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Abstract

Patient-specific prediction of cellular response to multiple stimuli is central to evaluating clinical 

risk, disease progression, and response to therapy. We deployed Pairwise Agonist Scanning (PAS) 

to measure calcium signaling of human platelets in EDTA-treated plasma exposed to 6 different 

agonists (at 0.1, 1, and 10×EC50) used individually or in 135 pairwise combinations. With 154 

traces, we trained a neural network (NN) model to accurately predict the entire 6-dimensional 

response to ADP, convulxin, U46619, SFLLRN, AYPGKF, and PGE2. The NN successfully 

predicted calcium responses to sequential agonist additions, all ternary combinations of [ADP]+

[convulxin]+[SFLLRN] (R=0.88), and 45 different combinations of 4 to 6 agonists (R=0.88). 

Furthermore, PAS provided 135 pairwise synergy values that allowed a unique phenotypic scoring 

and differentiation of 10 donors. Training of NNs with pairs of stimuli across the dose-response 

regime represents a highly efficient approach to predict integration of multiple, complex signals in 

a patient-specific disease milieu.

Platelet activation is central to the thrombotic risks and events surrounding 1.74 million 

heart attacks and strokes, 1.115 million angiograms, and 0.652 million stent placements in 

the United States each year1. During clotting, platelets experience diverse signaling cues 

simultaneously. Collagen activates glycoprotein VI (GPVI)-dependent tyrosine kinase 

signaling, ADP is released from dense granules to activate the G-protein coupled receptors 

(GPCRs) P2Y1 and P2Y12, while thromboxane A2 (TxA2) is synthesized by platelet 
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cyclooxygenase 1 (COX1) and binds TP receptors. Tissue factor at the damaged vasculature 

leads to the production of thrombin which cleaves the protease activated receptors PAR1 

and PAR4. These activating signals occur in the context of inhibitory signals from 

endothelial nitric oxide and prostacyclin. While all these events occur simultaneously in vivo 

and platelet signaling varies spatially and temporally in growing thrombi2, few experimental 

or computational tools are available for building a global understanding of how a cell 

integrates multiple stimuli present at varying levels.

We developed a high throughput platform that measures the human platelet response to all 

pairwise combinations of six major agonists. Agonists tested were: convulxin (CVX; GPVI 

activator), ADP, the thromboxane analog U46619, PAR1 agonist peptide (SFLLRN), PAR4 

agonist peptide (AYPGKF), and PGE2 (IP receptor activator). The method yields high-

resolution dynamic measurements of intracellular calcium (Ca2+) which is the convergent 

node of platelet signaling pathways (Fig. 1a) and is critical to granule release, exposure of 

phosphatidylserine, actin polymerization, shape change, and integrin activation3. To 

determine appropriate dynamic ranges for the 6 agonists (Fig. 1a), each compound was first 

tested individually to determine each dose response relationship (Supplementary Fig. 1). The 

inhibitory response of PGE2 was studied by concomitantly stimulating the platelet with 60 

μM SFLLRN. Then pairwise “inputs” were applied in all combinations to dye-loaded 

platelet rich plasma (Fig. 1b). The calcium traces allowed training of a 2-layer NN model to 

predict the dynamic response to all combinations of agonists used at any concentration (Fig. 

1c).

Endogenously released ADP or TxA2 had no effect on the Ca2+ signal since 2 units/ml 

apyrase and/or 15μM indomethacin had no effect on individual responses (Supplementary 

Fig. 2 and Supplementary Tables 1 and 2). All experiments were conducted in 5 mM EDTA 

to chelate extracellular calcium. The removal of external calcium does not affect the ability 

of the receptors studied to signal, since no appreciable difference in EC50s were noted with 

or without external calcium (Supplementary Fig. 1a,b). Although such an experimental 

design does not capture the contribution of store operated calcium entry, it offers several 

operational advantages by (i) lowering background fluorescence without extensive platelet 

washing, (ii) preventing thrombin production, (iii) inhibiting granule release4, 5 as well as 

TxA2 formation6, and (iv) inhibiting integrin mediated signaling downstream of Ca2+ 

release7. Thus, the resulting traces of Ca2+ are directly dependent only on receptor mediated 

release from intracellular stores.

We tested all 135 pairwise combinations of low (0.1×EC50), moderate (1×EC50), and high 

(10×EC50) agonists concentrations (Fig. 2a). The pairwise agonist synergy score (Sij) is the 

scaled difference between the integrated transient (area under the curve) for the combined 

response and the integrated area for the individual responses (Fig. 2b) (Sij>0, synergism; 

Sij=0, additivity; Sij<0, antagonism). Neural networks are remarkable in learning patterns of 

inputs and predicting outputs by optimizing intermediate connection weights, akin to a 

platelet’s ability to respond to multiple thrombotic signals through coupled biochemical 

reactions. Motivated by the notion that a living cell is essentially a neural network whose 

connection weights have been selectively adjusted during evolution8, we took a “top-down” 

approach9 to model platelet signaling. A NN model was trained on these 154 time-course 
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traces (135 pairwise responses, 18 single agonist responses, 1 null control response) and 

captured both the time-course behavior (R=0.968 for correlation between time points) and 

the pairwise agonist synergy (R=0.884) for correlation between Sij scores (Supplementary 

Fig. 3) with excellent accuracy (Fig. 2a,b).

Then, we measured all 64 ternary combinations of the agonists ADP, SFLLRN, and CVX at 

0, 0.1, 1, and 10×EC50 concentrations (Fig. 3a). A CVX response requires GPVI 

multimerization10 and is characterized by a slow rise to a large peak signal followed by a 

slow decline. Gq–coupled responses (ADP or SFLLRN) produce rapid bursts that are 

quickly brought down to baseline. Increasing CVX for a fixed ADP level resulted in a 

steady increase in Ca2+ on longer timescales. In contrast, increasing ADP for a fixed CVX 

level bolstered early Ca2+ release. A moderate dose of both ADP and CVX (for 0 and low 

SFLLRN) produced a response that almost instantaneously plateaued at a steady level above 

baseline. The NN model, trained exclusively on the pairwise interaction data set (Fig. 2a), 

successfully predicted experimentally observed trends in the ternary interactions among the 

three agonists studied. Both the time-course behavior (R=0.844) and ternary agonist synergy 

scores (R=0.881) (Supplementary Fig. 4) were accurately reproduced for the 27 unique 

ternary conditions in this experiment that were not present in the training set.

To fully test and utilize the predictive power of the NN, we made in silico time-course and 

synergy predictions for the complete 6-dimensional agonist space consisting of 4077 unique 

agonist combinations of 2 to 6 agonists at 0.1, 1, or 10×EC50 concentrations. The full 

distribution of synergy predictions for all 4077 agonist combinations is shown as a vertical 

heat map in Fig. 3c. Based on these predictions (Supplementary Fig. 5), we selected 45 

combinations of 4, 5 or 6 agonists that displayed a range of predicted synergy scores from 

synergy to strong antagonism and tested them experimentally in addition to no agonist and 

18 single agonist controls (Fig. 3b). To prevent any bias in the selection we selected 

conditions that had maximal dissimilarity in the types and concentrations of agonists. We 

found strong agreement between both predicted and measured transient shapes (R=0.845) in 

Fig. 3b and Supplementary Fig. 6a, as well as between predicted and measured Sij scores 

(R=0.883, slope=1.08) (Fig. 3c). Artificially neglecting NN inputs typically but not always 

reduces predictive accuracy (Supplementary Fig. 6b), indicating that the NN does not 

merely rely on smaller subsets like dominant pairs. Conditions containing high levels of all 

agonists showed especially low synergy due to saturation of Ca2+ release. The highest 

synergy was observed for agonist combinations that contained high levels of the 

thromboxane analog U46619 with no PGE2 present (Fig. 3c, orange bar). Given that only 8 

of 45 conditions had maximal U46619/PGE2 ratio, this ordering of the top 3 conditions was 

highly significant (p <0.004), considering there are 14,190 possible ways to order the first 3 

conditions of which only 56 combinations would contain high U46619 and low PGE2. Thus, 

the NN model trained on pairwise data facilitated discovery of a high dimensional synergy 

that occurs at high U46619/PGE2 ratio (at low levels of ADP, SFLLRN and submaximal 

levels of AYPGKF) consistent with the known cardiovascular risks of COX2 inhibitors that 

prevent endothelial production of prostacyclin without affecting platelet production of 

thromboxane11. This points to a “high dimensional COX2 inhibition risk” of high 
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concentrations of thromboxane, in the absence of PGI2, potentiating the effects of other 

agonists.

We also explored the effect of adding the agonists ADP, SFLLRN and CVX in various 

sequential combinations (Fig. 3d). Several interesting behaviors were accurately predicted 

by the NN model. Preceding a high dose of ADP with prior treatment with low dose of ADP 

(Fig. 3d, panel 12) desensitized the signal expected from a high dose of ADP (as in Fig. 3d, 

panel 1). This behavior has been observed previously12, 13 and is attributed to the 

internalization of P2Y1. The temporal sequence ADP-SFLLRN-CVX (Fig. 3d, panel 1) 

produced three distinct Ca2+ bursts, whereas the ADP response was completely abolished in 

the sequence SFLLRN-ADP-CVX (Fig. 3d, panel 3). This behavior points to mechanisms of 

cross-down regulation of ADP signaling by component(s) of the PAR1 cascade.

Prior addition of CVX abolished responsiveness to both ADP (Fig. 3d, panel 5) and 

SFLLRN (Fig. 3d, panel 6) again suggesting a mechanism where components of the GPVI 

signal are able to down regulate the Gq-coupled ADP or SFLLRN signal. Additions of any 

two of these agonists in combination followed by the third agonist confirm the observation 

that any mixture containing CVX down-regulates responsiveness to both ADP (Fig. 3d, 

panel 9) and SFLLRN (Fig. 3d, panel 8). CVX-mediated calcium mobilization events were 

unaffected by pretreatment with either ADP (Fig. 3d, panel 2) or SFLLRN (Fig. 3d, panels 4 

and 3), or a binary combination of these agonists (Fig. 3d, panel 7). Activation of GPVI or 

thrombin receptors phosphorylates the ITIM domain of platelet PECAM14. ITIM 

phosphorylation inhibits response via phosphatases like SHP-215. Such mechanisms, or 

even agonist selective stores16, may explain the lack of ADP/SFLLRN response after prior 

CVX stimulation and the lack of ADP response after prior SFLLRN stimulus. Simulation 

traces containing CVX did not decay as observed experimentally after ~260 s (Fig. 3d, 

panels 2, 4–10). This limitation was expected because the NN was trained on measurements 

spanning only 260 s (Fig. 2a) and not the entire duration (up to 900 s). Importantly, the NN 

captured cross-talks of sequential additions despite being trained on purely synchronous 

interactions.

During the in vivo response to injury, the first adhering platelets experience strong GPVI 

signaling while subsequent depositing platelets contribute to the rising ADP and serotonin 

levels, followed by rising thromboxane levels and thrombin formation. While no single 

combination of agonists will replicate the dynamics of this in vivo situation, PAS-trained 

NN models offer the potential of using time-dependent agonist forcing functions as 

demonstrated in Fig. 3d (and Supplementary Fig. 7 for tests with thrombin compared to 

SFLLRN+AYPGKF). The ability to simulate thrombus formation under realistic 

hemodynamic conditions of flow17, 18 will require calculations of [Ca2+]i for platelets 

experiencing spatial and temporal exposures to stimuli. NN models are especially well 

suited for incorporation into multiscale models of patient-specific cell function in 

convective, reactive and dispersive flow fields19.

To investigate reproducibility and donor specificity, PAS was performed twice in a 2-week 

period for 10 healthy male donors (Fig. 4). The 135 conditions containing pairs of agonists 

in a single PAS experiment make up the synergy map for each donor experiment 
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(Supplementary Fig. 8) and individual columns of the synergy matrix (Fig. 4). The standard 

errors in synergy scores across all 135 conditions were uncorrelated with the magnitude of 

synergy and are measures of the experimental uncertainty and day-today fluctuations in 

mean synergy values at these conditions. The uncertainties across all 135 conditions for a 

representative donor (Donor A) are shown in Supplementary Fig. 9 (mean uncertainty for 

this donor was ±0.0523 for Sij ranging from −1 to 1). The mean standard error in synergy 

scores for all 10 donors are tabulated in Supplementary Table 3 and ranged from ±0.0347 to 

±0.0627. A simple hierarchical cluster tree was generated using the Euclidean distances 

between donor experiments. A total of 7 out of the 10 donor pair vectors (Donor pairs D, C, 

A, H, E, F and I) self clustered, demonstrating that in spite of intra donor variations, 

pronounced inter donor variations allow us to distinguish donors. This pattern of clustering 

was found to be highly significant (p<8×10−7) by randomizing observed donor synergies 

(Supplementary Fig. 10). The observed pattern of self clustering was platelet cell 

autonomous (and not related to donor plasma), since the PAS scans of an individual donor’s 

platelets with autologous or heterologous plasma self clustered (Supplementary Fig. 11). In 

general across all conditions and donors, highest probability of pairwise synergy was 

observed when moderate doses of both agonists were used. Low doses of both agonists 

produce additive responses, whereas high doses of both agonists skews synergy distributions 

towards antagonism. (Supplementary Fig. 12)

Donors separated into at least 2 major subgroups with the cluster of donor experiments D1, 

D2, J2, C1, C2, B1 and B2 characterized by relative lack of synergy (red) in comparison to 

other experiments. The cluster of experiments A1, A2, H1, H2, J1, E1, E2, F1, F2, G1, I1, I2 

and G2 had marked synergy between moderate doses of SFLLRN and all doses of U46619/

ADP, as well as marked synergy for moderate U46619 and high CVX. All donors showed 

some synergism between low and moderate doses of SFLLRN and U46619. Synergy was 

typically also found between AYPGKF and U46619. Moreover, synergistic/additive 

interactions were noted also between low and moderate doses of SFLLRN and AYPGKF. 

These results suggested a mechanism of synergy between thrombin and thromboxane. To 

test this, binary synergy maps of the physiological agonist thrombin and U46619 were 

constructed for donors A and E (Supplementary Fig. 13) over 7 doses spanning the active 

concentration ranges. To our knowledge, this is the first report of conserved synergy 

between thrombin and thromboxane mimetics.

Studying the combinatorial effects of pairs of agonists in low, moderate and high 

concentrations allowed a rapid, donor-specific phenotypic scan that was predictive of 

responses to 6 multiple agonists. Importantly, a single 384-well plate of data was sufficient 

to train a NN model (Fig. 2) capable of making accurate predictions of the global 6-

dimensional agonist reaction space (Fig. 3), which is difficult to probe experimentally but 

fundamental to the processes of thrombosis. Synergies between platelet agonists are 

dependent not just on agonist pairs and doses, but also vary from donor to donor (Fig. 4). 

Previous studies have reported synergistic aggregation responses to combinations of 

multiple agonists20–22. Such unique patterns of synergisms could be used to distinguish 

donors and be correlated with certain risk factors.
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The application of neural networks for predicting dynamic cellular signaling is beneficial 

because NNs are “dense” modeling structures that do not require detailed knowledge of the 

kinetic structure of a system. By comparison, an ordinary differential equation (ODE) model 

of ADP-stimulated calcium mobilization via P2Y1 required almost 80 reactions and over 100 

kinetic parameters to describe just this one single pathway23. We estimate that an ODE 

model that describes the signaling mechanisms of the 6 agonists (Fig. 1a) in this study on a 

similar level of detail would require over 500 parameters, many of which are currently 

unavailable.

The PAS/NN approach works because unitary and binary interactions dominate and they are 

sampled across the full dose range of inputs. We expect the method to break down when 

ternary interactions in excess of summing binary interactions become strong. We show that 

the residual ternary synergy (Δ(ABC) = SABC-SAB-SBC-SAC) was ~ 0 in each of 27 

responses of platelets to [CVX]+[ADP]+[SFLLRN] and was minimized in the NARX model 

training (Supplementary Fig. 14). We stimulated platelets with extracellular ligands for short 

times and explicitly blocked autocrinic feedbacks, which would otherwise expand the 

repertoire of participating factors. With these “pure inputs” (which are not broad 

intracellular perturbations like ionophores or phosphodiesterase inhibitors), the network 

architecture (Fig. 1a) necessitates rapid convergence to a common second messenger. 

Because of the speed of signaling and the known cell circuitry, it is difficult to envision 

realization of greater than second order synergies in such a situation. Thus observed ternary 

synergies appear to be well approximated by the linear superposition of the individual 

pairwise synergies. Since residual ternary interactions were undetectable, even higher 

ordered residuals are likely very small and potentially difficult to evolutionarily select. This 

exact result of unitary and binary interactions dominating with few detectable ternary 

interactions was reported for multiple cytokine stimulation of RAW264.7 cells24. Thus, the 

PAS approach is powerful for training NN models of signaling systems that accommodate 

multiple binary interactions where Δ(ABC) or higher ordered residuals are small.

In general, knowledge of pairwise interactions alone cannot be expected to predict response 

to multiple stimuli (>2) present simultaneously. However, certain characteristics of platelets 

and the conditions under which they were studied made such an approach feasible in this 

instance. These include: (i) the relative abundance of binary interactions in signaling 

systems with minimized ternary interactions (Supplementary Fig. 14)24, (ii) the efficient 

utilization of system history (Supplementary Fig. 15), (iii) the dense sampling of interactions 

across a full dose-response range, (iv) known intracellular wiring that rapidly converges on 

Ca2+, without the possibility of higher order effects from genetic regulation or other 

interactions on long time scales and (v) choice of well characterized extracellular ligands 

and careful design to avoid autocatalytic feedback.

Clinically, we anticipate PAS profiles to depend on such variables as ancestry, age, sex, 

pharmacology, and cardiovascular state, all of which requires further testing. Current 

measurements of platelet phenotype provide the coarsest measure of differences among 

healthy donors. For instance, platelet aggregometry for 359 subjects could classify them as 

“hypo and hyper” reactive to platelet agonists25; and flow cytometry of 26 individuals was 

able to classify them as high, medium or low responders. A combination of genetic 
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variations may underlie differences in platelet phenotype, however linking genotype (1327 

SNPs) to phenotype (flow cytometric measurement of P-Selectin exposure and fibrinogen 

binding) in 500 individuals26 demonstrated weak association probabilities.

Platelets are ideal “reduced” cellular systems for quantifying the effects of multiple 

signaling pathways because they are anucleate, easily obtained from donors, amenable to 

automated liquid handling, and biochemically well-characterized. In spite of the distinction 

from the in vivo platelet environment, the simplified in vitro conditions using EDTA were 

useful for the dissection of signaling pathways ‘decoupled’ from confounding autocrine 

effects of soluble mediators that are highly dependent on local platelet concentrations and 

prevailing transport processes. However, the operational advantages of using EDTA prevent 

direct prediction of important physiologic phenomena like granule release, integrin 

activation, and outside-in signaling.

Further expansion of the PAS set to include epinephrine, soluble CD40L, serotonin, and 

nitric oxide donors would essentially map a major portion of the entire platelet response 

space. The use of PAS with orthogonal pharmacological agents (indomethacin, P2Y12 

inhibitors, selective PAR antagonists, quanylate cyclase or adenylate cyclase inhibitors) 

would allow further assessment of individual clinical risk or sensitivity/resistance to therapy. 

The PAS method demonstrates that sampling all dual orthogonal “axes” (every agonist pair) 

can successfully predict the dynamic responses and cross-talks of a higher dimensional 

system (6 agonists in this case).

METHODS

Experimental methods and associated references are available in the online version for the 

paper at http://www.nature.com/naturebiotechnology/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Signaling pathways in platelets converge on intracellular calcium release. (b) High 
throughput experimental procedure. An agonist plate containing combinatorial agonist 

combinations and a platelet plate containing dye loaded platelets were separately assembled. 

Agonists were dispensed onto platelet suspensions and fluorescence changes were measured 

to quantify platelet calcium concentrations [Ca2+]i. [Ca2+]i transients can be represented as 

overlapping plots (right) or parallel heat maps (left). (c) Dynamic neural network used to 

train platelet response to combinatorial agonist activation. A constant sequence of input 

signals (agonist concentrations) is introduced to the 2-layer, 12-node network at each time 

point. Processing layers integrate input values with feedback signals to predict [Ca2+]i at the 

next time point.
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Figure 2. 
(a) Pairwise agonist scanning (PAS) All 154 binary combinations of the agonists CVX, 

ADP, U46619, SFLLRN, AYPGKF and PGE2 at concentrations of 0, 0.1, 1 and 10x EC50 

were combined on the same plate (in replicates of 2) and the dynamic response of the 

platelet to each combination was recorded. The NN model was trained on this dataset. (b) 
Pairwise agonist synergy scores, which reflect the gain or loss in calcium response due to 

agonist cross talk, were calculated for both experimental and predicted time course traces. 

EC50: PGE2, 24.6 μM; AYPGKF, 112 μM; SFLLRN, 15.2 μM; U46619, 1.19 μM; ADP, 

1.17 μM; CVX, 0.00534 μM.
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Figure 3. NN model reveals the global platelet response to all agonist combinations
(a) Measurement and prediction of the platelet response to all 64 ternary combinations of 

ADP, SFLLRN and CVX at 0, 0.1, 1, and 10 × EC50. The NN model was trained only on 

pairwise interactions but successfully predicted ternary interactions. (b) Measurement and 

prediction of the platelet response to 45 predictions in the full combinatorial agonist 
space (see text). (c) Predicted versus measured synergy scores for the 45 conditions in 

panel b. (right) Distribution of synergy scores for all 4077 possible experimental conditions. 

(bottom) Experimental conditions for the 45 sampled combinations of agonists, arranged in 

order of increasing synergy. The orange bar denotes the 3 most highly synergistic 

conditions, which all contained high U46619, no PGE2 and low levels of other agonists. (d) 

Measured and predicted platelet responses to sequential additions of ADP, SFLLRN, and 

CVX.
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Figure 4. Donor-specific synergy maps
Ten healthy donors were phenotyped for platelet calcium response to all pairwise agonist 

combinations. Repeat experiments were conducted within 2 weeks. Donors (Ages: 22–30 

years) spanned several ethnic groups (3 Western Europeans, 2 Asians, 2 Indians, 1 

Caribbean, 1 African American and 1 African). The magnitudes of synergy in each of the 20 

donor specific synergy maps were arranged as columns of the synergy matrix. These vectors 

were clustered according to similarity using a distance-based clustering algorithm.
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