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With advancement, prompt use, and increasing accessibility of antiretroviral therapy,
people with HIV are living longer and have comparable lifespans to those negative for HIV.
However, people living with HIV experience tradeoffs with quality of life often developing
age-associated co-morbid conditions such as cancers, cardiovascular diseases, or
neurodegeneration due to chronic immune activation and inflammation. This creates a
discrepancy in chronological and physiological age, with HIV-infected individuals
appearing older than they are, and in some contexts ART-associated toxicity
exacerbates this gap. The complexity of the accelerated aging process in the context
of HIV-infection highlights the need for greater understanding of biomarkers involved. In
this review, we discuss markers identified in different anatomical sites of the body including
periphery, brain, and gut, as well as markers related to DNA that may serve as reliable
predictors of accelerated aging in HIV infected individuals as it relates to inflammatory
state and immune activation.
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INTRODUCTION

Aging is a natural process involving decline in physiological integrity and reduced organ function
(1). These features can be manifested in the form of chronic degenerative diseases, cancers,
inflammation, and cellular senescence. Human Immunodeficiency Virus (HIV) infection shares
common factors associated with conditions observed in older, uninfected people. Chronic HIV
infection in the setting of anti-retroviral therapy (ART) is commonly associated with inflammaging,
low-grade inflammation, a primary contributor to age-related conditions such as increased
vulnerability to infections, and development of age associated co-morbid conditions including
cancers, cardiovascular diseases (CVD), and neurodegenerative diseases (2, 3). During aging,
inflammation is largely driven by cellular senescence, an increase in cellular debris, and microbial
translocation (4). These same factors contribute to inflammation in HIV infection. Additionally,
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HIV viral proteins including gp120, Tat, Vpr, and Nef are able to
induce inflammatory signaling independent of these processes in
both lymphocytes and myeloid cells (5, 6).

People with HIV (PLWH) are living longer due to widespread
use and advancement of combined antiretroviral therapy
(cART); the life expectancy of cART-treated HIV-infected
individuals was merely 55 years in 1996 and now it mirrors
that of the general population (7–9). The advancement of cART
dramatically decreases systemic inflammation in HIV-infected
people which results in a delay in progression to acquired
immunodeficiency syndrome (AIDS) (10). However, while
PLWH are reaching older ages, they are not aging normally.
Despite cART, PLWH still experience comorbidities, chronic
inflammation, and symptoms of premature aging. For example,
senescent T cells, characterized by a curbed proliferative state
often triggered by stresses such as DNA damage, telomere
shortening, or presence of inflammatory cytokines, can
accumulate in tissues as they age. PLWH are susceptible to
developing other conditions indicative of premature aging,
including decline in integrity of neurological function, or HIV-
associated neurocognitive disorders (HAND). Even HIV-
infected individuals receiving cART are likely to exhibit mild
forms of neurological impairment related to HAND (11). Aging
is a complex process that involves and affects a multitude of
organs creating a need for greater understanding of the
biomarkers involved, specifically within the context of HIV.
The purpose of this review is to highlight similarities between
HIV-associated premature aging and chronological aging by
examining biomarkers that define inflammatory state in
PLWH, a phenotype for accelerated aging. These biomarkers
originate from diverse pathways making it difficult to propose a
single mechanism for treatment, however, they offer a holistic
understanding of inflammation in PLWH on cART and may
present new avenues for therapeutics.
IMMUNOSENESCENCE AND
GENETIC AGING

Lymphocytes
In PLWH, systemic activation of the immune system and virus-
induced cell death drive CD4+ T-cell depletion and CD8+ T-cell
expansion. Irrespective of active cART, chronic immune
activation and inflammation persist which can lead to non-
AIDS related conditions (12). Elevated levels of CD38 and
HLA-DR co-expressing CD4+ and CD8+ T cells reflect
increased immune activation (13, 14). Comparing parameters
for immune activation and aging, similarities include an increase
in CD28- T cells, greater levels of activation markers such as
CD38/HLA-DR, and a transition of naïve T-cells to memory cells
(15). These features contribute to immunosenescence: the
reduced and imbalanced effectiveness of the adaptive and
innate immune response induced by the aging process (16). In
elderly individuals, there is a smaller ratio of CD4+ to CD8+ T
cells due to decreased naïve T-cell levels, greater T-cell activation,
and higher levels of inflammatory markers (17). During HIV
Frontiers in Immunology | www.frontiersin.org 2
infection, adipose tissue becomes a site for accumulation of
latently-infected CD4+ T cells and activation of CD8+ T cells
(18). A low CD4/CD8 ratio is associated with chronic
inflammation and can also serve as a predictor of decreased
subcutaneous fat loss in the cART-treated HIV-infected
population; similarly, with chronological aging, there is
increased inflammation and body fat redistribution which have
been associated with metabolic complications (19). Another
marker, IP-10, is associated with aging in HIV. Upon HIV-
infection, plasma levels of pro-inflammatory chemokine IP-10
are upregulated and inversely related to CD4+ T cell counts
(Figure 1) (20). Elevated levels of IP-10 have been shown to
suppress T cell and NK cell function, while simultaneously
promoting HIV replication (21–23). Furthermore, elevated
levels of IP-10 are associated with aging such that after viral
suppression with cART, older individuals are more likely to
maintain higher IP-10 plasma levels (24). These findings are
consistent with the claim that chronic immune activation
induces premature aging.

Telomeres and Senescence
Age-associated decline in function is characterized by telomere
shortening, increased level of NK cells, high percentage of
activated CD45RO+CD95+ T cells, greater levels of CD8+
CD28-CD57+ senescent T cells, and increase in PD-1+
functionally exhaustive cells (25–28). These levels are reliable
predictors of aging phenotypes, including immunosenescence.
Utilizing animal models can strengthen our understanding of
immunosenescence in HIV infection. In a study using Chinese
rhesus macaques, SIV infection caused pathogenesis and
immunosenescence, but aged-macaques showed accelerated
SIV disease progression including more rapid depletion of
CD4+ T cells leading to increased levels of lymphocyte
exhaustion relative to younger SIV-infected macaques (29). In
another study, SIV-infected macaques had higher expression
levels of markers for senescence like p53 and p16 in their
subcutaneous and visceral adipose tissue (Table 1). CD4+ T
cells in the human immune system are long-lived and subject to
genomic mutations, damage, and replicative pressures, making
them susceptible to age-associated irregularities (95). With aging,
there is a slow decline in T cell capacity to proliferate which is
correlated with telomere attrition, a phenotype of cellular
senescence (96). Telomere shortening is an indicator of
inflammaging. In managing HIV-infection, ART restores
CD4+ T cell counts, though HIV-infected individuals maintain
increased levels of immune activation, shown by higher
frequencies of CD38+HLA-DR+CD4+ and CD8+ T-cells, and
these markers are associated with shorter telomeres and transitively,
immunosenescence (Figure 1) (97). One mechanism of telomere
damage may be attributed to an inefficient DNA repair
mechanism that compromises telomere integrity driven by
excessive proliferative turnover rate in these long-lived cells.
However, HIV-infected individuals on cART exhibit telomeric
DNA damage that is not addressed because of an Ataxia-
telangiectasia-mutated gene deficiency which leads to age-
associated phenotypes such as telomere shortening, CD4+
T cell senescence, and apoptosis (98). Shorter telomeres have
October 2020 | Volume 11 | Article 583934
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also been associated with inflammatory markers including
CXCL1, TGF-a, and IL10RA (42). HIV-infection leads to
establishment of viral reservoirs in various anatomical sites of
the body, primarily in long-lived CD4+ T cells which persist even
in the presence of ART. HIV appears to stimulate telomere
elongation in latently infected memory CD4+ T cells which are
vulnerable to BRAC019, a telomere-targeting drug that causes
uncapping and apoptosis (99).

Epigenetic
Epigenetics refers to mechanisms regulating chromatin structure
which has implications in gene expression and genome stability.
Epigenetic alterations are indicative of the aging process due to
chromatin remodeling and accumulation of DNA mutations.
These changes stimulate protective actions such as DNA
methylation (100). PLWH exhibited accelerated epigenetic
aging of 7.4 years in brain tissue, 5.2 years in periphery, and
virally-suppressed PLWH had a 19% increased risk of mortality
compared to healthy controls (101, 102). It has been suggested
that HIV-mediated chronic inflammation may be an underlying
Frontiers in Immunology | www.frontiersin.org 3
mechanism contributing to epigenetic aging (103–105). Another
study suggested inflammation-related SNPs of these pro-
inflammatory cytokines are risk factors for accelerated aging in
PLWH. While the TNF-a (TNF-a-308G>A) genotype was not
associated with epigenetic aging, IL-6 (IL-6-174G>C) C allele carriers
and IL-10 (IL-10-592C>A) CC homozygotes showed significantly
greater epigenetic aging compared to other genotypes in PLWH
(106). Thus, these SNPs may offer unique insights into HIV aging
and the accompanying pathophysiological changes.
CYTOKINES, CHEMOKINES, AND
INFLAMMAGING

While cART effectively establishes viral suppression, there is still
a heightened pro-inflammatory state in treated individuals,
which induces chronic, low-grade systemic inflammation
promoting pathophysiological age-associated changes. There
are well-documented markers of inflammation associated with
HIV-infection such as cytokines including IP-10, interferon-a,
FIGURE 1 | Diagram showing biomarkers isolated from various anatomical sites of the body that are altered by HIV-infection and likely contribute to accelerated
aging observed in people living with HIV (PLWH) on cART through chronic immune activation and inflammation. (A) Typically, gut-associated bacteria, Firmicutes,
produces butyrate which inhibits HDAC1. With normal aging or HIV-infection, Firmicutes is replaced causing reduced production of butyrate and consequently
increased expression of HDAC1, which acts to increase HIV transcription. (B) Pannex-1 channels, usually closed, open upon binding of HIV to receptors CD4 and
co-receptor CCR5, which causes release of ATP, an inflammatory signal. Increased levels of ATP in circulation were correlated with cognitive impairment and thus
predictive of CNS compromise. (C) During HIV-infection plasma levels of monocyte activation markers sCD163 and sCD14, as well as pro-inflammatory marker IP-
10 are elevated and inversely related with CD4+ T-cell depletion. Over-expression of these markers in the periphery leads to accelerated aging of T cells and
senescence. (D) Upon HIV-infection, secretion of exosomes increases along with oxidative stress markers, and HIV-induced chronic activation alters the contents of
exosomes. Notch-4 exosomal levels are elevated and correlated with other activation markers, HLA-DR. (E) HIV-infection reduces expression of circulating TRAIL, an
apoptosis-inducing protein, which theoretically in turn limits apoptosis of CD4+ T-cell reservoirs allowing for persistent immune activation and inflammation.
(F) Telomeres undergo attrition after HIV-infection due to reduced T-cell proliferation and this is associated with cellular senescence markers CD8+, HLA-DR,
and CD38+.
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IL-6, IL-10, and IL-15 (107). A recent study investigated a large
panel of inflammatory soluble biomarkers in plasma to
understand the risk of age-associated diseases in PLWH (Table 1).
Reportedly, compared to healthy controls, PLWH on long-term
cART had higher levels of CST5, 4E-BP1, SLAMF1, CCL23, MMP1,
ADA, and CD8A and lower levels of NT3, TRAIL, and sCD5 in
Frontiers in Immunology | www.frontiersin.org 4
plasma (42). Additionally, peripheral inflammatory cytokines (d-
dimer, IL-6, MCP-1/CCL2, sCD14, and TNF-a) in HIV-infection
have been correlated with impaired complex motor performance,
though not a HAND-specific biomarker (108). Furthermore, it has
been suggested that these proteins are associated with early stages of
age-related diseases (Table 1). For example, TNF-related-apoptosis-
TABLE 1 | Effects of natural versus HIV-induced aging on soluble biomarkers and known age-associated diseases*.

Biomarker Function System Effect of
HIV infec-

tion

Effect of
Aging

Age-associated diseases References

sCD14 Myeloid differentiation marker on monocytes/
macrophages;
Marker of monocyte activation in HIV

Periphery Increased Increased Cardiovascular Disease (30–32)

sCD163 Shed by CD163 scavenger receptor specific to
monocytes/macrophages;
Marker of monocyte activation in HIV

Periphery Increased Increased Cardiovascular Disease,
Liver Disease

(33–35)

IP-10 Pro-inflammatory chemokine involved in T-cell generation
and trafficking

Periphery Increased Increased Rheumatoid Arthritis (36, 37)

NDE Delivers signaling molecules between cells and reflects
host cell proteins and nucleic acids

Brain –

isolated from
blood

Increased ? Alzheimer’s Disease (38, 39)

Notch-4 Regulates cell-fate determination, differentiation,
proliferation, apoptotic programs

Plasma
exosome
contents

Increased Decreased Alzheimer’s Disease (40, 41)

SLAMF1 Glycoprotein that delivers downstream signals directing
innate and adaptive immune response; Phagocytic
properties

Periphery Increased Increased Rheumatoid arthritis,
Alzheimer’s Disease

(42–45)

CCL23 Hematopoiesis inhibitor that directs migration of
monocytes, macrophages, activated T-lymphocytes

Periphery Increased ? Rheumatoid arthritis, human
brain injury, Myeloid
leukemia

(42, 46–49)

NT3 Supports differentiation of neurons to promote growth Periphery Decreased Decreased Colorectal Cancer;
Neurocognitive decline

(42, 50–52)

TRAIL Induces apoptosis of tumor/infected cells; promotes
CD4+ T-cell death in HIV

Periphery Decreased Increased Alzheimer’s Disease (42, 53–55)

p53 Tumor suppressor, DNA repair, cell cycle regulation Periphery Increased Increased Cancer (56, 57)
p16 Tumor suppressor, cell cycle regulation, neurogenesis

regulation
Periphery,
CNS

Increased Increased Cancer, neurodegeneration (56–58)

Neopterin Pteridine metabolite produced primarily during Th1-type CNS,
periphery

Increased Increased Chronic inflammation,
neurocognitive decline

(59–61)

NFL Maintains neuronal shape, including axonal diameter CNS Increased Increased Neurodegeneration
(Specifically axon injury)

(62–64)

sCD30 Tumor necrosis factor receptor CNS,
Periphery

Increased Increased Cancer, Inflammation,
neurodegeneration

(65, 66)

Serum ATP Energy transfer, signaling, neurotransmitter From CNS
to periphery

Case-
dependent
increase

Case-
dependent
increase

Neurodegeneration (67, 68)

S100B Cell cycle regulation, neuron survival, inflammatory
response

CNS, gut,
periphery

Increased Variable
(“Dose
dependent”)

Neurodegeneration, cancer,
inflammatory bowel disease

(69–71)

Grey/White
Matter Volume

Processing, integrating, and coordinating information CNS Decreased Decreased Neurodegeneration (72–75)

Ventricle Volume Storage and transport CSF CNS Increased Increased Neurodegeneration (73, 74)
Choline Cell membrane degradation and inflammation CNS Increased Increased Neurodegeneration (76–80)
Myo-Inositol Gliosis and neuroinflammation CNS Increased Increased Neurodegeneration (76, 78, 80,

81)
N-acetyl
Aspartate

Neuron viability and integrity CNS Decreased Decreased Neurodegeneration (76–81)

Mean Diffusivity Measure of water flow and loss of myelin CNS Increased Increased Neurodegeneration (82–88)
Fractional
Anisotropy

Measure of myelin structure and axon integrity CNS Decreased Decreased Neurodegeneration (83, 84, 88,
89)

Ratio of
Firmicutes to
Bacterioidetes

Butyrate production Micro-biome Decreased Decreased Inflammation,
Neurodegeneration,

(90–94)
O
ctober 2020 | Volume 11 | A
*Many of these biomarkers may be used to track HIV pathogenesis as well as changes in inflammatory state with chronological aging,
rticle 583934

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Thurman et al. Biomarkers of Aging in HIV
inducing-ligand (TRAIL) selectively induces apoptosis of tumor cells
or infected cells. During HIV-infection, TRAIL could promote
CD4+ T-cell death, which fuels interest in its use as a unique
method of targeting latent HIV-1 CD4+ T-cells (53–55).
Decreased levels of TRAIL observed in PLWH on long-term ART
may impede eradication of the latent HIV-1 reservoir (Figure 1).
MONOCYTES AND MYELOID
SOLUBLE MARKERS

Monocyte activation is of increasing interest as a mediator of
non-AIDS related morbidity and mortality, and circulating
biomarkers in plasma including well-characterized sCD14 and
sCD163 are used to study monocyte activation (Table 1). CD14 is
a co-receptor for LPS found predominantly on the monocytic-
macrophage cell lineage, which upon stimulation, releases sCD14,
a sign of monocyte activation. While LPS can generate this
response, other TLR ligands such as flagellin or CpG
oligodeoxynucleotides or inflammatory cytokines such as IL-6
could generate the same, suggesting that sCD14 is a nonspecific
marker of monocyte activation (30). Similarly, CD163 has
restricted expression to monocytes and macrophages (33). LPS
acts as a down-regulator of CD163, while IL-6 acts as a potent
stimulator, resulting in shedding of sCD163 (109). PLWH have
higher plasma levels of sCD14 and sCD163 and these markers are
independent predictors of mortality in HIV (Figure 1) (110, 111).
Measurement of immune activation markers in HIV-infected
individuals on long-term cART showed sCD14 and sCD163
levels were persistently elevated in treated HIV-infected patients
compared to healthy controls; however, cART showed no effect in
lowering sCD14 levels in HIV-infected individuals before or after
initiation of treatment, even after 8 years in some cases (42). cART
is more effective at limiting plasma sCD163 levels, though relative
to uninfected individuals, there is discrepancy on whether levels
are comparable or higher (42, 112, 113). Further, CD14+
monocytes were shown to exhibit increased p90RSK activity,
which is a reactive oxygen species-sensitive kinase, in the
presence of cART which suppresses NRF2-ARE transcriptional
activity eliciting a senescent phenotype along with pro-
inflammatory responses (114). In another study, HIV cell-
associated DNA (in CSF and blood) and sCD163 (in CSF) were
significantly correlated with cognitive impairment, particularly
executive function, in older adults, but not in young adults (115).
Further, it has been suggested that, plasma sCD163 (but not CSF
sCD163) is associated with the severity of symptoms related to
cognitive impairment (116). Upon HIV-infection, CD14 and
CD163 appear to be the primary drivers of accelerated aging of
T cells and immunosenescence, which likely occurs due to chronic
immune activation, even in the presence of cART.
CSF AND CNS-SPECIFIC MARKERS

HAND is a complex of neurological disorders characterized by
severity and development of cognitive impairments such as
Frontiers in Immunology | www.frontiersin.org 5
mental slowness and memory loss, and motor symptoms
including poor balance and tremors. HAND is associated with
activation of pathways involved in inflammation and aging
(117). Despite cART improvements, HAND still affects
between 18 to 55% of HIV+ individuals receiving treatment
(11, 118–120). Biomarkers would aid in developing therapeutics
prior to manifestation of severe pathologies. One specific marker
proposed for CNS dysfunction is neopterin (Table 1), a
pteridine-metabolite produced primarily during Th1-type
responses to inflammatory stimuli such as IFN-g (121).
Although serum levels of neopterin are more closely correlated
with overall clinical severity, neopterin in the CSF is a marker for
innate cell activation specifically in the CNS. Such immune
activation can disrupt CNS homeostasis, thereby leading to
HAND development. Neopterin has been correlated with
neurocognitive decline (59, 60).

Several other CSF biomarkers have been proposed as detailed
in Table 1. For example, NT3 is a neurotrophic factor that aids in
the survival and differentiation of neurons to stimulate growth
and has been robustly linked to neurocognitive impairment in
PLWH. Lower levels of NT3 were detected in cART-treated
HIV-infected individuals (42). Further, higher sCD14 levels have
been correlated with impaired neurocognitive function,
specifically attention and learning of HIV-infected individuals
(31). Recently, sCD30 was shown to co-localize with HIV-1 RNA
and DNA in lymphoid tissues. Plasma levels of sCD30 were
lower in individuals with cART-suppressed viremia compared to
viremic patients. However, sCD30 was elevated in CSF during
CNS infection, regardless of peripheral viral load, potentially
indicating continued CNS replication and subsequent resultant
damage (65). Further, a pannexin-1 (Panx-1)-specific pathway
was associated with compromised CNS. Upon HIV binding to
CD4 and co-receptors CXCR4 and/or CCR5, Panx-1 channels
open to release local intracellular secondary messengers such as
ATP and PGE2 from circulating PBMCs (Figure 1). Serum ATP
levels were positively correlated with HAND severity (67).
Finally, a common CSF marker S100B has been correlated with
AIDS dementia complex (ADC) severity and predictive of ADC
progression (69). However, use of S100B as a biomarker remains
controversial (122).

Neuroimaging
Less invasive methods of assessing CNS changes, including those
leading to HAND, have also been studied using advanced
neuroimaging techniques such as magnetic resonance imaging
(MRI) (Table 1). In the absence of other diagnostic markers at
the time of HAND diagnosis, an MRI is frequently performed to
confirm there are no other CNS pathologies that could be
contributing to cognitive changes, including those that occur
naturally with aging. Characteristic volumetric changes that
occur in HAND include loss of white and grey matter and
enlarged ventricle size resulting from the lost parenchymal
mass (72–74). Multiple studies have confirmed that HIV and
aging are independently associated with grey and white matter
loss with the latter more impacted by aging than by HIV status.
Such atrophywas associated with lower scores on neuropsychological
tests (75, 123). Another MRI application is magnetic resonance
October 2020 | Volume 11 | Article 583934
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spectroscopy. By suppressing the signal of water molecules during
analysis, various CNS metabolites can be distinguished by their
unique chemical shift peaks. Typical metabolites used specifically
to study HAND include choline (cho), myo-inositol (MI), and N-
acetyl aspartate (NAA). Cho, a marker of cell membrane degradation
and inflammation, is increased in HIV+ individuals (76, 77),
particularly among HAND patients (78, 79). This trend is
especially pronounced in the basal ganglia (77, 80). These changes
were even more pronounced in older individuals (78). MI, a marker
of gliosis and neuroinflammation, is also increased in HAND,
specifically in the basal ganglia (78, 80). The opposite trend has
been noted for NAA, a marker of neuron viability and integrity, with
greatest decreases in the basal ganglia and white matter (76–79,
81, 93).

Microbiome
During HIV pathogenesis, chronic inflammation is driven
partially by continued low-level viral replication; however,
increased microbe and microbial byproduct translocation
across the damaged intestinal epithelial barrier increase
inflammation, especially lipopolysaccharide (LPS) (124). LPS is
able to induce pro-inflammatory cytokine secretion in myeloid
cells after binding to the CD14/TLR4/MD2 receptor complex.
Because LPS can drive much of the pathogenesis, serum
levels can be monitored to better understand the source of
inflammation during HIV pathogenesis. Additional markers
associated with gut damage like intestinal fatty acid-binding
protein (I-FABP) and other proteins upregulated in the
presences of LPS, including LPS-binding protein and sCD14,
can also be used as markers of microbiome changes (110, 125,
126). Similarly, (1!3)-b-D-Glucan (bDG), a major component
of fungal cell walls can also be used as a marker of microbial
translocation (127, 128). As humans age, there is progressive
replacement of butyrate-producing Firmicutes with Bacteroidetes,
particularly Prevotella (90, 91) and the same pattern has been
observed in HIV-infected individuals (92–94). Butyrate is a short-
chain fatty acid metabolite of dietary fiber fermentation used as the
primary energy source for colonocytes and the promotion of Treg
differentiation, thereby protecting the intestinal epithelial barrier
from damage (129, 130). Butyrate may also as an HDAC1
inhibitor (HDI) serving as a latency-reversing agent for T cell
viral reservoirs (Figure 1) (131, 132). Butyrate produced in the gut
can also alter CNS health increasing neurogenesis protecting
against neurodegeneration (133, 134).

Studies documenting changes that occur after pro-biotic
supplementation further highlight the role of the microbiome in
inflammation, HIV pathogenesis, and associated aging. In one
study, patients who received probiotic cocktails had a reduction in
CD4+ T cell activation markers, including HLA-DR and CD38.
High sensitivity C-reactive protein (hsCRP) and LBP were also
reduced to levels comparable to uninfected controls (135). In
another study, HIV-infected patients given Lactobacillus casei
Shirota supplements had increased T cell counts. This was
accompanied by reduced mRNA levels of TGFb, IL-1b, IL-10,
and IL-12, as well as an increase in IL-23 (136). Furthermore, a
recent study demonstrated that a probiotic cocktail increased
serum serotonin levels and decreased tryptophan, as well as
Frontiers in Immunology | www.frontiersin.org 6
decreased surface markers CD38 and HLA-DR on CD4+ T-cells
and mRNA expression of IDO and IFN-g in PBMCs (137). Finally,
another study correlated indolamine-2,3-dioxygenase (IDO)
expression in the gut-associated lymphoid tissue (GALT) with
levels of neopterin in CSF, both of which were significantly
decreased with probiotic supplementation (138). These examples
demonstrate that changes to the microbiome during HIV
pathogenesis may not only serve as biomarkers of inflammation,
but may ultimately be a source of the inflammaging processes and a
target for therapeutic interventions.
EXOSOMES

Exosomes may be another potential biomarker for HIV
pathogenesis. Exosomes are ~30–150 nm extracellular vesicles
released from various cell types into plasma, urine, CSF, and
inflammatory tissues. The content of exosome cargoes can be
changed depending on pathological state or health of the secreting
cell, particularly by immune activation (139). Exosomes of different
origins can be obtained from the periphery. A recent study
investigated proteins associated with neuronal damage in plasma
neuron-derived exosomes (NDE) within the context of HIV-
infection to differentiate age-associated from HIV-associated
neurocognitive decline. NDE counts were positively correlated
with age only in HIV-infected subjects, not in their seronegative
controls (38). An earlier investigation reported premature cellular
senescence caused an increase in the secretion of exosomes (140).
Further, another study characterized plasma exosomes isolated
from virally suppressed PLWH on cART with respect to immune
responses and oxidative stress. They observed higher levels of
exosomes in PLWH on cART compared to seronegative controls
and found a positive correlation with oxidative stress markers such
as CD14, CRP, HLA-A, and HLA-B and a potentially novel one,
Notch4 among the exosome contents (141). Notch-4 is involved in
regulating cell-fate determination and influencing the
differentiation, proliferation, and apoptotic programs of myeloid
and dendritic cells (40). Remarkably, exosomal Notch-4 presence
was correlated with HLA-DR and decreased CD4/CD8 ratio,
which are reliable predictors of immune activation, thus
identifying Notch-4 as a promising new biomarker of immune
activation in HIV-infection (Figure 1) (141). Further, exosomes
originating from HIV-1 infected T cells are reportedly involved in
several processes of infection such as production of pro-
inflammatory cytokines in macrophages, CD4+ T-cell apoptosis,
and neurotoxicity (142–144). These studies collectively suggest that
exosomes may serve as a novel avenue for examining mechanisms
of premature aging and senescence during HIV-infection
(Table 1).
CONCLUSION

Complications observed in PLWH today are CVD, liver disease,
neurological decline, non-AIDS related cancers, and metabolic
disorders. These are features of normal aging occurring at an
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earlier chronological age in the HIV-infected population due to
persistent chronic immune activation and inflammation. While
cART has successfully extended the lives of PLWH, some of these
premature aging comorbidities are exacerbated by cART.
Therefore, it is important to continue investigating biomarkers
of the premature aging process with the aim of developing new
treatment avenues and improving quality of life for PLWH. The
markers reported throughout this review arise from divergent
pathways, and many of them are associated with specific
pathology, such as CNS-specific markers. Clinicians should be
aware of these diverse mechanisms and potential sources of
inflammation, at which point interventions may be necessary.
Regardless of current clinical implications, understanding
biomarkers of inflammation and aging that are associated with
HIV will allow for development of better therapeutics.
Additionally, non-human primate model studies offer an ideal
avenue for experimentally investigating these biomarkers as they
Frontiers in Immunology | www.frontiersin.org 7
relate to inflammation and thus the pathology of accelerated
aging in HIV.
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MI, et al. The CD4/CD8 ratio as a marker T-cell activation, senescence and
activation/exhaustion in treated HIV-infected children and young adults.AIDS
(Lond Engl) (2013) 27(9):1513–6. doi: 10.1097/QAD.0b013e32835faa72

27. Gianesin K, Noguera-Julian A, Zanchetta M, Del Bianco P, Petrara MR,
Freguja R, et al. Premature aging and immune senescence in HIV-infected
children. AIDS (Lond Engl) (2016) 30(9):1363–73. doi: 10.1097/
qad.0000000000001093

28. Marks MA, Rabkin CS, Engels EA, Busch E, KoppW, Rager H, et al. Markers
of microbial translocation and risk of AIDS-related lymphoma. AIDS (Lond
Engl) (2013) 27(3):469–74. doi: 10.1097/QAD.0b013e32835c1333

29. Zheng HY, Zhang MX, Chen M, Jiang J, Song JH, Lian XD, et al. Accelerated
disease progression and robust innate host response in aged SIVmac239-
infected Chinese rhesus macaques is associated with enhanced
immunosenescence. Sci Rep (2017) 7(1):37. doi: 10.1038/s41598-017-
00084-0

30. Shive CL, Jiang W, Anthony DD, Lederman MM. Soluble CD14 is a
nonspecific marker of monocyte activation. AIDS (Lond Engl) (2015) 29
(10):1263–5. doi: 10.1097/qad.0000000000000735

31. Lyons JL, Uno H, Ancuta P, Kamat A, Moore DJ, Singer EJ, et al. Plasma
sCD14 is a biomarker associated with impaired neurocognitive test
performance in attention and learning domains in HIV infection.
J acquired Immune deficiency syndromes (1999) (2011) 57(5):371–9.
doi: 10.1097/QAI.0b013e3182237e54

32. Poesen R, Ramezani A, Claes K, Augustijns P, Kuypers D, Barrows IR,
et al. Associations of Soluble CD14 and Endotoxin with Mortality,
Cardiovascular Disease, and Progression of Kidney Disease among
Patients with CKD. Clin J Am Soc Nephrol CJASN (2015) 10(9):1525–
33. doi: 10.2215/cjn.03100315

33. Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, Law SK,
et al. Identification of the haemoglobin scavenger receptor. Nature (2001)
409(6817):198–201. doi: 10.1038/35051594

34. Castley A, Williams L, James I, Guelfi G, Berry C, Nolan D. Plasma CXCL10,
sCD163 and sCD14 Levels Have Distinct Associations with Antiretroviral
Treatment and Cardiovascular Disease Risk Factors. PloS One (2016) 11(6):
e0158169. doi: 10.1371/journal.pone.0158169

35. Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL,
et al. Aging is associated with chronic innate immune activation and
dysregulation of monocyte phenotype and function. Aging Cell (2012) 11
(5):867–75. doi: 10.1111/j.1474-9726.2012.00851.x

36. Dufour JH, Dziejman M, Liu MT, Leung JH, Lane TE, Luster AD. IFN-
gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role
for IP-10 in effector T cell generation and trafficking. J Immunol (Baltimore
Md 1950) (2002) 168(7):3195–204. doi: 10.4049/jimmunol.168.7.3195

37. van Hooij A, Boeters DM, Tjon Kon Fat EM, van den Eeden SJF, Corstjens P,
van der Helm-van Mil AHM, et al. Longitudinal IP-10 Serum Levels Are
Associated with the Course of Disease Activity and Remission in Patients
with Rheumatoid Arthritis. Clin vaccine Immunol CVI (2017) 24(8):1563–
73. doi: 10.1128/cvi.00060-17

38. Sun B, Dalvi P, Abadjian L, Tang N, Pulliam L. Blood neuron-derived
exosomes as biomarkers of cognitive impairment in HIV. AIDS (Lond Engl)
(2017) 31(14):F9–f17. doi: 10.1097/qad.0000000000001595

39. Goetzl EJ, Schwartz JB, Abner EL, Jicha GA, Kapogiannis D. High
complement levels in astrocyte-derived exosomes of Alzheimer disease.
Ann Neurol (2018) 83(3):544–52. doi: 10.1002/ana.25172

40. Uyttendaele H, Ho J, Rossant J, Kitajewski J. Vascular patterning defects
associated with expression of activated Notch4 in embryonic endothelium.
Proc Natl Acad Sci U States America (2001) 98(10):5643–8. doi: 10.1073/
pnas.091584598

41. Shibata N, Ohnuma T, Higashi S, Higashi M, Usui C, Ohkubo T, et al.
Genetic association between Notch4 polymorphisms and Alzheimer’s
disease in the Japanese population. J Gerontol Ser A Biol Sci Med Sci
(2007) 62(4):350–1. doi: 10.1093/gerona/62.4.350

42. Babu H, Ambikan AT, Gabriel EE, Svensson Akusjärvi S, Palaniappan AN,
Sundaraj V, et al. Systemic Inflammation and the Increased Risk of Inflamm-
Aging and Age-Associated Diseases in People Living With HIV on Long
Frontiers in Immunology | www.frontiersin.org 8
Term Suppressive Antiretroviral Therapy. Front Immunol (2019) 10:1965.
doi: 10.3389/fimmu.2019.01965

43. Salminen A, Kaarniranta K, Kauppinen A, Ojala J, Haapasalo A, Soininen H,
et al. Impaired autophagy and APP processing in Alzheimer’s disease: The
potential role of Beclin 1 interactome. Prog Neurobiol (2013) 106-107:33–54.
doi: 10.1016/j.pneurobio.2013.06.002

44. Castro AG, Hauser TM, Cocks BG, Abrams J, Zurawski S, Churakova T,
et al. Molecular and functional characterization of mouse signaling
lymphocytic activation molecule (SLAM): differential expression and
responsiveness in Th1 and Th2 cells. J Immunol (Baltimore Md 1950)
(1999) 163(11):5860–70. doi: 10.1097/QAI.0000000000001881

45. Panezai J, Ali A, Ghaffar A, Benchimol D, Altamash M, Klinge B, et al.
Upregulation of circulating inflammatory biomarkers under the influence of
periodontal disease in rheumatoid arthritis patients. Cytokine (2020)
131:155117. doi: 10.1016/j.cyto.2020.155117

46. Kim J, Kim YS, Ko J. CK beta 8/CCL23 induces cell migration via the Gi/Go
protein/PLC/PKC delta/NF-kappa B and is involved in inflammatory
responses. Life Sci (2010) 86(9-10):300–8. doi: 10.1016/j.lfs.2009.11.012

47. Rioja I, Hughes FJ, Sharp CH, Warnock LC, Montgomery DS, Akil M, et al.
Potential novel biomarkers of disease activity in rheumatoid arthritis
patients: CXCL13, CCL23, transforming growth factor alpha, tumor
necrosis factor receptor superfamily member 9, and macrophage colony-
stimulating factor. Arthritis Rheum (2008) 58(8):2257–67. doi: 10.1002/
art.23667
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