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Abstract

Background: High throughput DNA/RNA sequencing has revolutionized biological and clinical research.
Sequencing is widely used, and generates very large amounts of data, mainly due to reduced cost and advanced
technologies. Quickly assessing the quality of giga-to-tera base levels of sequencing data has become a routine but
important task. Identification and elimination of low-quality sequence data is crucial for reliability of downstream
analysis results. There is a need for a high-speed tool that uses optimized parallel programming for batch
processing and simply gauges the quality of sequencing data from multiple datasets independent of any other
processing steps.

Results: FQStat is a stand-alone, platform-independent software tool that assesses the quality of FASTQ files using
parallel programming. Based on the machine architecture and input data, FQStat automatically determines the
number of cores and the amount of memory to be allocated per file for optimum performance. Our results indicate
that in a core-limited case, core assignment overhead exceeds the benefit of additional cores. In a core-unlimited
case, there is a saturation point reached in performance by increasingly assigning additional cores per file. We also
show that memory allocation per file has a lower priority in performance when compared to the allocation of
cores. FQStat’s output is summarized in HTML web page, tab-delimited text file, and high-resolution image formats.
FQStat calculates and plots read count, read length, quality score, and high-quality base statistics. FQStat identifies
and marks low-quality sequencing data to suggest removal from downstream analysis. We applied FQStat on real
sequencing data to optimize performance and to demonstrate its capabilities. We also compared FQStat’s
performance to similar quality control (QC) tools that utilize parallel programming and attained improvements in
run time.

Conclusions: FQStat is a user-friendly tool with a graphical interface that employs a parallel programming
architecture and automatically optimizes its performance to generate quality control statistics for sequencing data.
Unlike existing tools, these statistics are calculated for multiple datasets and separately at the “lane,” “sample,” and
“experiment” level to identify subsets of the samples with low quality, thereby preventing the loss of complete
samples when reliable data can still be obtained.
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Background
High throughput DNA/RNA sequencing has revolution-
ized our understanding of and approach to biological
and clinical research. Advancements in its technology
and reduced cost have made sequencing available to a
broad research and industry base [1]. Be it RNAseq,
ChIPseq, de novo genome sequencing, resequencing, or
metagenomics, sequencing data in the range of giga-to-
tera base throughput per experiment is typically gener-
ated by an average-sized research lab or company. The
National Center for Biotechnology Information’s (NCBI)
Sequence Read Archive (SRA) database [2], one of the
major publicly available molecular sequencing databases,
has increased in size from about 20 G bases (Gb) to 20
peta bases (Pb) in approximately ten years. We have
seen sequencing efforts across the board in the evolu-
tionary tree, starting with viruses and bacteria and con-
tinuing all the way to humans resulting in thousands of
datasets [3, 4]. Hence, there is a constant need across a
wide spectrum of biotechnology stakeholders for im-
proved data storage and analysis methods that are able
to handle large datasets in a reasonable amount of time.
From the early Sanger-based sequencing methods to

the present next-generation sequencing (NGS) and
beyond, sequencing has targeted the reconstruction of
whole genomes and understanding the dynamics of
molecules in a variety of biological samples, including
specific model organisms, nonmodel organisms [5],
and clinical samples [6, 7]. With the availability of
huge sequencing repositories, higher-level studies have
emerged, such as meta-analysis (large-scale, integrated
analysis on multiple datasets) [8], multiparameter
combinatorial approaches, both in terms of the envir-
onment and the organism, and translational medicine
efforts [9]. On the other hand, the decrease in se-
quencing cost has far outpaced Moore’s Law [10],
rendering significant challenges to data storage and
computational analysis. Therefore, whether it is an
experiment generating new sequencing data or a
study that attempts to analyze existing sequencing
datasets, it is not atypical to be required to analyze
hundreds or thousands of sequencing data samples.
As a result, approaches making use of high comput-
ing clusters, such as parallel computing, have been an
important aspect of dealing with increased sequencing
data analysis and storage needs [11, 12].
One of the critical steps of sequencing data analysis

workflows is the quality control (QC). Eliminating
low-quality data samples based on QC analysis vastly
improves the accuracy and reliability of the down-
stream data analysis results [13]. Furthermore, identi-
fying data quality problems and carefully inspecting
them provides feedback on the experimental proce-
dures to pinpoint the aspects of the protocol that

have led to quality problems. Projects that involve
new datasets or reanalysis of existing datasets and
large research and sequencing centers need to quickly
assess the QC of hundreds or thousands of samples.
Several sequencing QC tools have been developed
using either serial [14–21] or parallel [22–28] archi-
tecture. However, the QC tools with parallel architec-
ture do not optimize system performance by dynamic
core or thread assignment; they just assign one core
per file if multiple cores are available or divide a file
into multiple cores and process the files sequentially.
These approaches do not optimize memory assign-
ment per file, nor do they process multiple files in
parallel where each file is analyzed by multiple pro-
cessors. We have improved on this facet in FQStat by
probing system architecture and automatically opti-
mizing the core/memory assignment per file in a dy-
namic fashion.
Most of the existing QC tools provide more capabil-

ities than just QC assessment, such as variant reporting
[14, 23], adapter detection [15], fusion transcript detec-
tion [16], integration of different NGS data [17], trim-
ming [27], or read alignment [24, 28]. Although these
approaches are helpful, they force the users to commit
to analysis steps other than QC assessment to calculate
simple QC parameters. In order to assess the QC of the
sequencing data, the user needs to use the tool’s se-
quence processing steps and obtain the QC statistics
for the processed data obtained using the tool. Further-
more, these programs lack the ability to take more than
one dataset (e.g., raw and trimmed) as input and com-
pare their respective QC parameters. This feature, for
example, comes in handy when the quality of two dif-
ferent experiments is compared or when data trimming
and filtering demonstrate improvement. FQStat can
take two datasets as input and focus only on a com-
parative QC assessment of the two datasets, independ-
ent from any other sequence processing steps.
In a typical sequencing project, a sample is run on

multiple lanes; and the reads coming from different
lanes are combined [29]. The reason for this is to still
be able to obtain reliable data even if one or more
lanes have failed. None of the aforementioned QC
tools provide lane-level statistics to let the user pick
and choose among the lanes that have performed sat-
isfactorily. This becomes critical when sample-level
statistics might warrant discarding the complete se-
quencing data for the sample, whereas lane-level sta-
tistics may identify lanes with reliable data that may
be combined to represent the sample. Furthermore, in
some analysis settings, experiment-level, not sample-
level QC assessment is required. Most of the QC
tools cited provide sample-level analysis and do not
provide a “big picture,” experiment-level assessment;
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and those tools that do provide experiment-level as-
sessment, do not provide sample-level analysis results.
Finally, samples that have low QC parameters are not
flagged in the existing QC tools to warn the user of
potential samples to be discarded. Therefore, there is
a need for a quick QC assessment tool that is not
tied to other sequence processing steps, simply as-
sesses the QC parameters for one or more datasets,
automatically optimizes parallel architecture, provides
lane and experiment level statistics, and flags low-
quality lanes and/or samples. We believe FQStat fills
this gap. A feature comparison with similar QC tools
is provided in Table 1.

Implementation
FQStat is coded in Python 3.7.3® (http://www.python.org)
using the multiprocessing package and has a graphical
user interface (GUI) where input/output files and pro-
gram parameters can be configured. In order to avoid
any mix-up from the outputs of different processes,
FQStat uses lock protection on threads, the outputs
of which are then assembled to generate FQStat’s
final results. FQStat can also be executed using the
command-line, enabling its use as part of scripts that
handle batch processing. FQStat works with both sin-
gle-end and paired-end FASTQ sequencing data, pro-
cesses samples run on multiple lanes, and accepts one
or two datasets (e.g., raw and trimmed) as input that
involve the same samples. This information is con-
veyed to FQStat by arranging the sequencing files in
a certain folder structure and by following a specific
file naming convention as explained in the online

tutorial. In consideration of the ever-increasing
sequencing file sizes and numbers, we have imple-
mented FQStat to handle both regular and
compressed files. FQStat calculates and plots read
count, read length, quality score, and high-quality
base statistics. These statistics are calculated at the
lane, sample, and experiment (dataset) levels; and the
percent difference between the two datasets is noted.
Experiment-level statistics are calculated in two ways:
(i) lane resolution, where lane-level data are assumed
to form the experiment; and (ii) sample resolution,
where sample-level data are assumed to form the ex-
periment. A high-quality base is defined as a base
with a quality score above Q, which is a parameter
that can be adjusted by the user. The default value
for Q is 25.
The results of FQStat are stored in an HTML file. The

tables and graphs shown in the HTML file are also saved
as tab-delimited text files and high-resolution images, re-
spectively. Image resolution can be adjusted by the user.
FQStat identifies and marks low-quality sequencing data
to suggest removal from downstream analysis. For each
calculated statistic, lane- or sample-level sequencing data
with an absolute z-score above 1.5 are flagged to warrant
further inspection by the user. The 1.5 z-score cut-off can
be changed by the user as an input parameter. In order to
optimize system performance, FQStat probes its environ-
ment to obtain the number of available cores, available
memory, and the number and size of input files to be ana-
lyzed. The simulations reported in this report were run on
a single rack server with 768 GB of RAM and dual Intel®
Xeon® E7–8870 CPU with 144 cores.

Table 1 Feature comparison between FQStat and similar QC tools

Feature\Tool FQStat FaQCs NGS QC Box NGS QC ToolKit RNA-QC-Chain ClinQC

Lane-level statistics Yes No No No No No

Experiment-level statistics Yes No Yes No No No

Trimming and filtering No Yes Yes Yes Yes Yes

Comparison of multiple datasets Yes No No No No No

Sample flagging Yes No No No No No

Parallel programing Yes Yes Yes Yes Yes Yes

Support compressed files Yes Yes Yes Yes No No

Graphical output Yes Yes No Yes Yes Yes

Multithreading Yes Yes No Yes Yes No

Multiple processing for a single file (MPSF) Yes Yes/No* No Yes Yes No

Multiple processing for multiple files (MPMF) Yes No Yes Yes No Yes

Concurrent implementation of MPSF and MPMF Yes No No No No No

Memory requirement No Yes No No No No

Memory optimization Yes No N/A N/A Yes Yes

Automated resource optimization Yes No No No Yes No

*FaQCs divides a single file into split files and each split file is run on different processors but if the number of processors is more than the number of split files,
then a split file is not processed by multiple processes
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Workflow
The overall workflow of FQStat is shown in Fig. 1. The
choice of core and memory allocations described in this
section is based on our experiments, which are explained
in the subsequent sections of this manuscript. FQStat first
compares the number of files with the number of available
cores. If the former is larger, it assigns one file per core
and iteratively processes the files until all of the files are
analyzed. If the latter is larger, the cores are divided
among the files as evenly as possible as long as the num-
ber of cores assigned to a file does not exceed max_core.
The max_core is a parameter that defines the number of
cores above which core assignment to a file decreases the
overall run time for the file. The default value for max_
core is 55, but this value can be adjusted by the user.
If the available memory is less than the total file

size to be analyzed, each file is split into segments
such that the sum of the total segment size for each
file (analyzed at a given instance by all the cores)
equals the available memory. At each iteration, only
the segment size of the file is read into the memory
prior to processing. This way, FQStat is free from any
memory requirements and can handle large file sizes
and large numbers of files with limited memory re-
sources. Here, we present three examples of core/
memory assignment where F is the total number of
files, C is the total number of available cores, S is the
file size, and M is the available memory. Although file
size may change from file to file and FQStat
calculates the size of individual files for automatic
performance optimization, we assume each FASTQ
file has the same size, S, for the purpose of these
examples.

Example Case 1, F = 30, C = 100, S = 2GB, M = 128GB:
20 files are assigned to 3 cores and 10 files are assigned
to 4 cores. Each file is read (processed) in its entirety.
Example Case 2, F = 250, C = 40, S = 2GB, M = 128GB:

Each file is assigned to 1 core, and each file is read in its en-
tirety. After this is repeated for 6 iterations (6 × 40 = 240),
the remaining (250–240 = 10) files in the following (final)
iteration are assigned to 4 cores each; and each file is read
in its entirety.
Example Case 3, F = 250, C = 100, S = 2GB, M = 60GB:

Each file is assigned to 1 core, and each file is split into
4 segments such that the first three segments are 30%
and the last segment is 10% of the total file size. This
way, all 60GB of the available memory are used in the
first three iterations. This whole procedure is repeated 2
times (2 × 100 = 200); and in the following (last) iter-
ation, the remaining (250–200 = 50) files are assigned to
2 cores each. In this last iteration, each file is split into
two segments such that the first segment is 60% of the
file size, and the second segment is 40% of the file size.

Results
Effect of file split size and number of cores per file
In order to determine the effect of segment size (into
which a FASTQ file is split) and the number of cores
assigned to a file on run time, we used a test FASTQ file
with 10 million reads from a real RNA-seq experiment
that has targeted a read length of 75 bp. The file is either
read in its entirety (segment size = 1 × 107 reads) or split
into segments of 5 × 106, 2 × 106, 1 × 106, 5 × 105, 2 × 105,
and 1 × 105 reads. That is, when the segment size is 2 × 106

reads, for example, the file is split into 5 segments, each
segment is processed in parallel using the C cores assigned

Fig. 1 Overall workflow of FQStat. FQStat automatically optimizes the number of cores assigned to a file and the file split size (segments). System
resources regarding the available cores and memory are utilized to full capacity
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to the file, and the 5 segments are iteratively analyzed. The
results summarized in Fig. 2 show that when a file is read
in its entirety (i.e., segment size = file size), irrespective of
the number of cores assigned to a file, the optimum per-
formance was achieved. This is expected as splitting a file
into segments and consolidating the results provides a time
overhead compared to reading a file in its entirety.
Increasing the number of cores assigned to a file, irre-

spective of the segment size, decreases the run time of the
program until a certain point beyond which additional
core assignment works against program performance. The
time overhead incurred in parallel programming by using
multiple cores involve task start-up and task termination
times, synchronization, data communications, etc. Our re-
sults indicate that increased core assignment provides, at
some point, enough time overhead that erases the per-
formance benefit obtained by having more cores. For each
segment size, the time required to analyze the test file fol-
lows a valley pattern (Fig. 2). The minimum point, that is
the optimum number of cores assigned to a file, is reached
between 50 and 60 cores. Therefore, we picked the max_
core parameter in FQStat to be 55, which can be adjusted
by the user. Although this limit is unlikely to be reached
in real-life applications, FQStat still provides protection
against performance deterioration by assigning too many
cores per file. Also evident from Fig. 2 is the fact that the
degree of performance deterioration by increased core as-
signment is more pronounced as the file is split into
smaller segments. For example, when 140 cores are
assigned to the test file using a 1 × 105-read segment
size, the run time is ~ 86% of the one-core case. On
the other hand, when the file is read in its entirety,

the 140-core case takes only ~ 19% as much as that
of the one-core case to run.
In addition to the case shown in Fig. 2, we have run

additional simulations where the file size ranged from
106 to 108 reads, the segment size ranged from 105 to
108 reads, the number of available cores ranged from 10
to 140, and each case tried for read lengths of 75 bp,
100 bp, and 150 bp. Our results show that the conclu-
sions attained in the case for Fig. 2 remains true for the
different combinations of files size, segment size, num-
ber of cores, and average read length. Despite showing
slight variations among different combinations, run-
times worsen after the number of cores assigned to a file
exceed a threshold. These results are summarized in
Additional files 1, 2, 3.

Performance gain per assigned core
In order to see the degree of performance increase by
additional core assignment, we defined the term “per-
formance gain” (PG) using the one-core case as the
baseline. The PG for the case when C cores are assigned
to a file is defined as the ratio of the “time to process
the file with one core” to “C times the time to process
the file with C cores.” For example, if C = 2 and we use
exactly half of the time it takes to analyze the file with
one core, then PG = 1. However, if the time to analyze
the file with two cores is less than half of the time it
takes to analyze the file with one core, then PG > 1,
otherwise PG < 1. When PG > 1, it implies improved
gains in performance with respect to the one-core case;
and the larger the PG, the better the improvement in
performance.

Fig. 2 Time performance of FQStat using a test file with 107 reads (~ 75 bp read length). The performance is shown as a function of file split
(segment) size and the number of cores assigned to the file. FQStat performs better with increased segment size, and the improvement in
performance due to increased core assignment reaches a saturation point beyond which additional core assignment deteriorates
program performance
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We used the same test file (107 reads with ~ 75 bp per
read) and segment sizes, as described in the previous
subsection, to calculate the PG for varying core assign-
ments. The results, summarized in Fig. 3, show that the
performance gain due to increased core assignment is al-
ways less than 1 and inversely proportional to the num-
ber of assigned cores. This is somewhat expected as the
benefit obtained by additional cores is undermined by
the overhead incurred by core assignment and data
consolidation. Another outcome of this exercise was
the reassurance of the benefit obtained by increased
segment size. For almost all core assignment cases,
the highest PG is obtained when the segment size
equals the file size; and PGs show a monotonically
decreasing behavior with decreasing segment size, i.e.,
more splits of the file.
The two reported experiments imply that if the num-

ber of files exceeds the number of cores, then we should
assign one core per file and process the files in groups
until all files are analyzed. On the other hand, if there
are more cores than files, then the cores should be di-
vided among the files as evenly as possible. Furthermore,
if there is sufficient available memory, then the files
should be read in their entirety for processing (no splits).
If the system memory is not large enough to read the
files in full, then the segment size into which the files
are split should be as large as possible, constrained by
the memory limitations. For example, if we have 20 files
and 5 cores, our results suggest that it does not help to
analyze the files one at a time, processed in parallel
across the 5 cores; but rather the files should be ana-
lyzed 5 at a time, each assigned to one core, processed
in parallel.

Similar to the previous subsection, we repeated the
simulation shown in Fig. 3 for the aforementioned vary-
ing levels of file size, segment size, number of cores, and
read length. For each combination, our simulation re-
sults indicate that the conclusions based on Fig. 3 hold
true (Additional files 4, 5, 6), i.e., PG decreases with add-
itional core assignment.
There still remains the question, “Does the perform-

ance loss due to additional core assignment exceed the
performance loss due the file splits?” We emphasize that
“performance loss due to additional core assignment”
does not mean longer run times with the additional core
assignment (as long as they are less than max_core, run
times are always improved with additional cores), but we
mean the observed PGs that are < 1 (Fig. 2). On the
other hand, we know that splitting the files deteriorates
program performance as well. However, if we have to
split files, is it better to assign multiple cores per file
without splitting the file than to assign one core per file
and split it? For example, if we have 20 files, 4 cores,
2GB per file, and 4 GB of available memory, should we
still use one core per file and split the files into two seg-
ments of 50%; or should we use two cores per file and
read the files in their entirety? We know that using two
cores per file does not improve the run time by a factor
of two, but we also know that splitting the files deterio-
rates program performance. We try to answer this ques-
tion in the next subsection.

File split versus core assignment
In order to determine the trade-off between a file split and
a decrease in PG with increased core assignment in a
core-limited and/or memory-limited case, we constructed

Fig. 3 Performance Gain (PG) with increased core assignment. The PG for the test file (107 reads, ~ 75 bp read length) as a function of the
number of assigned cores and segment size. A PG less than 1 implies that the run time using C cores is more than 1/C of the one-core run time.
Additional core assignments do not achieve at par PGs and loss in PG becomes worse with decreased segment size
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the following experiment. We generated 100 files of 2 GB
each and limited the resources available to FQStat to 40
cores and 20GB. This way, even if we assign one core per
file, we cannot read all of the files in their entirety, as that
would require 80GB of available memory. Therefore, we
devised three analysis approaches where either one core
per file is assigned (and the files are spilt), or the files are
read in their entirety (but assigned to multiple cores), or a
compromise is made between the two cases. This simula-
tion was repeated for read lengths of 75 bp, 100 bp, and
150 bp.
The results of this experiment are shown in Table 2.

When we assigned 1 core per file, it was necessary to
read the files in 4 splits (i.e., each segment size was 25%
of the file size). Similarly, when we assigned 2 cores per
file, the files needed to be processed in segment sizes of
50%. Finally, assigning 4 cores per file let us read the
files in their entirety. Our results suggest that irrespect-
ive of the read length, the overhead incurred by splitting
the files is less than that of core assignment as the fastest
performance was achieved when one processor per file
was assigned despite splitting the files into four seg-
ments for processing (due to memory limitations).
Therefore, in a core- and memory-limited case, FQStat
assigns one core per file and splits the files based on
memory limitations (Fig. 1).
Following the results of our experiments for perform-

ance optimization, we set up the FQStat processing
strategy, as described in Fig. 1.

Discussion
Given the volume of newly generated and reanalyzed se-
quencing data and the importance of QC analysis,
FQStat uses a parallel programming architecture to
introduce the following improvements: (i) automatic
configuration of system parameters (e.g., core assign-
ment and file segmentation) for optimum performance;
(ii) analysis of multiple data sets for comparative assess-
ment of QC parameters; (iii) not being coupled with
other preprocessing steps (e.g., read mapping or low
quality base trimming) for an easy-to-use, simple, and

fast calculation of QC parameters only; (iv) generating
analysis results separately at the lane-, sample-, and ex-
periment-level so the users can pick and choose high
quality subsets of the sample and/or experiment data; (v)
flagging low quality lanes and/or samples that warrant
further analysis; (vi) generating publication quality out-
put figures and tables. FQStat handles both paired-end
and single-end sequencing data run on single or multiple
lanes. Such input data options and parameters are de-
scribed by the user either using the GUI or the com-
mand-line version of FQStat. The former version is
intended for a single experiment analysis providing the
user a friendly interface whereas the latter is intended to
be included in more complex workflows or batch pro-
cessing. The details of the installation and usage of
FQStat along with step-by-step screenshots of each
process are included in the online tutorial.

Sample output
We tried FQStat on real RNA-seq data available at NCBI’s
SRA database with BioProject ID: PRJNA492713. The
RNA-seq portion of this data set was comprised of 8 sam-
ples where each sample was run on 4 lanes using the Illu-
mina NextSeq 500® platform. The target read length in the
data set was 75 bp and the experiment was performed
using paired-end sequencing. We processed the raw data
using FASTQC (v. 0.11.5) [30] and Trimmomatic (v 0.38)
[31]. This way, we obtained two datasets to be used in
FQStat: “raw” (the dataset as downloaded from SRA) and
“trimmed” (FASTQ files processed using FASTQC and
Trimmomatic). We applied FASTQC separately for each
lane of a sample and identified overrepresented sequences
and other adapter and similar technical sequences, which
were subsequently removed by Trimmomatic (v 0.38) in
the palindrome mode, based on default alignment detec-
tion and scoring parameters. Maximum information qual-
ity filtering followed by a minimum average read quality
threshold of 25 was used in Trimmomatic for low quality
base filtering. Following technical sequence and low-qual-
ity base removal, reads that were shorter than 40 bp were
filtered out.
On the FQStat web page (http://otulab.unl.edu/

FQStat) we provide the full results of FQStat analysis on
2 samples from the described RNA-seq dataset. In Fig. 4,
we provide a sample plot of FQStat for demonstration
purposes. We chose to us the “high-quality bp %” feature
of FQStat as this feature is rarely observed in existing
QC tools and nicely demonstrates the improvements
attained by the trimming and filtering step. We used de-
fault parameters in FQStat, and hence reported the per-
centage of bps that exceeded the quality score of 25 in
both “raw” and “trimmed” FASTQ files. The results indi-
cate that our trimming and filtering strategy has im-
proved the high-quality bp percentage by about 1.5% on

Table 2 Assessing the file split versus core assignment trade-off

Time (sec)

Strategy 1 core per file
25% segment size

2 cores per file
50% segment size

4 cores per file
100% segment size

Read Length

75 bp 2253 2625 2922

100 bp 2262 2684 2931

150 bp 2363 2851 2986

The input to FQStat was 100 FASTQ files each with 2 GB of size. These 100 files
were generated using three different read lengths: 75 bp, 100 bp, 150 bp. The
available resources were kept at 40 cores and 40 GB of memory. For each read
length/analysis strategy combination, the total run time is shown in seconds
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average for both samples on the forward reads (R1).
However, for the reverse reads (R2), sample 1 (S1) has
shown about 4.3% increase in high quality bp percent-
age, whereas this increase jumps up to about 8.6% for
sample 2 (S2) R2 reads, following trimming and filtering.
The starting high quality bp percentage (raw) for both
samples in R2 is low (~ 90% in S1 and 83% in S2), which
probably results in higher % increases due to trimming;
and warrants a more careful look at the R2 data, provid-
ing feedback to the experimental phase of the project.

Comparison with other QC tools
We assessed FQStat’s performance in comparison with
the five QC tools listed in Table 1 using the aforemen-
tioned test RNA-seq dataset that consisted of 100 2GB
fastq files. In order to have a large dataset size, we multi-
plexed these files to be used as their paired-end counter-
parts, as well as the trimmed and filtered versions,
resulting in 400 files. The test files used in this manu-
script can be found on the FQStat website (http://otulab.
unl.edu/FQStat). All of the tools used in our simulations
implemented a parallel programming architecture and
provided basic QC parameters. The test was done using
two configurations. The first configuration was 140 cores
with 768 GB of available memory aimed at mimicking a
medium-to-high resource. The second configuration
represented a more typical, low-to-medium resource and

had 16 cores with 128 GB of available memory. As
shown in Table 3, FQStat outperforms most other QC
tools that utilize a parallel architecture.
Where applicable, we used only the quality control as-

pect of the programs, omitting other processing steps
(e.g., trimming and filtering) that would increase run time.
NGS QC Box was the only program that outperformed
our program, FQStat. However, NGS QC Box (run in
“quick mode” in our simulations) did not generate QC sta-
tistics at the sample level but rather generated these statis-
tics at the experiment level. In other words, while FQStat
generated detailed statistics for each of the 400 files, NGS
QC Box generated 4 values for each statistic, one for each
“experiment”: Raw Pair1, Raw Pair2, Trimmed Pair1, and
Trimmed Pair2. As generating an ensemble statistic for
the entire 400 files requires dramatically less time than
generating individual statistics for each of the 400 files, we
believe FQStat’s effective performance is better than that
of NGS QC Box. We also note that compared to NGS QC
Box, FQStat attains a higher ratio of reduction in run-time
when the system resources are improved (~ 3.5 vs. ~ 2.4),
which may be attributable FQStat’s ability to optimize sys-
tem resources.

Conclusions
Despite the popularity of DNA/RNA sequencing, there is
still need for a high-speed tool that uses parallel

Fig. 4 Sample FQStat output displaying high-quality bp %. The percentage of bps that exceeds the default high-quality bp score of 25 are
displayed for “raw” and “trimmed” FASTQ files. The percent difference between the two datasets is shown in the secondary y-axis. The results are
shown for two samples (S1 and S2), for both forward and reverse reads (R1 and R2), for all four lanes (a, b, c, and d)

Chanumolu et al. BMC Bioinformatics          (2019) 20:424 Page 8 of 10

http://otulab.unl.edu/FQStat
http://otulab.unl.edu/FQStat


programming to gauge the quality of the data without
committing to other sequence processing steps, automat-
ically optimizes system performance, processes more than
one dataset comparatively, and analyzes the data at lane-,
sample-, and experiment-levels. We developed FQStat to
address these issues and provide this platform-independ-
ent tool with a graphical user interface that is easy to use.
FQStat works faster than similar QC tools and identifies
and marks low-quality data to be further inspected by the
user. The output can be easily monitored through two
HTML files (one for graphs and one for tables), and the
results are also stored in tab-delimited text files and publi-
cation-ready figure formats. We believe FQStat can be
used by any sequencing pipeline to assist with experimen-
tal and analysis workflows, and we plan to continuously
improve FQStat by incorporating additional QC parame-
ters in its analysis core.
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