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Engineering a reporter cell line 
to mimic the high oligomannose 
presenting surface immunoglobulin 
of follicular lymphoma B cells
Butaek Lim, LeNaiya Kydd & Justyn Jaworski*

Subtypes of B cell non-Hodgkin’s lymphomas, including follicular lymphomas, have shown a unique 
high oligomannose presentation on their immunoglobulins that will interact with natural receptors of 
the innate immunity, reportedly causing stimulation and proliferation. From deep sequencing of the 
variable heavy and light chain sequences of follicular lymphoma involved tissue sections, we identified 
the consensus variable sequences possessing glycosylation sites at the complementarity determining 
region. Using this information, we developed a cell line, referred to here as BZ, which displays the 
consensus variable segments as part of a surface antibody (IgM) and confirmed its presentation of high 
oligomannose on the heavy chain both in vitro and in vivo. An mCherry expressing variant provided a 
reporter cell line displaying the high oligomannose surface biomarker while affording clear fluorescent 
signals for FACS screening as well as for fluorescent in vivo imaging of ectopic xenograft tumors. 
In developing this reporter cell line that displays the biomarker glycan of follicular lymphoma, we 
provide a tool that may be used for future screening and validation of receptive moieties for selectively 
binding high oligomannose for development of targeted diagnostics or therapeutics to such B cell 
malignancies that display this unique glycan.

B cell follicular lymphoma as well as subsets of other B cell lymphomas have been found to display a unique 
high oligomannose glycan on their membrane bound immunoglobulin (Ig)1–6. Recent works examining the Ig 
variable regions of a large cohort of follicular lymphoma (FL) patients has shown an interesting common trait 
of presentation of a glycosylation site sequence within the variable segment, typically at the complementarity 
determining region (CDR)4,7,8. This site has been previously reported in the variable heavy chain of B-cell recep-
tors of at least 90% of FL patients and at least 41% of Diffuse Large B-Cell Lymphoma (DLBCL) patients1,2,4,8,9, 
where such N-linked glycosylation sites of the CDR results in the unique display of a high oligomannose glycan. 
The displayed high oligomannose on the CDR may bind to receptors present on natural innate immune cells3,10. 
While N-glycosylation sites are known to be highly conserved within certain Ig heavy chain constant regions, 
the presence of N-glycosylation sites within the CDR are rare in healthy B-cells10. Endogenous oligomannose 
receptors, including DC-SIGN and DC-SIGNR, are presented by macrophage and dendritic cells within the 
germinal center, and these interactions with the oligomannosylated Ig of FL B-cells have been validated to result 
in B-cell receptor crosslinking for persistent activation of B cell proliferation11,12. The acquisition of this N-linked 
glycosylation motif is evident to be a required feature among certain B cell lymphomas. As somatic hypermuta-
tions of the antibody variable region persist in FL B cells producing a heterogeneous subclonal population, the 
conserved glycosylation sites at the CDR of follicular lymphoma B cells will remain; thus, glycosylation sites 
are retained in progression-associated subclones while glycosylation motif-negative subclones disappear from 
the overall tumor mass9,11,13. This conservation of the CDR glycosylation site during somatic hypermutation 
suggests it to be a critical factor that restricts dependence of FL on the surrounding tumor microenvironment9. 
It thus follows rationally why there continues to be great difficulty in generating a FL cell line or in vivo model 
given this dependence3.

While we now know that displayed oligomannose on the variable Ig domains can be bound by endogenous 
lectins of innate immune cells within lymphoid tissue, future efforts may look to identify mechanisms to block 
this B-cell receptor signaling required for FL B-cell survival. In looking to understand how this unique oligoman-
nose can be presented as a feature on the CDR of Ig, it is important to consider that in the context of healthy 
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mammalian systems these terminal mannose units of oligomannose are generally masked by other sugar moie-
ties capped onto the end and thus oligomannose typically only exists as precursors, or core/internal sequences 
of more mature glycans. This biosynthesis of N-linked glycans begins through the transfer of an oligosaccharide 
composed of Glc3Man9GlcNAc2 to a nascent polypeptide chain in the endoplasmic reticulum at canonical gly-
cosylation sites having the amino acid sequence (N-X-S/T). Reactions with glucosidases begin trimming the 
glucose terminal units while a series of mannosidases would follow to remove all but three mannose residues 
as the protein enters the early Golgi to follow with capping of terminal sugar residues such as fucose and sialic 
acid14,15. Natural recognition of high oligomannose at key checkpoint stages is indicative of improper folding 
whereby such oligomannosylated proteins would be targeted for degradation16. However, for an Ig of FL to dis-
play oligomannose without being targeted for degradation, it is believed that the commonly concave shape of 
the CDR17 may sterically block the glycan trimming enzymes as well as trafficking machinery from binding the 
oligomannose within the CDR pocket and in turn hinder the ability to degrade the high oligomannose displaying 
Ig. This distinct high oligomannosylation is consistently presented on the variable regions of the Ig in FL, while 
the constant domains possess properly processed glycosylation sites12,15. This feature provides a clear internal 
control that normal transit and processing through the Golgi is occurring but with an inability to process man-
nose trimming in the variable region due to some form of steric blocking as mentioned above. In order to provide 
a system for the display of the high oligomannose biomarker presented by the immunoglobulin of FL B cells, we 
have developed here a reporter cell-line which presents the variable domains from a FL B cell as a membrane 
bound surface antibody and validated its display of the high oligomannose glycan.

It has been reported that the availability of mouse models for examining FL are limited due to the difficulty 
to establish FL xenografts, as the local tumor microenvironment is required for their survival and immuno-
compromised mice lack the necessary supportive interaction or mature secondary lymphoid organs18. Because 
of the requirement of this supportive cellular framework, in vitro growth has also shown very limited survival 
and as such there are said to be no true follicular lymphoma B-cell lines18. Nonetheless, a number of reports 
have demonstrated FL-like cell lines, often with co-culture of helper cells, which can serve as important tools 
for studying different aspects of FL such as chromosomal features, apoptosis, and cytokine-mediated growth 
regulation19–24. While molecular genetic and immunophenotypic features had been examined in the aforemen-
tioned studies, there were no reports of the glycosylation status of the surface immunoglobulin presented in these 
cell lines. In the following work we do not try to provide a FL cell line but rather provide an engineered reporter 
cell line that produces a high oligomannosylated surface antibody as to mimic the glycan target presented by FL 
B cells. While existing cell lines, such as the TKO pre-B cell line, have proven a valuable tool in understanding 
B cell development and signaling25,26, we have avoided the use of existing B cell lines as the intent is to develop a 
reporter cell line for use in receptor screening process. Thus, we instead selected the HEK293T cell line to ensure 
that surface features that are common to B cells would not be presented within our oligomannosylated surface 
IgM displaying reporter cell line. While other orthogonal cell lines could have been selected, the HEK293T 
cell line is one of the most widely used for expression and characterization of recombinant glycoproteins and 
is capable of a high degree of glycosylation complexity making it an amenable platform for cell-based glycan 
display27. Here, we provide our approach to using deep sequencing of variable domains from FL tissue sections 
to identify and generate a genetic construct for expression of a membrane bound IgM that displays the canonical 
high oligomannose on the heavy chain CDR. Herein, two engineered cell lines were produced using a HEK293 
background and were found to stably express the oligomannoyslated antibody with one possessing an mCherry 
fusion in the cytoplasmic domain serving as a fluorescent reporter for the presence of the membrane-bound Ig. 
We anticipate providing these cell lines as tools for the research and development of receptive moieties for high 
oligomannose will help to yield new diagnostic or therapeutic technologies. The potential use of this reporter 
cell line for in vitro screening or in vivo imaging studies may serve as a starting point toward identifying relevant 
high oligomannose receptors that may eventually be advanced into clinically useful probes.

Results
Identifying established follicular lymphoma B cell antibody sequence possessing character-
istic CDR glycosylation site.  Aberrant glycosylation sites on the (CDR) of the Ig presented by follicu-
lar lymphoma B cells have been widely reported as characteristic of this subset of lymphoma. To produce an 
engineered cell line which displays an established FL-derived antibody sequence, we conducted next genera-
tion deep sequencing (NGS) of the variable heavy and light chains presented from a FL involved lymph node 
tissue section. From NGS results, we identified 9931 unique sequence pairs (5228 unique to sample 1 among 
216,053 paired-reads and 4797 unique to sample 2 among 155,596 paired-reads) of the variable domain ampli-
cons. Examination of the amplicons by IMGT/HighV-QUEST revealed 3225 recombination to be productive 
which were distributed as 1798 heavy chain V-D-J recombinations, 1420 lambda light chain V-J recombinations, 
and only 7 kappa light chain V-J recombinations. While in normal reactive lymphoid populations there is a 
mixture of kappa versus lambda light chains, our observed lambda light chain dominance within the popula-
tion was expected since light chain restrictions are a common feature of lymphomas28. Alignment and trans-
lation by IMGT/HighV-QUEST29–32 provided 260 unique variable heavy chain and 792 unique variable light 
chain domain among which 174 heavy chains and 1 light chain possessed the consensus N-X-S/T glycosylation 
sequence. As proline creates too much distance between the acceptor asparagine from that of the hydroxyl of 
serine or threonine for glycosylation machinery, N-linked glycosylation does not typically proceed when the X 
residue is a proline and as such those sequences possessing an N-P-S/T sequence were not considered glycosyla-
tion sequences in our analysis33. From Fig. 1, we can see the distribution of these glycosylation sequences were 
predominantly at CDR3 and to a lesser extent at CDR1 of the heavy chain. This agrees with recent reports of 
aberrant glycosylation sites found on the antibodies of follicular lymphoma B cells9.
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Multiple sequence alignment using MAFFT (multiple alignment using fast Fourier transform) was imple-
mented for the heavy chain and lambda light chain variable domains and the sequence pattern of the clones 
present in the follicular lymphoma B cells are presented in Supplementary Figure S7 as a sequence logo. The 
consensus heavy chain clonotype was found to be derived from the IGH V3–23 germline while that of the 
lambda light chains were derived from IGL V1–47. Importantly, an N-D-S glycosylation site at the heavy chain 
CDR3 was highly conserved, where reports have shown such aberrant glycosylation sites at the CDR to be 
characteristic of FL.

The dominant variable heavy chain and light chain found from deep sequencing of the single follicular 
lymphoma involved lymph node were thus identified. The heavy chain variable domain consensus sequence 
(E-V-Q-L-L-E-S-G-G-G-L-V-Q-P-G-G-S-L-R-L-S-C-A-A-S-G-F-T-F-N-T-F-S-M-N-W-V-R-Q-G-P-G-Q-G-
L-D-W-V-A-G-I-S-G-S-G-T-I-T-Y-Y-A-D-S-V-R-G-R-F-S-I-S-R-D-N-S-K-N-T-L-Y-L-E-M-K-S-L-R-V-E-D-T-
A-V-Y-Y-C-A-N-N-D-S-S-G-P-I-Y-F-E-S-W-G-Q-G-T-L-V-T-V-S-S) possessing the glycosylation site and the 
CDR3 and the lambda light chain variable domain consensus sequence (Q-S-V-L-T-Q-P-P-S-A-S-G-T-P-G-Q-
R-V-T-I-S-C-S-G-S-S-S-N-I-G-S-N-Y-V-Y-W-F-Q-Q-L-P-G-S-A-P-K-L-L-I-Y-R-D-S-Q-R-P-S-G-V-P-D-R-F-S-
G-S-K-S-G-T-S-A-S-L-A-I-S-G-L-R-S-E-D-E-A-D-Y-Y-C-A-A-W-D-D-S-L-S-G-R-V-F-G-T-G-T-Q-L–T-V-L) 
were found to be in agreement among the clonotypes having among the most abundant reads for the heavy and 
light chains variable domains. The above sequences were used to construct an antibody expression system to 
display the FL B cell derived variable domains on the membrane bound surface IgM for our engineered cell line.

Confirmation of engineered cell line stably expressing surface IgM derived from FL B cell.  After 
construction of the expression vectors for the IgM heavy chain possessing a transmembrane domain and for the 
Ig lambda light chain, the transfection of HEK293T cells followed by antibiotic selection. The use of antibiotics 
(blasticidin and zeocin) above the kill curve threshold for HEK293 were used for selection of clones facilitat-
ing the successful isolation of an engineered cell line (which we refer to as the BZ cell line) that provided stable 
expression of surface IgM. Confirmation of the heavy chain and light chain expression was confirmed by western 
blot as seen in Fig. 2.

The expected size of the IgM heavy chain possessing a transmembrane domain and the FL B cell derived 
variable domain consensus sequence was expected to have an unglycosylated molecular weight of ~ 66 kDa while 
the lambda light chain was expected to have an unglycosylated molecular weight of ~ 25 kDa. A band size for the 
heavy chain larger than 66 kDa was seen by immunoblotting indicating the IgM heavy chain was indeed glyco-
sylated. In contrast, immunoblotting revealed the expected size for an unglycosylated light chain. The anti-IgM 
and anti-lambda stained bands were observable only for the case of the engineered BZ cell lysate and not for the 
HEK lysate control. This shows that the HEK background did not previously possess any cross-reactive proteins, 
and further confirms the expression of the full length heavy chain and lambda light chain.

Examination for oligomannosylation of antibodies presented by the engineered BZ 
cells.  Here we examined if the glycosylation site on antibody presented by our BZ cell line would result in the 
display of aberrant high oligomannose as is seen on the antibodies of follicular lymphoma B cells. To do so, we 

Figure 1.   Frequency and location of glycosylation site sequences appearing in variable segments. Deep 
sequencing results of tissue sections from a follicular lymphoma involved lymph node were analyzed to reveal 
the region and frequency of total reads possessing an N-glycosylation site sequence N-X-S/T (where X is not 
Proline) suggesting that the B cells present in the section had preferential glycosylation of the CDR3 region.
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conducted a series of high mannose specific glycosidase assays followed by western blot staining for the heavy 
and light chains. As shown in Fig. 3, the assays using the BZ lysate revealed the appearance of different band 
shifts relative to the untreated BZ lysate. This shift corresponds to the cutting away of glycans by the distinct gly-
cosidases implemented in the assays. The specificity of the EndoH and Mannosidase enzymes in digesting only 
glycans terminating in high oligomannose allowed our verification by immunoblotting that high oligomannose 
was indeed presented by the heavy chain as observable by the band shifts. In contrast, the light chain revealed no 
band shift suggesting no high oligomannosylation. This was to be expected given our knowledge of the location 
of the glycosylation site at the CDR of the heavy chain. No such glycosylation site was present in the light chain 
of the engineered BZ cell line and this is in agreement with the immunoblotting results as either with or with-
out EndoH glycosidase treatment the light chain band remain at the expected molecular weight of 25 kDa. In 
contrast, a predicted decrease in the molecular weight of the heavy chain was observed based on the specificity 
of the glycosidase to which it was exposed. For example, the EndoH cleaves almost the entirety of high man-
nose glycan by cutting at the chitobiose core, thus showing a large decrease in the molecular weight of the IgM 
toward the expected unglycoyslated size of ~ 66 kDa. PNGase will cleave the entire glycan, and it recognizes and 

Figure 2.   Immunoblotting of the engineered BZ and HEK background cell lysates separated by SDS-PAGE. (A) 
Heavy chain anti-IgM staining and (B) light chain anti-lambda staining of the cell lysates from the engineered 
BZ cell line and the HEK background from which BZ was derived reveal expression of IgM heavy chain 
and lambda light chain for the BZ cell line but not observed for the HEK background. The light chain band 
appears at ~ 25 kDa which is the expected size for the unglycoyslated light chain, while the heavy chain appears 
larger than the unglycosylated molecular weight of ~ 66 kDa indicating that the heavy chain has indeed been 
glycosylated.

Figure 3.   Immunoblotting of glycosidase assay product. Cell lysates from engineered BZ cells were used 
for glycosidase assays using (A,D) EndoH, (B) PNGase F, or (C) Mannosidase and separated by SDS-PAGE. 
Immunoblotting of the transfers and staining with (A–C) anti-IgM heavy chain (primary) or (D) anti-lambda 
light chain (primary) revealed a shift in the size of the heavy chain resulting from cleavage of the glycan while 
the light chain size was unchanged. A smaller band shift for cleavage by Mannosidase relative to EndoH or 
PNGase F is expected based on (E) the location of the cleavage sites.
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cleaves between the innermost GlcNAc and asparagine residues of all N-linked glycoproteins and not only high 
mannose glycans. As such PNGase F treatment showed the IgM size to again decrease to ~ 66 kDa indicating 
the release of the N-linked glycan. In contrast, Mannosidase trims only the terminal mannose residues within 
high oligomannose and thus displayed a much smaller decrease in the molecular weight of the IgM as compared 
to the other glycosidases. The results confirmed that the engineered BZ cell line could display surface IgM with 
the high oligomannose glycosylation as is presented by follicular lymphoma B cells from which the variable 
segments had originated. Additional confirmation of the high oligomannosylation of our reporter cell line was 
carried out using a lectin-based binding assay (Supplementary Figure S8) in which DC-SIGN and DC-SIGNR 
labeled magnetic beads were found to provide enrichment for our reporter cell line in mixed cell samples. In 
addition, a negative control cell line was produced which possesses a mutated version of the IgM heavy chain 
that lacks the N-D-S glycosylation site of the CDR3 and may serve as a useful negative selection target for remov-
ing high oligomannose target-unrelated clones in future screening assays. As seen in Supplementary Figure S9, 
the IgM heavy chain of the negative control cell line has a decreased size owing to glycan loss at the CDR3 as 
compared to that displayed by the BZ cell line.

Developing murine tumors from engineered BZ cell line.  To examine if tumors developed from the 
engineered BZ cell line could be engrafted and still present the surface IgM, we generated ectopic murine tumors 
in NOD-SCID mice using the BZ cell line as compared to the HEK293 background. We confirmed the appear-
ance of tumors after 4–5 weeks with an approximate size of 9 mm. Tumors were excised and were subjected to 
either lysis for analysis by glycosidase assay and western blot or flash frozen in OCT for cryosectioning. From 
Fig. 4, we see that IHC staining revealed the positive presence of heavy and light chain for the engineered BZ 
tumor sections but was not seen for the control HEK tumor sections which confirms in vivo antibody expres-
sion by BZ derived tumors. Furthermore, glycosidase assays specific for high oligomannose conducted for tumor 
lysate samples confirmed high oligomannose display on the IgM heavy chain of BZ tumors but not HEK tumors 
(Supplementary Figure S1).

Examining BZ‑mCherry reporter cell line.  The reporter cell line BZ-mCherry (possessing a cytosolic 
fluorescent mCherry fusion to the IgM heavy chain) was examined for its potential to be used as a tool for some 
of the more common in vitro and in vivo targeting techniques of FACS and fluorescence in vivo imaging, respec-
tively. It is important to note that the fluorescent mCherry signal as a fusion of the IgM does not directly report 
oligomannose presence but rather reports the heavy chain expression. From Fig. 5, the BZ-mCherry cell line is 
seen to provide a bright red fluorescence that is a readily observable by fluorescence microscopy, and tumors 
generated from BZ-mCherry are clearly visible with fluorescence in vivo imaging systems. The reporter BZ-
mCherry cell line also holds the potential for being implemented in FACS studies as seen in Fig. 5C by the high 
mean fluorescence intensity in the red channel relative to the original BZ cell line. We also find when incubating 
the BZ, BZ-mCherry, and HEK cell lines with FITC-labeled anti-lambda light chain probe a clear increase in 
mean fluorescence intensity (MFI) was observable from FACS analysis (Fig. 5D) for the BZ-mCherry relative 

Figure 4.   Tumor engraftment and immunohistochemistry. (A) Palpable tumors formed at 4–5 weeks after 
subcutaneous injection of BZ cells into the flank of NOD-scid mice were (B) removed and (C,D) cryosectioned 
for immunohistochemistry. (E,F) HEK cell derived tumor were similarly grown, removed and section. Positive 
IHC staining of BZ tumor sections was observed with (C) anti-lambda light chain and (D) anti-IgM heavy chain 
at the location of the tumor but not stained in the adjacent muscle tissue. In contrast, HEK derived tumors 
exhibited a negative signal for (E) anti-lambda light chain and (F) anti-IgM heavy chain IHC staining.
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to the HEK control indicating the display of surface antibody, where this can similarly be seen (Supplementary 
Figure S2) for the BZ cell line. The ability for the reporter cell line to be readily distinguished from the non-
reporter BZ cell line and HEK293 background cells by the red fluorescence by FACS suggest it to have potential 
utility for screening studies. Moreover, the ability to distinguish the reporter BZ-mCherry cells within an in vivo 
context when conducting fluorescent in vivo imaging of ectopic murine BZ-mCherry tumors suggests that this 
engineered reporter cell line may prove useful owing to its bright red fluorescence and display of the oligoman-
nosylated antibody.

Discussion
Recent works have shown that glycosylation of the Ig of follicular lymphoma B cells results in presentation of 
oligomannose on the CDR that is a necessary characteristic for their survival, as this glycosylation facilitates 
continual stimulatory interactions via the endogenous lectins in the surrounding tumor microenvironment3,4. 
Because of this dependency, it has been historically difficult to examine isolated patient derived FL cells in vitro 
for any extended period of time or arrive at a realistic FL cell line18,19. Here we explored the development of a 
cell line that reports expression of a membrane-bound Ig derived from follicular lymphoma B cell where this Ig 
displays a characteristic high oligomannose glycan as presented by follicular lymphoma B cells. As no oligoman-
nose specific technologies have yet been able to target this biomarker, the intention of this work is to provide 
a possible tool for future development of suitable targeting moieties that could selectively bind the displayed 
oligomannose in order to facilitate targeted diagnostics or therapeutics that invoke disruption of the aforemen-
tioned lectin-oligomannose interactions. In this work, we first carried out deep sequencing of the Ig variable 
regions of FL involved lymph node sections, where we identified a conserved glycosylation site presented at 
the third complementarity determining region (CDR3) of the variable heavy chain. The consensus heavy chain 
possessed significant drift from the germline unlike other sequences found within the node indicating it had 
undergone significant somatic hypermutation. The sample was also found to be lambda light chain restricted 
with a clear predominance for a consensus lambda sequence. Using the consensus sequence from the follicular 
lymphoma B cell sample for the heavy and light chain variable segments, we genetically engineered a set of 
mammalian expression vectors incorporating the identified variable heavy and light chain sequences within a 

Figure 5.   FACS and fluorescence in vivo imaging. (A) Fluorescent microscopy of engineered BZ-mCherry 
cell line shows the clear red fluorescence of the reporter cell line (scale bar = 50um). (B) Ectopic murine 
BZ-mCherrry tumors are clearly visible by fluorescence in vivo imaging taken at Em = 620, Ex = 580, Bin = 4/4, 
Fnumber = f2, exposure = 0.5 s. (C) The potential use of the BZ-mCherry cell line for FACS based screening is 
also evident by the bright red fluorescence. (D) We also see a large shift in the mean fluorescent intensity for the 
BZ-mCherry cells compared to HEK when incubated with FITC-labeled anti-lambda probe.
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surface IgM and lambda IgL construct, respectively. Blasticidin and zeocin resistance within the heavy and light 
chain expression constructs allowed antibiotic selection of the transfected HEK cells and after continual growth 
we isolated cell lines with stably integrated heavy and light chain constructs. The cell line was found to be very 
stable with no loss of expression or display of the IgM heavy chain or lambda light chain. Examination of the 
glycosylation presented by the cell line was carried out using a series of glycosidase assays. Specifically, the use of 
Endoglycosidase H (Endo H) which cleaves the internal GlcNAc core of high mannose structures and the use of 
Mannosidase which trims only external mannose residues was implemented in order to confirm the presence of 
high oligomannose terminating glycans presented by the antibody on the engineered BZ cell line. We identified 
no oligomannose display by the lambda light chain, which was expected given the lack of a glycosylation site at 
the variable lambda CDRs. In contrast, we did find oligomannose to be displayed on the IgM which is expected 
given the glycosylation sequences found at the CDRs of the FL B cell derived variable heavy chain. From our 
glycosidase assays, we confirmed the presence of high oligomannose. The Endo H enzyme selectively cleaves high 
mannose terminating glycans, and immunoblotting revealed a large decrease in the size of the IgM after Endo 
H treatment. A slightly larger size shift was revealed for the use of PNGase F which is not high mannose specific 
but will more broadly cleave almost all N linked glycans of the high mannose type, hybrid type, and complex 
type. The fully deglycosylated heavy chain after PNGase F was seen to be in direct agreement with the expected 
unglycosylated molecular weight. The display of high oligomannose by the heavy chain was further validated by 
use of a third glycosidase assay using Mannosidase which has exoglycosidase specificity for terminal mannose 
residues. It is important to see that the Mannosidase treatment resulted in a significantly smaller decrease in the 
size of the heavy chain band as compared to the EndoH treatment, where this small shift was representative of 
the trimming of only the external mannose residues of high oligomannose present on the IgM. The fact there is 
a decreased size after treatment alone confirms the presence of the high oligomannose, but more importantly 
the smaller size shift relative to the band size found after cutting the entire glycan at the core GalNAc residues 
with EndoH and PNGase F suggests that the Mannosidase was specific in trimming the mannose from the high 
oligomannosylated IgM.

Given the successful display of the oligomannose biomarker on the surface IgM of our engineered cell line 
in vitro, we then moved to examining the cells in vivo using NOD-scid mice. We identified that our engineered 
BZ cell line when injected subcutaneously into the flanks of the mice at 5 × 106 cells per 100 μL PBS could result 
in palpable tumor formation after 4–5 weeks. Excision of the tumors and immunohistochemical staining with 
anti-lambda and anti-IgM confirmed the presence of the surface antibody display throughout the tumor mass. 
The western blot analysis of the lysed tumor tissue also revealed the presence of the oligomannose was retained 
on the heavy chain as confirmed by endoglycosidase assay suggesting that the glycan display was not affected 
by the in vivo growth environment. We next looked to further developing a second cell line which possesses 
an additional component of an internal mCherry fluorescence reporter fused to the cytoplasmic side of the 
membrane bound IgM. The utility of this BZ-mCherry cell lines as a possible tool for screening of moieties that 
can bind the target high oligomannose may be extremely valuable in future therapeutics development and pre-
clinical screening. One observed feature of the BZ cells relative to the HEK background was a decrease in the 
adhesion capabilities of the BZ and BZ-mCherry cells as compared to the HEK293 background from which they 
were derived for in vitro culture. This may be attributed to the display of surface Ig presented by the engineered 
BZ and BZ-mCherry cell lines in some manner restricting interaction of integrins with the surface but was not 
explored as it was out of the scope of this study. The HEK, BZ, and BZ-mCherry cell lines were also used for 
generating ectopic xenograft tumors in NOD-scid mice where it was shown that the oligomannosylation of the 
heavy chain was retained during in vivo growth for the BZ and BZ-mCherry tumor lysates.

In summary, we offer our development of an engineered fluorescent reporter cell line that provides the stable 
expression of membrane bound Ig that display high oligomannose on the CDR, as the Ig variable segments were 
derived from a follicular lymphoma B cell. Beginning from FFPE tissue slides of a lymph node with involved 
FL, we identified the dominant subclones presenting glycosylation sites on the CDR by deep sequencing, and 
we cloned the variable domains into an expression vector where the stable expression of surface antibody was 
confirmed in vitro and in vivo. Immunoblotting following glycosidase assays validated the oligomannosylation 
of the heavy chain, and a reporter cell line was then developed as a potential future screening tool. Here, the 
display of oligomannosylated surface Ig may serve as a mimetic target for in vitro or in vivo development and 
testing of high oligomannose binding moieties, which are not yet available for targeting to follicular lymphoma 
B cells. Unlike previous reports that have sought to create FL cell lines for in vitro studies, our approach does not 
try to incorporate the cell signaling features of follicular lymphoma B cells but instead the BZ cell lines strictly 
provides a key mimetic surface feature of the oligomannosylated antibody. We anticipate that this cell line may 
be used for future identification of a receptive moiety that can properly bind to the unique high oligomannose 
target presented by the Ig of certain B cell lymphomas. Because this target represents a critical element for not 
only diagnostic but also potential therapeutic purposes, we provide this as a starting point to open the potential 
for future work in developing clinically relevant technologies that may bind to high oligomannose.

Methods
Cloning and isolating cells that stably express consensus variable Ig domains on surface 
IgM.  After identifying the dominant consensus sequences of the variable heavy and variable lambda light 
domains from the FL involved lymph node derived from the left groin of a 35 year old female, these variable 
heavy and light sequences were cloned into two modified pFUSE mammalian expression vector constructed as 
describe in detail in the Supplementary Methods and summarized in Fig. 6. Two different pFUSE expression 
vectors were used, one for expression of the heavy chain IgM containing zeocin resistance and one for expression 
of the lambda light chain containing blasticidin resistance.
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The IgM VH3-23 pFUSE was engineered to possess a canonical IgM transmembrane domain as to present 
the B cell receptor on the cell surface when the heavy and light chain pair are co-expressed. Co-transfection of 
50% confluent HEK293T cells with the IgM VH3-23 pFUSE and IgL VL1-47 pFUSE plasmid was carried out in 
sequential transfection and selection step utilizing polyethyleneimine as carrier in 24 well plates. An overview 
of the process is provided in Fig. 7. HEK293T cells were chosen for creating an orthogonal reporter cell line as 
to eliminate the presence of intrinsic surface features displayed by B cells that may confound future screening 
efforts. This includes associated features such as CD79a/b which when eliminated have been known to reduce 
surface Ig expression in HEK293T cells34 among other cell types35–37. Incorporating a cytoplasmic heavy chain 
fusion however has shown when CD79a/b are absent that extending the cytoplasmic domain can enhances Ig 
surface display by up to 10,000 fold38. For the selection of stable transfectants with IgM VH3-23 and IgL VL1-
47 integrated into the genome, zeocin and blasticidin were used respectively. The antibiotic was added to the 
culture media as selection markers beginning from 48 h after transfection and were allowed to grow for 4 days 
until colonies were isolated for subsequent screening. Screening of stable transfectants possessing the heavy 
and light chain after 3 weeks were carried out by separation on 96 well plates and examining replicate plates by 
IHC staining with HRP conjugated anti-Lambda Light Chain (Cat# NB7552 Novus Biologicals) and anti-IgM 
Heavy Chain (Cat# 1020-05 Southern Biotech Inc) antibody. The isolated cell lines possessing both blasticidin 
and zeocin resistance that were confirmed to display IgLambda and IgM were passaged to provide sufficient cells 
for examination of the lysate by western blot (as seen in Fig. 2). In brief, after SDS-PAGE of the cell lysate and 
overnight transfer to nitrocellulose membranes, the membranes were blocked in 1%BSA in PBS buffer overnight 
at 4 °C. For light chain examination, the membrane was incubated for 1 h in 10 mL of washing buffer containing 
1uL of 1 mg/mL anti-Lambda Light Chain directly conjugated with HRP (Cat# NB7552 Novus Biologicals). For 
heavy chain examination, the membrane was incubated for 1 h with 10 mL of washing buffer containing 1 μL 
of 1 mg/mL biotinylated anti-IgM Heavy Chain (Cat# M31515 Invitrogen) followed by washing and addition 
of streptavidin conjugated HRP (Cat# 18-152 Sigma Aldrich). AEC staining was used to resolve the bands to 
confirm the expressed heavy and light chains on the nitrocellulose membrane. The BZ-mCherry cell line was 
established by the above method as well but with automated screening by FACS (BD FACS Melody) and visual 
assessment by fluorescence microscopy (Nikon ECLIPSE Ti2-A).

Validation of oligomannosylation of IgM displayed on engineered cell line.  To determine the 
presence of oligomannosylation on the heavy chain or light chain, glycosidases Endo H, PNGase F, or Man-
nosidase were added to the lysate of BZ the cell line and compared by western blot to lysate of the HEK293 
background cell. Approximately, 106 cells were lysed with 100 μL of RIPA buffer on ice for 30 min and centri-
fuged for 10 min at 13,000 rpm to pellet cell debris, and the supernatant was collected for further experiments. 
Enzyme reaction conditions were prepared by the supplier’s (New England Biolabs, MA, USA) instructions and 
their provided buffers. Briefly, mannosidase reaction was prepared by combining 8 μL of the above-mentioned 
cell lysate, 1 μL of 10 × GlycoBuffer 4 (1 × is 50 mM sodium acetate pH 4.5) and 1 μL of Mannosidase, and the 

Figure 6.   Process to generate Ig expression vectors possessing variable domains from follicular lymphoma 
B cells. (A) Schematic of our approach to identify consensus variable segment sequences from follicular 
lymphoma B cell tissue sections. (B) Plasmid map of IgM VH3-23 pFUSE vector and (C) IgL VL1-47 pFUSE 
vector used for production of surface antibody displaying the variable heavy and light chain consensus segments 
identified from FL B cell sections and carrying genes for zeocin and blasticidin resistance, respectively. Plasmid 
maps made using VectorNTI version 10.3.0 (Thermo Fisher Scientific, USA, https://​www.​therm​ofish​er.​com).

https://www.thermofisher.com
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mixture was incubated at 37 °C for 1 h. For Endo H and PNGase F enzyme reaction, the cell lysate was denatured 
by combining 9 μL of cell lysate and 1 μL of 10 × denaturing buffer (1 × is 0.5% SDS and 40 mM DTT) and boiled 
at 100 °C for 10 min. 8 μL of denatured cell lysate, 1 μL of 10 × Glycobuffer 3 (1 × is 50 mM sodium acetate pH 
6.0) and 1 μL of Endo H were combined and incubated for 1 h at 37 °C. For PNGase F reaction, 7 μL of denatured 
cell lysate, 1 μL of 10 × Glycobuffer 2 (1 × is 50 mM sodium phosphate pH 7.5), 1 μL of 10% NP-40 and 1 μL 
of PNGase F were mixed and incubated at 37 °C for 1 h. Each reactant was mixed with protein loading dye and 
boiled at 100 °C for 10 min. Samples were loaded and resolved by SDS-PAGE for 2 h at 120 V followed by over-
night transfer to nitrocellulose membrane at 4 °C. Membranes were blocked in 1% bovine serum albumin (BSA) 
in 10 mM PBS buffer. For the images in Fig. 3, 1 μL of 1 mg/mL antibody, anti-IgM Heavy Chain conjugated with 
HRP (Cat# 1020-05 Southern Biotech Inc) or anti-Lambda Light Chain conjugated with HRP (Cat# NB7552 
Novus Biologicals), was diluted with 1 mL of washing buffer (1% BSA and 0.5% Tween-20 in 10 mM PBS) and 
incubated overnight with slow horizontal agitation (50 rpm). After removal of the antibody containing buffer, 
the membrane was washed three times with 10 mL of washing buffer for 10 min each with horizontal agitation. 
10 mL of 0.05% AEC and 0.015% H2O2 in 50 mM acetate buffer pH 5.5 was added to develop the membrane. The 
complete panel of immunoblots images are provide in Supplementary Figure S6.

Flow assisted cell sorting.  FACS analysis of the HEK293, BZ, and BZ-mCherry cells was performed using 
a BD FACS Melody system. Prior to analysis, cells were fixed and stored in 1% BSA in PBS. FITC labeled anti-
lambda light chain (Cat# NB7551 Novus Biologicals) antibody was diluted 1:2000 ratio and blocked with 1% 
BSA in PBS buffer for 1 h at room temperature with rocking (50 rpm). 1 mL of blocked antibody was then incu-
bated with fixed cells for 30 min on ice with rocking. Cells were washed with 1 mL of blocking buffer, pelleted 
by centrifugation at 500 rpm for 3 min and resuspended in 1 mL 0.1% BSA in PBS buffer and filtered through a 
cell strainer prior to analysis. Details of the gating strategies used for FACS are provided in the Supplementary 
Figures S4 and S5.

Formation of ectopic tumors in mice and fluorescence in vivo imaging.  Mice which lack a fully 
functional immune system, specifically 6 NOD-scid (NOD.CB17-Prkdc <scid>/J) mice at 9 weeks of age, were 
obtained from The Jackson Laboratories (ME, USA). All animal experiments were approved by the Institu-
tional Animal Care and Use Committee (IACUC) of the University of Texas at Arlington and were conducted 
in accordance with the approved standards of humane animal care. The mice were fed standard chow and water 
ad lib and housed in the UT Arlington IACUC approved barrier facility under a 12 h light cycle. Three groups 
of mice (one male and one female in each group) were used for the growth of non-murine HEK293 back-
ground, BZ, and BZ-mCherry derived tumors. Specifically, after one week of acclimation to the barrier facility, 
the mice were anesthetized with 2% isoflurane followed by subcutaneous injection in the flank with 6 × 106 cells 
per 100 μL PBS of either HEK293, BZ, or the BZ-mCherry cell line. The mice were returned to their cage and 
monitored weekly for tumor growth at the location of the injection. When a palpable tumor had formed, the 
animal was either euthanized to collect the tumor sample and surround tissue for further examination or instead 
anesthetized, shaved, and subjected to fluorescence in vivo imaging using a Perkin Elmer IVIS Lumina XRMS 

Figure 7.   Schematic of process for generating engineered BZ cell line. (A) Expression vectors based of 
pFUSE were constructed with variable segments derived from consensus deep sequencing results of follicular 
lymphoma B cells. Sequential isolation of stable cell lines under antibiotic selection and examination of 
expression were carried out to identify the BZ cell line which provided the surface display of antibody possessing 
the FL B cell derived variable domains.
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Series III after which the mouse was euthanized for tissue collection. Imaging was conducted with the following 
parameters: Emission = 620, Excitation = 580, Bin = 4/4, Fnumber = f2, exposure = 0.5 s.

Harvesting of engrafted tumors and lysis or immunohistochemistry.  After mice were euthanized 
by CO2 and cervical dislocation, a small incision was made on the abdomen and the skin separated to expose 
the underlying engrafted tumors. The tumor was excised, measured, and placed in either PBS for resuspension 
and lysis (as described above for glycosidase assay or immunoblotting) or placed in OCT for flash freezing and 
cryosectioning on polylysine slides at 5 μm using a cryotome with sections stored at − 80 °C. For immunohis-
tochemistry, the sections were blocked overnight using 1% bovine serum albumin (BSA) in 10 mM PBS buffer. 
1 μL of primary antibody (either anti-IgM heavy chain or anti-lambda light chain) was diluted with washing 
buffer (1% BSA and 0.5% Tween-20 in 10 mM PBS) to 1 mL and incubated overnight with slow horizontal agita-
tion (50 rpm). The slide was washed with 10 mL of washing buffer for 10 min, three times with horizontal agita-
tion. 1 μL of secondary antibody conjugated with HRP was diluted to 2 mL and incubated for 30 min at room 
temperature with agitation followed by three times washing. 10 mL of 0.05% AEC and 0.015% H2O2 in 50 mM 
acetate buffer pH 5.5 was added to develop the sections.

Data availability
All data generated or analysed during this study are included in this published article and through supplemen-
tary information.
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