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Abstract

In 2009, public health agencies across the globe worked to mitigate the impact of the swine-origin influenza A (pH1N1)
virus. These efforts included intensified surveillance, social distancing, hygiene measures, and the targeted use of antiviral
medications to prevent infection (prophylaxis). In addition, aggressive antiviral treatment was recommended for certain
patient subgroups to reduce the severity and duration of symptoms. To assist States and other localities meet these needs,
the U.S. Government distributed a quarter of the antiviral medications in the Strategic National Stockpile within weeks of
the pandemic’s start. However, there are no quantitative models guiding the geo-temporal distribution of the remainder of
the Stockpile in relation to pandemic spread or severity. We present a tactical optimization model for distributing this
stockpile for treatment of infected cases during the early stages of a pandemic like 2009 pH1N1, prior to the wide
availability of a strain-specific vaccine. Our optimization method efficiently searches large sets of intervention strategies
applied to a stochastic network model of pandemic influenza transmission within and among U.S. cities. The resulting
optimized strategies depend on the transmissability of the virus and postulated rates of antiviral uptake and wastage
(through misallocation or loss). Our results suggest that an aggressive community-based antiviral treatment strategy
involving early, widespread, pro-rata distribution of antivirals to States can contribute to slowing the transmission of mildly
transmissible strains, like pH1N1. For more highly transmissible strains, outcomes of antiviral use are more heavily impacted
by choice of distribution intervals, quantities per shipment, and timing of shipments in relation to pandemic spread. This
study supports previous modeling results suggesting that appropriate antiviral treatment may be an effective mitigation
strategy during the early stages of future influenza pandemics, increasing the need for systematic efforts to optimize
distribution strategies and provide tactical guidance for public health policy-makers.
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Introduction

In March/April 2009, a new swine-origin strain of influenza A/

H1N1 virus (pH1N1) was detected in human populations in

California and Mexico. The U.S. government declared a Public

Health Emergency on April 26, 2009, followed on June 12 by a

declaration of a global pandemic by the World Health

Organization. By May 6, the U.S. Centers for Disease Control

and Prevention (CDC) had distributed 11 million of the 50 million

antiviral treatment courses held in the federal portion of the

Strategic National Stockpile (SNS); since the recipients had local

stockpiles as well, this allowed the CDC to exceed the pre-

determined target of distribution of 31 million treatment courses of

oseltamivir and zanamivir prior to the acceleration phase of the

pandemic [1]. Accompanying the distribution was guidance

recommending the use of antivirals primarily for treatment of

suspected or confirmed cases of severe respiratory infection caused

by this new strain [2]. Recent extrapolations from reported cases

estimate that the pandemic caused over 50 million infections in the

U.S. population; the majority of these have been asymptomatic or

clinically mild, but pH1N1 nevertheless led to a substantial burden

of hospitalization and death [3,4].

In contrast to the clear guidance for public health leaders

regarding the initial shipment of antivirals, the evidence base for

determining the fate of the remainder of the stockpile is thin. Key

policy statements have called for the use of mathematical models

to support the development of an evidence-based policy for

effectively deploying the remaining antiviral stockpile and other

limited or costly measures to limit morbidity and mortality from

pH1N1 [5,6]. While mathematical modelers have taken great

strides towards building predictive models of disease transmission

dynamics within human populations, the computational complex-

ity of these models often precludes systematic optimization of the

demographic, spatial and temporal distribution of costly resources.

Thus the typical approach has been to evaluate a relatively small

set of candidate strategies [7–10].

Here, we use a new algorithm that efficiently searches large

strategy spaces to analyze the optimal use of the U.S. antiviral

stockpile against pandemic influenza prior to widespread and

effective vaccination. Specifically, we seek to compute explicit
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release schedules for the SNS to minimize the cumulative

infections in the first twelve months of an epidemic like that

caused by pH1N1, with the objective of delaying disease

transmission to allow for the development and deployment of a

vaccine. We assume, in line with recent CDC guidance, that

antivirals will be used exclusively for treatment of symptomatic

individuals rather than wide-scale pre-exposure prophylaxis. We

apply our algorithm to a U.S. national-scale network model of

influenza transmission that is based on demographic and travel

data from the U.S. Census Bureau and the Bureau of

Transportation Statistics. We consider disease parameters esti-

mated for the novel 2009 pH1N1 pandemic as well as more highly

transmissible strains of pandemic influenza.

Methods

We couple a fast, scalable, and adaptable optimization

algorithm to a detailed simulation model of influenza transmission

within and among the 100 largest cities in the United States (total

population of 196 million). In brief, the method involves running a

structured set of stochastic simulations of influenza transmission,

with the optimization algorithm identifying the best choice of

intervention policy based on a specific policy goal.

Optimization method
A time-based intervention policy is a series of actions

A1,A2, . . . ,AD taken in sequence over D time periods (Fig. 1).

Our objective is to rapidly search large sets of time-based

intervention policies to find those that will be most effective at

achieving a public health goal, such as limiting morbidity and

mortality associated with influenza. Using a stochastic disease

simulator, sim(A1,A2, . . . ,AD), that evaluates the outcome of a

given control strategy, we would like to solve the following

optimization problem:

max
A1,A2,...,AD

E½sim(A1,A2, . . . ,AD)�,

where E½:� denotes the expectation with respect to the stochasticity

in the simulator. For the optimization considered in this paper, the

simulator returns the fraction of individuals not infected in the first

12 months of the epidemic.

To compute solutions to the above problem, we use trees to

represent all possible policies (Fig. 1). The first (highest) level of a

policy tree is a single node attached to several edges; each of those

edges corresponds to one of the possible actions in the first time

period and leads to a level-two node. Similarly each level-two node

is attached to edges corresponding to all possible actions during

the second time period, and so on. Each intervention policy

corresponds to a unique path through the tree.

The naive approach to finding the optimal path through the

tree is to simulate multiple disease outbreaks for each intervention

policy (path) and record the expected morbidity or mortality (or

other public health outcome measure). However, such exhaustive

searches are computationally intractable for large trees. We can

more efficiently search for the optimal policy by prudently

sampling paths from the tree.

To strategically search the tree, we use an optimization

algorithm called Upper Confidence Bounds Applied to Trees

(UCT) [11,12]. It selects paths from the tree using a multi-armed

bandit algorithm inside of each tree node. The canonical

application of a bandit algorithm is maximizing the total payoff

from playing a set of slot machines for a fixed number of rounds,

where the payoff distributions of the machines are unknown and,

in each round, we may select only one machine. In this scenario,

each edge emanating from the node corresponds to a slot machine

that can be chosen by the node’s bandit algorithm; for a policy

tree, the edges correspond to possible policy actions. Before each

policy simulation, bandit algorithms within the nodes select an

edge to follow based on the results of prior trials. The combined

choices of the bandit algorithms produce a path through the tree,

corresponding to a sequence of public health actions, that is then

passed into the simulation. The bandit algorithms determine

which edge (action) to follow next by balancing two desirable

characteristics: strong past performance and few prior trials. With

this strategic path sampling, subtrees with good performance are

explored more thoroughly than those with poor performance.

Specifically, suppose we are descending through the tree and

have arrived at node n having k edges to the next level down,

(e1,e2, . . . ,ek), representing all possible subsequent actions. Let

N(ei) be the number of times we have used the intervention

represented by edge ei in prior simulations and R(ei) be a real

number between 0 and 1, describing the average rewards observed

during past simulations where ei was chosen. In the analysis

described below, the reward for a simulation is the fraction of

individuals that remain uninfected during the outbreak. Now

define V~
Pk

i~1 N(ei) to be the total number of times we have

used descendants of n in past simulations. We then select the next

edge as given by

Figure 1. Simple Policy Tree. Suppose there are three possible actions and, in each time step, we can only choose one of them. Each
level in the tree corresponds to a time step and branches represent possible actions. The red path through the tree represents the following three-
step time-based intervention: First choose action 3, then action 1, and finally action 3 again. The policy tree for antiviral distribution has a similar
organization. The UCT algorithm iteratively selects paths through the tree that represent intervention policies to be simulated.
doi:10.1371/journal.pone.0016094.g001

Antiviral Distribution for Pandemic Influenza

PLoS ONE | www.plosone.org 2 January 2011 | Volume 6 | Issue 1 | e16094



argmaxe R(e)z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:logV

N(e)

s( )
: ð1Þ

Initially, N(e) and R(e) are set to zero for each edge. The first k
times we arrive at node n, we choose the next edge uniformly

randomly from the previously unsampled edges descending from

the node, rather than choosing an edge based on Equation [1].

This gives initial estimates of R(e) for each edge and guarantees

that Equation [1] is well defined. At the end of each simulation

run, if the simulation results in a reward of r, we update N(e) and

R(e) for each edge e in the chosen policy path, as given by

R(e)/
R(e):N(e)zr

N(e)z1
N(e)/N(e)z1:

Pandemic influenza transmission model
Our model includes the 100 largest metropolitan areas in the

United States, which we identified by aggregating Census Bureau

Statistical Areas (CBSA) that share a common airport [13,14]. We

model movement among cities using both Census Bureau’s

County-To-County Worker Flow Files [15] and the Bureau of

Transportation Statistics Origin and Destination Survey for all

quarters of 2007, which contains a 10% sample of all itineraries

between U.S. cities [16]. We assume that each exposed or

asymptomatic infectious traveler has some chance of starting an

sustained epidemic in the destination city, by initiating a chain of

transmission events to susceptible individuals. We assume further

that this happens with probability 1{ 1
R0
:S, where S is the fraction

of susceptible individuals in the destination city’s population, as

holds for a simple stochastic SIR model [17]. If there are N
infected travelers this week from city A to city B and the fraction of

susceptibles in city B is S, then the model draws a binomial

random variable from the distribution Binomial(N,1{ 1
R0
:S ) and

creates that many new infected individuals in city B. The number

of infected travelers from city A to city B is calculated based on the

travel data given as input, under the assumptions that symptom-

atic individuals do not travel and travelers are selected uniformly

randomly from the population.

Within each city, disease transmission is modeled using a

compartmental model with five compartments: susceptible,

exposed, asymptomatic infectious, symptomatic infectious, and

recovered (Fig. 2b). Progression from one compartment to another

is governed by published estimates for pandemic influenza

transmission and disease progression rates, as given in Table 1.

When infected individuals progress from asymptomatic to

symptomatic they seek treatment at a rate U (uptake) and receive

treatment if antiviral courses are available locally. While disease

transmission is a continuous process, antivirals are distributed once

per day to those requiring treatment. Antivirals are assumed to be

80% effective [18–24]; and effectively treated cases immediately

move to the recovered compartment. Untreated and ineffectively

treated cases remain infectious until they recover naturally.

Epidemics are initialized assuming that there are 100,000 cases

of pandemic flu in the United States (corresponding to the late

June CDC estimate of over one million pH1N1 cases [25])

distributed stochastically, proportional to city sizes. Thus we are

considering distribution policies that begin approximately one to

two months following the initial emergence of the strain within the

United States. Assuming that maximal flu vaccine coverage can be

achieved within 12 months of the onset of a pandemic, we

terminate the simulations after 12 months or when all cases have

recovered, whichever occurs first. Additional parameter values,

initial conditions and time periods are explored in Supporting

Information (Text S1, Video S1).

Antiviral policy actions
The model considers 11 possible antiviral stockpile actions every

month over a twelve month period: distribution of 0, 1, 5, 10, 25
or 50 million courses apportioned either proportional to

population or proportional to current prevalence. The total

amount released during the twelve month period is not allowed to

exceed the 50 million courses available in the stockpile. We

attempt to increase the realism of the model by assuming that, post

distribution, unused courses ‘‘decay’’ through intra-jurisdictional

misallocation (in the sense of inefficient matching of doses to cases)

or frank loss at a rate W . Wastage includes courses that are

prescribed but go unused, are used to treat false positives, or are

used too late in the course of disease to be effective. It is important

to note that, for the purposes of this analysis, wastage does not

refer to willful misuse. Clinically, we assume that antivirals are

80% efficacious at reducing symptoms and forward transmission

Figure 2. Disease Model. (2a) The U.S. network model for influenza transmission. Circle sizes represent numbers of inhabitants and line thickness
represents the number of travelers between cities. (2b) Within-city compartmental model. The compartments are: susceptible (S), exposed (E),
asymptomatic infectious (IA), symptomatic infectious (IS), and resistant (R). When infected individuals progress from asymptomatic to symptomatic
they seek treatment at a rate U (uptake) and receive treatment if antiviral courses are available locally. While disease transmission is a continuous
process, antivirals are distributed once per day to those requiring treatment. Antivirals are assumed to be 80% effective; and effectively treated cases
immediately move to the recovered compartment. Untreated and ineffectively treated cases remain infectious until they recover naturally. The
parameters of the compartmental model are described in Table 1.
doi:10.1371/journal.pone.0016094.g002
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of the disease [18–24]. If an infected individual resides in a

jurisdiction with remaining distributed antivirals, then they receive

appropriate treatment (i. e., access to medications within 24 hours

of onset of symptoms) with an uptake probability of U . Effectively

treated infected cases (i. e., 0:80|U ) are immediately moved from

the infectious to the recovered compartment, consistent with early

evidence of rapid decline in viral titers in treated pH1N1 patients

[26,27]. Consistent with current CDC antiviral guidance, we did

not model the use of antivirals for large scale prophylaxis of

susceptible populations in the absence of infection.

Computational requirements
Each optimization is based on 48 hours of computation on the

Linux Lonestar Cluster at the Texas Advanced Computing

Center, which offers a peak performance of 10:7 GFLOPS per

optimization process. Roughly 1,000,000 simulations can be done

in this time; however, for this relatively small action space, the

optimal policy is typically identified within six hours of

computation.

Results

First, we consider SNS distribution schedules for the 2009

pH1N1 pandemic (Figure 3). We found that simple distribution

schedules such as releasing an arbitrary fixed quantity each month

from the federal stockpile to the states proportional to population

size perform optimally, due to the mild nature of the disease. In

fact, we find very little difference between two extreme scenarios:

(a) an infinite supply of antivirals available at all times in all cities,

and (b) no federal stockpile releases beyond the 31 million initially

purchased by states (Figure 3a). At low uptake, the initial 31

million courses are sufficient to meet demand; at high uptake, the

aggressive early treatment essentially stops the epidemic before

exhausting supplies; and only at intermediate levels is the the

demand sufficiently high and the epidemic sufficiently long-lived to

exhaust the available supplies (through a combination of treatment

and wastage). A simple SNS release schedule of one million

courses per month proportional to population size (in addition to

the initial 31 million courses) is sufficient to meet the ongoing

demand, regardless of uptake, and thus performs well as an infinite

supply (Figure 3a).

The rapid allocation of the first Federal stockpile allotment and

the contributions of antivirals by the states to provide for the 31

million courses in the early stages of the epidemic are critical in

these simulations. If we remove these courses and assume

conservatively that the first Federal distributions take place

approximately 3–4 months into the pandemic, we find that

antiviral treatment only modestly slow transmission (Figure 3b).

Simple release schedules are predicted to perform much more

poorly without the initial distribution, with large early distributions

outperforming regular small distributions.

We assumed a reproduction number of R0~1:4 for 2009

pH1N1 [28–31]. In contrast, we obtained different results for

more transmissible strains of pandemic influenza, with reproduc-

tion numbers R0~1:6, R0~2:0, and R0~2:4 [10,32,33].

Figures 4a–4c include the following performance curves:

1. Several policies in which the stockpile is released monthly

in fixed quantities proportional to population size, until the

12 month time horizon is reached or until the SNS is

depleted. The releases range from 1 million courses for 12

months, to a single release of 50 million courses.

2. An idealized scenario with an infinite supply of antivirals

available to each city throughout the epidemic. The

outcome of this scenario indicates the maximal potential

impact of antiviral use at any given utilization rate, free of

any logistical constraints on supply.

3. Two optimized strategies resulting from our analysis. In one

optimized strategy, we allowed releases to be either

proportional to population size or proportional to influenza

prevalence in the city. In the other optimized strategy, we

allowed only releases proportional to population.

Table 1. Influenza transmission and intervention parameters.

Parameter Symbol Value Reference

2009 pH1N1 Parameters

reproductive number R0 1.3, 1.4, 1.5 [28–31]

mean exposed period L 1 day [29]

mean asymptomatic infectious period IA 1.05 [29,30]

mean total infectious period (asymptomatic + symptomatic) I 2.3 days [29]

Pandemic Influenza Parameters

reproductive number R0 1.6, 2.0, 2.4 [10,32,33]

mean exposed period L 1.9 days [10,32,33]

mean asymptomatic infectious period IA 1.05 [10,32,33]

mean total infectious period (asymptomatic + symptomatic) I 4.1 days [10,32,33]

Intervention parameters

antiviral efficacy e 80% [18–24]

local stockpile half-life (wastage) W 2 months

antiviral uptake U (0,1)

mean infectious period prior to effective AV treatment IAz:5 days

The parameters for 2009 pH1N1 were calculated based on an incubation period of 2:05 days, a serial interval of 2:6 days, and an assumed exposed period of 1 day [29].
The calculations lead to an infectious period coinciding with infectivity that is within 80% of peak levels [29]. The parameters for pandemic influenza are in agreement
with the literature [10,32,33]. Note that, as depicted in Figure 2b, some infectious individuals may recover before becoming symptomatic.
doi:10.1371/journal.pone.0016094.t001
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Unlike the 2009 pH1N1 scenario, more contagious strains of

pandemic influenza require greater care in selection of antiviral

release strategy. For example, the simple policy of 1 million

courses released monthly now significantly under performs the

other strategies (Figure 4). Optimized release policies (computed

by UCT optimization) consistently perform almost as well as the

infinite supply scenario. In all cases, except when the reproduction

number is 2.4 and the uptake is 0.75, the optimality gap – difference

in performance of computed policy and best idealized outcome

divided by the best idealized outcome – is at most one tenth of one

percent. For the single outlier scenario, the optimality gap is 2:5%

for a policy using population only releases and 11:35% for a policy

Figure 3. Antiviral SNS Policy Performance for 2009 pH1N1. Since the results all values of R0 (1:3,1:4,1:5) are similar, we only present those
where R0~1:4. We compare the performance of various policies at different levels of antiviral uptake (horizontal axes) in terms of the cumulative
number of cases in the first twelve months (vertical axes). (3a) Performance of antiviral control policies assuming a pre-distribution of 31 million
courses proportional to population size. The infinite supply curve (green) corresponds to an idealized scenario where an infinite supply of antivirals is
always available to each city. The no additional release curve (blue) assumes that no courses are released beyond the pre-distributed 31 million
courses. The 1 M monthly curve (red) assumes that 1 million courses are distributed proportional to population size beginning in the third month of
the pandemic, in addition to the 31 million pre-released courses. The infinite supply curve overlaps completely with the 1 M monthly curve.
(3b) Performance of simple fixed releases proportional to population size assuming that no courses are pre-distributed and the first releases occur
approximately three months into the US epidemic (two months after our simulations are initialized with 100,000 cases). In reality, antiviral uptake
rates are limited by clinical manifestations of the disease (symptoms). For example, the presence of fever was one recommended criterion for
prescribing antivirals for pH1N1. The blue highlighted regions of the curves indicate the range of uptake rates that might be medically feasible under
proactive intervention, although the maximum attainable coverage for flu is possibly much lower than 50%.
doi:10.1371/journal.pone.0016094.g003
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allowing both population and prevalence releases. The under

performance of the mixed strategy stems from the vast size and

structure of the policy tree over which optimization is performed,

and is discussed further below.

Under realistic assumptions about transmissability, we found

that simple release schedules perform almost as well as the

optimized policies. For example, at R0~1:6, the policies of

releasing 5 million or 10 million courses monthly performed as

well as the infinite supply scenario; at R0~2:0, only the policy of

10 million courses released monthly performed as well as the

infinite supply scenario. However, at the extreme range of

influenza transmissability (i.e., R0~2:4), none of the simple

policies performed as well as the optimized policies.

In all of the simulations, the proportion of infected individuals

who seek timely treatment (what we refer to as uptake) has a

dramatic impact on both policy optimality and outcomes.

Figure 5 shows the optimized policies for pandemic flu with a

reproduction number of 2:0, allowing distributions either

proportional to population size or proportional to local disease

prevalence (Figure 5a) or only proportional to population size

(Figure 5b). At an uptake of 20%, the optimized mixed strategy

entails a single distribution of 50 M courses proportional to local

prevalence, while the optimized population-based strategy distrib-

utes 10 million courses in the first month, followed by 25 million, 1

million, 10 million, 1 million, and 1 million in the following

months. However, Figure 4b shows that these two optimized

strategies as well as fixed releases of 5 million to 50 million per

month proportional to population size perform optimally, on par

with the infinite supply scenario. Figure 5c furthermore illustrates

that, at uptake of 20%, an initial release of 25 or 50 million courses

proportional to population size performs as well as the

(population-only) optimized policy of 10 million courses. Although

there are often multiple optimal policies, this is not the case for

uptake rates ranging between 40% and 80%. At these relatively

high levels of treatment, the optimized policy is more clearly

defined (Figure 5c) and most simple policies perform suboptimally

(Figure 4b).

Even when prevalence-based releases are allowed, the optimal

policies tend to be dominated by population-based releases

(Figure 5a). This combined with the comparable performance of

exclusively population-based policies across all scenarios suggests

that prevalence-based distributions are probably unnecessary.

Thus we focus on Figures 5b and 5c to gain quantitative insights

into the relationship between uptake and best policy. At low levels

of uptake (between 0% and 15%) essentially all releases perform

optimally (Fig. 5c). At these levels of uptake, so few people are

treated that the initial 31 M courses satisfies the demand. For

uptakes between 20% and 55%, additional courses from the

Federal SNS are necessary to meet demand, and thus the optimal

policies involve sizable early releases. For uptakes between 60%
and 85%, wastage becomes even more of an issue and thus the

success of the policy is highly sensitive to the exact distribution of

the initial releases. Here, the optimal schedules delay and extend

the distribution over several months (Fig. 5b). Finally, for the

highest levels of uptake (greater than 90%), the pre-released 31 M

courses are sufficient to control the epidemic, as seen also in

Figure 4b.

Discussion

Since avian influenza H5N1 became a potential public health

threat in 2003, public health agencies around the globe have been

planning for the next influenza pandemic. While the concerted

response to pH1N1 reflects this careful preparation, several

Figure 4. Antiviral SNS Policy Performance for Pandemic
Influenza. We compare the performance of various policies at different
levels of antiviral uptake (horizontal axes) in terms of the cumulative number
of cases in the first twelve months (vertical axes) for pandemic strains with
reproduction numbers: (4a) R0~1:6, (4b) R0~2:0, and (4c) R0~2:4. Each
figure displays compares several policies including: 1) several fixed monthly
distributions proportional to population size, 2) an idealized scenario with
infinite supply of antivirals available to each city, and 3) optimized policies
allowing either a combination of population and prevelance-based releases
or solely population based releases. For strains with R0 of 1:6 and 2:0, some
simple policies are predicted to perform as well as the idealized scenario,
however, for R0 of 2:4, no simple policies are comparable with the idealized
scenario. The optimized control policies always outperform the simple
policies and typically match the performance of the idealized scenario.
Similar to the results shown in Figure 3, the true maximal attainable uptake
rates would be limited by the clinical symptoms of a future pandemic.
doi:10.1371/journal.pone.0016094.g004
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expected and unexpected events, including its apparent North

American origin, the rapid overburdening of U.S. laboratory

capacity, non-uniform testing and treatment policies among U.S.

states, and delays in production of a viable vaccine, all reinforce

the need for a dynamic and quantitative playbook for pandemic

mitigation using pharmaceutical countermeasures.

By adapting an established algorithm to optimize disease

mitigation policies, this study provides an advance from the

traditional candidate strategy approach to rapid and systematic

analysis of numerous policy options. This is just one of many

possible optimization methods suitable for this purpose [34–37].

Our choice of UCT was based on the insight that, with some

careful modeling, disease intervention strategies can be nicely

mapped onto policy trees and that this approach can be coupled to

any stochastic epidemic model. This approach has performed

successfully on large policy trees [38] and has favorable

convergence properties [35]. In particular, unlike simulated

annealing and genetic algorithms, it is guaranteed to eventually

converge on the optimal policy.

The UCT algorithm preferentially samples subtrees of the

policy tree that have performed well in the past (see [35] for a

mathematical discussion). The algorithm performs best when all of

the policies within a single subtree of the policy tree perform

similarly; it can then effectively determining the ‘‘goodness’’ of any

subtree by sampling it only a few times. To achieve algorithmic

efficiency, one should therefore use expert knowledge and intuition

to structure the policy tree in this way. If there is a single optimal

solution in a subtree surrounded by many poorly performing

Figure 5. Optimized Policies for Pandemic Influenza with a Reproduction Number of 2:0. (5a) Optimized policies combining prevalence-
based (red) and population-based distributions (blue). Each row gives the optimized sequence of actions for a given value of uptake. (5b) Optimized
policies allowing only population-based distributions. (5c) Performance of possible actions for the first distribution for a population-based policy, two
months after the pandemic has reached 100,000 cases. Shading indicates number of times an action was visited during the optimization routine, and
is thus proportional to the performance of the action.
doi:10.1371/journal.pone.0016094.g005
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solutions, then the UCT algorithm may require many simulations

to find it (although it is guaranteed to eventually do so).

Unbalanced policy trees, with one subtree much deeper than

another, are natural topologies to produce such an unfavorable

grouping of solutions. The single outlier in Figure 4c was likely

caused by a combination of imbalance in the antiviral policy tree

and the sheer volume of policy options at each time point. First,

one subtree includes releasing the entire SNS in the first month

with no actions following, while another involves waiting several

months to release a small sequence of antivirals. Second, allowing

both population-based and prevalence-based distributions increas-

es the options available at each time point and reduces the depth

to which policies can be optimized in a given amount of time.

Although we know that the outlier is not the true optimal solution,

we have have opted to present it in the graphs to highlight

intuition on the algorithm’s performance. For UCT, additional

simulations are guaranteed to improve the optimality gap; in this

case, they would have moved the optimized mixed policy to at

least match the optimized population-based policy.

We initially conducted this analysis during summer 2009, as the

pH1N1 pandemic was unfolding, in response to questions posed to

us by public health agencies regarding the effective use of antivirals

prior to the availability of pH1N1 vaccines. Although the CDC

has since issued antiviral guidelines and pH1N1 vaccines are now

widely available, our analyses provide insight into the likely

impacts of antivirals on pH1N1 transmission to date and effective

strategies for antiviral-based mitigation of future flu pandemics.

Our analysis suggests that while pH1N1 may have been slowed

with targeted, aggressive, and clinically successful use of antivirals,

the impact of such a policy would have been highly insensitive to

the choice of Federal distribution schedule. The 31 million courses

already available to states prior to the pandemic would have gone

a long way towards meeting the early demand. However, for more

contagious pandemic strains (with higher reproduction numbers),

use of an optimized distribution schedule would be expected to

significantly improve the intervention outcome. In some cases,

simple strategies involving regular fixed releases perform as well as

more complex optimized strategies. For example, for a pandemic

strain with R0~2:0, a monthly distribution of 10 million regimens

divided proportional to population among the states consistently

matches or outperforms other policy options, regardless of the

levels of uptake or potential misallocation or loss of medication,

which are likely in a complex health emergency response setting.

Slight variations on this policy, for example, regular distributions

of 5 or 25 million courses are predicted to perform significantly

worse across a large range of uptake values. From a public health

perspective, the best policies are those that have robust

performance in a variety of scenarios. The search for such robust

policies can be implemented directly into the optimization

method, by having the simulator sample from a prior distribution

of scenarios. However, no guarantee exists that a single policy can

be robust against all the scenarios under consideration.

Our optimization allowed for the possibility of distributions

proportional to prevalence, although such actions are not

consistent with the current CDC policy and would likely be both

politically and logistically difficult. Technically, implementing such

a scheme would impose a major surveillance burden, as it would

necessitate the estimation of prevalence rates throughout the

nation based on noisy or delayed data. Notably, the results suggest

that prevalence-based distributions are not expected to enhance

the impact of antiviral treatments.

The impact of antiviral treatment policies is naturally sensitive

to the rate at which individuals who should receive these

countermeasures actually do in clinical settings (U ). From a study

of pH1N1 antiviral uptake in Milwaukee during summer 2009,

preliminary estimates of the fraction of reported cases receiving

treatment within 48 hours of developing symptoms are less than

20% [39]. In September 2009, the CDC issued antiviral guidelines

the encouraged prioritization of high risk cases and discouraged

antiviral treatment of typical cases. This suggests that throughout

the summer and fall of 2009, we have likely been in the range

where all strategies perform equally poorly and are predicted to

minimally mitigate transmission. This is not to say that antivirals

have had no impact on pH1N1 outcomes: to date, they have been

used to significantly reduce morbidity and mortality associated

with pH1N1 when used in potentially severe cases. Thus, for

future pandemics, public health measures to increase the rates of

antiviral usage beyond current levels may have the potential to

slow transmission prior to the availability of vaccines. An increase

in uptake rates may be practically limited by clinical symptoms of

the disease in question, such as the presence of fever, which was

one recommended criterion for prescribing antivirals. Our analysis

shows, however, that the impact of antiviral control measures

depends not only on the rates of uptake but also may critically

depend on the Strategic National Stockpile distribution schedule

used to sustain that uptake, particularly for highly contagious

strains.

We did not consider the development of antiviral resistance in

this study. Currently circulating strains of seasonal influenza have

acquired resistance to oseltamivir [40] and there is evidence that

the pH1N1 virus is capable of experiencing genetic mutations that

confer resistance to at least one neuraminidase drug; thankfully, to

date there is little evidence of sustained transmission of such

mutations. We also did not incorporate the use of antivirals for

prophylaxis, the future availability of vaccines, simultaneous use of

vaccines or NPI’s like school or event closures, or the option of

targeting the stockpile towards particular demographic groups, all

of which are likely important and may influence the optimal

policy.

The effectiveness of any antiviral policy will depend critically on

the extent to which antivirals reduce the severity and transmission

of flu. Our assumptions regarding antiviral efficacy are in

agreement with the literature [18–24]; most of these studies

assume maximum likelihood-based estimates of antiviral efficacies

calculated by Longini et. al [32] using data from a clinical study by

Welliver et. al [41]. More recent clinical trials indicate that the

odds of a secondary infection in individual contacts decreases by

approximately 50% when antivirals are used on the day of onset

(OR: 0:5, 95% CI: 0:17, 1:46) [42,43]. While the antiviral efficacy

we assumed here lies well within the confidence intervals estimated

in these papers, better estimates of these and other parameter

values will certainly improve the future optimization studies.

In this study, we assume that all distributed antiviral courses

undergo wastage. There are multiple potential causes of wastage,

including courses that are prescribed to patients who never use

them, use them to treat diseases other than flu, or use them too late

in their flu infection to significantly impact transmission. Since

there is very little information on the rates at which such loss or

misuse occurs, let alone how these rates change over the course of

a pandemic, we have modeled wastage using a generic decay

function. Comparisons between the optimized policies (assuming

wastage) and an infinite supply scenario (with no wastage) suggest

that there exist distributions schedules that effectively avert

potential public health costs associated with wastage. Although

better estimates of the magnitude and dynamics of wastage would

improve the accuracy of the model and may suggest slightly

different optimal strategies, we expect that those strategies will still

overcome the potential detrimental effects of wastage.
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Our work complements a growing body of modeling studies on

the distribution and timing of antiviral and vaccination policies.

Bajardi et al. recently developed a similar large-scale geographic

disease spread model, with which they showed that a vaccination

campaign following the initial outbreak may require additional

mitigation strategies to delay the epidemic [44]. Danon et al.

showed, however, that such models can be sensitive to the addition

of movement patterns not captured in census data; specifically, the

addition of random movement can hasten an epidemic [45]. A

modeling study by Handel et al. suggests that when antivirals are

the only mode of control, using antivirals towards the end of the

epidemic to minimize overshoot is a good control policy [46]. An

intuitive mathematical model developed by Lipstich et al. shows

that while antiviral use likely promotes the rise of antiviral resistant

strains, they nonetheless can significantly delay the epidemic [47].

Studies by Nuño et al. and Wu et al. also suggest that antivirals

used for treatment can slow the spread of the epidemic [48,49].

Vaccination studies may provide some insight into the potential

impacts of large scale antiviral prophylaxis, which we have not

considered in our analysis. For example, using a deterministic

meta-population model, Wu et al. showed that it may be

preferable to allocate large quantities of vaccines to particular

geographic areas in order to achieve local herd immunity as

opposed to distributing vaccines proportional to population [50].

Ball et al. have studied a related vaccine distribution problem on a

graph-based model of disease spread, and also show that targeting

local groups performs well if the entire sub-population can be

effectively protected [51]. Finally, Bootsma and Ferguson studied

the 1918 influenza pandemic, and found that the timing of

interventions can be critical, with delays in implementation and

premature lifting of interventions reducing the impact of control

measures [52].

From rapid genetic sequence analysis to automated syndromic

surveillance systems, public health emergency response is rapidly

improving in technical capabilities both in the U.S. and

worldwide; the rapid response to and characterization of the

novel pandemic influenza A (pH1N1) virus is a testament to this.

However, planning the policies of public health response to such

identified and emergent threats remains a highly non-quantitative

endeavor. We present here a policy optimization approach that is

highly modular and can be easily adapted to address multiple

additional issues. Our hope is that these quantitative methods will

assist clinical experts in developing effective policies to mitigate

influenza pan- and epidemics using a combined arsenal of

vaccines, antivirals and non-pharmaceutical interventions. Specif-

ically, a very similar analysis can be used at the international level

to optimize global allocation of the WHO’s limited antiviral

stockpile to resource-poor countries. One can substitute any

stochastic model of disease transmission, at any scale, for our

national-scale, U.S. influenza model. In addition, while the

optimization algorithm is particularly well suited for time-based

interventions, any well-behaved policy space can be used [35].

The approach should thereby facilitate a more comprehensive

consideration of pandemic policy options, and will perhaps

confirm the efficacy of the current policy or suggest more

promising strategic options for the future.
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