝑍 (𝐱𝛽′ ) are considered independent when 
𝛽 ≠ 𝛽′ and Cov

[
𝜀𝑍 (𝐱𝛽 ), 𝜀𝑍 (𝐱𝛽′ )

]
= 0. The same applies for 𝜀𝑌 . The variances Var

[
𝜀𝑍 (𝐱𝛼)

]
and Var

[
𝜀𝑌 (𝐱𝛽 )

]
of the noises 𝜀𝑍 and 𝜀𝑌 are 

chosen by the user: they increase according to the distance to 𝐱0 and are neglected or even set to 0 for the nearest data points:

Var
[
𝜀𝑍 (𝐱𝛼)

]
= 𝐶𝑍 (0)

( 𝐡𝛼0 − 𝑟

𝑅− 𝐡𝛼0

)2
Var
[
𝜀𝑌 (𝐱𝛽 )

]
= 𝐶𝑌 (0)

( 𝐡𝛽0 − 𝑟

𝑅− 𝐡𝛽0

)2
(B.1)

with 𝐡𝛼0 = ||𝐱𝛼 − 𝐱0||, 𝐡𝛽0 = ||𝐱𝛽 − 𝐱0||, 𝑅 the radius of the moving neighborhood and 𝑟 = 𝑝.𝑅, with 𝑝 < 1.

The lagrangian 𝐿 is now defined as:

𝐿(𝐱0) = Var
[
𝑌 (𝐱0) − 𝑌 CK(𝐱0)

]
+ 2𝜇0

(∑
𝛼

𝜆𝛼 − 1

)

+ 2𝜐0
∑
𝛽

𝜈𝛽 + 2𝜇𝑗

(∑
𝛼

𝜆𝛼𝑔
𝑗 (𝐱𝛼) − 𝑔

𝑗

0

)

+ 2𝜐𝑖

(∑
𝛽

𝜈𝛽𝑓
𝑖(𝐱𝛽 ) − 𝑓 𝑖

0

)
+
∑
𝛼

𝜆2
𝛼
𝑛𝛼 +
∑
𝛽

𝜈2
𝛽
𝑛𝛽

where the weights 𝜆𝛼 and 𝜈𝛽 are respectively penalized by the quantities 𝑛𝛼 =Var
[
𝜀𝑌 (𝐱𝛽 )

]
and 𝑛𝛽 =Var

[
𝜀𝑍 (𝐱𝛼)

]
.

Equating the partial derivatives 𝜕𝐿

𝜕𝜆(𝐱𝛼)
and 𝜕𝐿

𝜕𝜈(𝐱𝛽 )
to zero leads to:

𝜆𝛼𝑛𝛼 +
∑
𝛼′

𝜆𝛼′𝐶
𝑌
𝛼𝛼′ −𝐶𝑌

𝛼0 +
∑
𝛽

𝜈𝛽𝐶
12
𝛼𝛽

+ 𝜇0 + 𝜐𝑖𝑓
𝑖(𝐱𝛼) + 𝜇𝑗𝑔

𝑗 (𝐱𝛼) =0

and

𝜈𝛽𝑛𝛽 +
∑
𝛽′

𝜈𝛽′𝐶
2
𝛽𝛽′ −𝐶12

𝛽0 +
∑
𝛼

𝜆𝛼𝐶
12
𝛼𝛽

+ 𝜐0 + 𝜐𝑖𝑓
𝑖(𝐱𝛽 ) =0

and the cokriging matrix system is:

(𝐊+𝐍)𝐖+𝐀𝐌 =𝐊𝟎

𝐀′𝐖 =𝐅𝟎

where 𝐍 = 𝐈𝐧′ and 𝐧 =
[
𝐧𝛼
𝐧𝛽

]
𝑁+𝑀

.

Finally, the conditions (19a) to (19d) related to the estimator 𝑌 PCK(𝐱0) can thus be rewritten as follows, if the estimation is made 
with a moving neighborhood in which the discontinuities vanishes thanks to the noises 𝑛𝛼 and 𝑛𝛽 :

(𝐊bb
11 + 𝐧1b)𝝀b +𝐊bb

12𝝂b + 𝜇0 + 𝝁𝑗g
𝑗

b

=𝐊b
10 − (𝐊bn

11 + 𝐧1n)𝝀n −𝐊bn
12𝝂n

(𝐊nb
11 + 𝐧1n)𝝀b +𝐊nb

12𝝂b + 𝜇0 + 𝝁𝑗g
𝑗
n + 𝟏nn

11 𝝉n

=𝐊n
10 − (𝐊nn

11𝝀n + 𝐧1n) −𝐊nn
12 𝝂1n

𝐊bb
21𝝀b + (𝐊bb

22𝝂b + 𝐧2b) + 𝜐0 + 𝝊𝑖f
𝑗

b

18

=𝐊b
20 −𝐊bn

21𝝀n − (𝐊bn
22 + 𝐧2n)𝝂n
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Fig. B.6. Distance between the gricells 𝐱0 and the 20𝑡ℎ nearest neighbor.

𝐊nb
21𝝀b + (𝐊nb

22 + 𝐧2n)𝝂b + 𝜐0 + 𝝊𝑖f
𝑗
n + 𝟏nn

22𝝎n

=𝐊n
20 −𝐊nn

21𝝀n − (𝐊nn
22 + 𝐧2n)𝝂n

n1b is the vector of noises {𝑛(𝐱𝛼)}, 𝛼 ∈𝛼 .

n1n is the vector of noises {𝑛(𝐱𝛼)}, 𝛼 ∈𝛼 .

n2b is the vector of noises {𝑛(𝐱𝛽 )}, 𝛽 ∈𝛽 .

n2n is the vector of noises {𝑛(𝐱𝛽 )}, 𝛽 ∈𝛽 .

Let us note that in air quality kriging-based maps, the discontinuities mainly appear on very large domain of estimations, over 
Europe for instance, where the monitoring network is not homogeneously distributed: a lot of data are available in Western and 
Central Europe while the network is sparse elsewhere. Thus, to enable a local fitting of the drift, a number-based neighborhood 
𝛿𝛼0 = {𝛼, ||𝐱𝛼 − 𝐱0|| < ||𝐱𝑁 − 𝐱0||}, where 𝐱𝑁 denotes the N𝑡ℎ nearest neighbor of 𝐱0, is preferred to a distance-based neighborhood 
𝛿𝛼0 = {𝛼, ||𝐱𝛼 − 𝐱0|| ≤ 𝐷}; the latter including too many stations where the network is dense, and too few in the badly informed 
areas. In Rivoirard and Romary [30], the continuous kriging is distance-based driven. To overcome this problem, and because the 
estimations are done on regular grids, the distance 𝑅(𝐱0) between the target location 𝐱0 and the N𝑡ℎ nearest neighbor of 𝐱0 is computed 
for each gridcell. This distance spatially varies but in a continuous way since the grid is regular (see Fig. B.6). As a consequence, 
the distance-based neighborhood approach is kept but the radius used is no longer spatially constant: 𝑅(𝐱0) is substituted to 𝑅 in 
Eq. (B.1).
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